dc2114x.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763
  1. /*
  2. * SPDX-License-Identifier: GPL-2.0+
  3. */
  4. #include <common.h>
  5. #include <malloc.h>
  6. #include <net.h>
  7. #include <netdev.h>
  8. #include <pci.h>
  9. #undef DEBUG_SROM
  10. #undef DEBUG_SROM2
  11. #undef UPDATE_SROM
  12. /* PCI Registers.
  13. */
  14. #define PCI_CFDA_PSM 0x43
  15. #define CFRV_RN 0x000000f0 /* Revision Number */
  16. #define WAKEUP 0x00 /* Power Saving Wakeup */
  17. #define SLEEP 0x80 /* Power Saving Sleep Mode */
  18. #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
  19. /* Ethernet chip registers.
  20. */
  21. #define DE4X5_BMR 0x000 /* Bus Mode Register */
  22. #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
  23. #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
  24. #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
  25. #define DE4X5_STS 0x028 /* Status Register */
  26. #define DE4X5_OMR 0x030 /* Operation Mode Register */
  27. #define DE4X5_SICR 0x068 /* SIA Connectivity Register */
  28. #define DE4X5_APROM 0x048 /* Ethernet Address PROM */
  29. /* Register bits.
  30. */
  31. #define BMR_SWR 0x00000001 /* Software Reset */
  32. #define STS_TS 0x00700000 /* Transmit Process State */
  33. #define STS_RS 0x000e0000 /* Receive Process State */
  34. #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
  35. #define OMR_SR 0x00000002 /* Start/Stop Receive */
  36. #define OMR_PS 0x00040000 /* Port Select */
  37. #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
  38. #define OMR_PM 0x00000080 /* Pass All Multicast */
  39. /* Descriptor bits.
  40. */
  41. #define R_OWN 0x80000000 /* Own Bit */
  42. #define RD_RER 0x02000000 /* Receive End Of Ring */
  43. #define RD_LS 0x00000100 /* Last Descriptor */
  44. #define RD_ES 0x00008000 /* Error Summary */
  45. #define TD_TER 0x02000000 /* Transmit End Of Ring */
  46. #define T_OWN 0x80000000 /* Own Bit */
  47. #define TD_LS 0x40000000 /* Last Segment */
  48. #define TD_FS 0x20000000 /* First Segment */
  49. #define TD_ES 0x00008000 /* Error Summary */
  50. #define TD_SET 0x08000000 /* Setup Packet */
  51. /* The EEPROM commands include the alway-set leading bit. */
  52. #define SROM_WRITE_CMD 5
  53. #define SROM_READ_CMD 6
  54. #define SROM_ERASE_CMD 7
  55. #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
  56. #define SROM_RD 0x00004000 /* Read from Boot ROM */
  57. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  58. #define EE_WRITE_0 0x4801
  59. #define EE_WRITE_1 0x4805
  60. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  61. #define SROM_SR 0x00000800 /* Select Serial ROM when set */
  62. #define DT_IN 0x00000004 /* Serial Data In */
  63. #define DT_CLK 0x00000002 /* Serial ROM Clock */
  64. #define DT_CS 0x00000001 /* Serial ROM Chip Select */
  65. #define POLL_DEMAND 1
  66. #ifdef CONFIG_TULIP_FIX_DAVICOM
  67. #define RESET_DM9102(dev) {\
  68. unsigned long i;\
  69. i=INL(dev, 0x0);\
  70. udelay(1000);\
  71. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  72. udelay(1000);\
  73. }
  74. #else
  75. #define RESET_DE4X5(dev) {\
  76. int i;\
  77. i=INL(dev, DE4X5_BMR);\
  78. udelay(1000);\
  79. OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
  80. udelay(1000);\
  81. OUTL(dev, i, DE4X5_BMR);\
  82. udelay(1000);\
  83. for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
  84. udelay(1000);\
  85. }
  86. #endif
  87. #define START_DE4X5(dev) {\
  88. s32 omr; \
  89. omr = INL(dev, DE4X5_OMR);\
  90. omr |= OMR_ST | OMR_SR;\
  91. OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
  92. }
  93. #define STOP_DE4X5(dev) {\
  94. s32 omr; \
  95. omr = INL(dev, DE4X5_OMR);\
  96. omr &= ~(OMR_ST|OMR_SR);\
  97. OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
  98. }
  99. #define NUM_RX_DESC PKTBUFSRX
  100. #ifndef CONFIG_TULIP_FIX_DAVICOM
  101. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  102. #else
  103. #define NUM_TX_DESC 4
  104. #endif
  105. #define RX_BUFF_SZ PKTSIZE_ALIGN
  106. #define TOUT_LOOP 1000000
  107. #define SETUP_FRAME_LEN 192
  108. #define ETH_ALEN 6
  109. struct de4x5_desc {
  110. volatile s32 status;
  111. u32 des1;
  112. u32 buf;
  113. u32 next;
  114. };
  115. static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
  116. static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
  117. static int rx_new; /* RX descriptor ring pointer */
  118. static int tx_new; /* TX descriptor ring pointer */
  119. static char rxRingSize;
  120. static char txRingSize;
  121. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  122. static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
  123. static int getfrom_srom(struct eth_device* dev, u_long addr);
  124. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
  125. static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
  126. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  127. #ifdef UPDATE_SROM
  128. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
  129. static void update_srom(struct eth_device *dev, bd_t *bis);
  130. #endif
  131. #ifndef CONFIG_TULIP_FIX_DAVICOM
  132. static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
  133. static void read_hw_addr(struct eth_device* dev, bd_t * bis);
  134. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  135. static void send_setup_frame(struct eth_device* dev, bd_t * bis);
  136. static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
  137. static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
  138. static int dc21x4x_recv(struct eth_device* dev);
  139. static void dc21x4x_halt(struct eth_device* dev);
  140. #ifdef CONFIG_TULIP_SELECT_MEDIA
  141. extern void dc21x4x_select_media(struct eth_device* dev);
  142. #endif
  143. #if defined(CONFIG_E500)
  144. #define phys_to_bus(a) (a)
  145. #else
  146. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  147. #endif
  148. static int INL(struct eth_device* dev, u_long addr)
  149. {
  150. return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
  151. }
  152. static void OUTL(struct eth_device* dev, int command, u_long addr)
  153. {
  154. *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
  155. }
  156. static struct pci_device_id supported[] = {
  157. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
  158. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
  159. #ifdef CONFIG_TULIP_FIX_DAVICOM
  160. { PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
  161. #endif
  162. { }
  163. };
  164. int dc21x4x_initialize(bd_t *bis)
  165. {
  166. int idx=0;
  167. int card_number = 0;
  168. unsigned int cfrv;
  169. unsigned char timer;
  170. pci_dev_t devbusfn;
  171. unsigned int iobase;
  172. unsigned short status;
  173. struct eth_device* dev;
  174. while(1) {
  175. devbusfn = pci_find_devices(supported, idx++);
  176. if (devbusfn == -1) {
  177. break;
  178. }
  179. /* Get the chip configuration revision register. */
  180. pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
  181. #ifndef CONFIG_TULIP_FIX_DAVICOM
  182. if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
  183. printf("Error: The chip is not DC21143.\n");
  184. continue;
  185. }
  186. #endif
  187. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  188. status |=
  189. #ifdef CONFIG_TULIP_USE_IO
  190. PCI_COMMAND_IO |
  191. #else
  192. PCI_COMMAND_MEMORY |
  193. #endif
  194. PCI_COMMAND_MASTER;
  195. pci_write_config_word(devbusfn, PCI_COMMAND, status);
  196. pci_read_config_word(devbusfn, PCI_COMMAND, &status);
  197. #ifdef CONFIG_TULIP_USE_IO
  198. if (!(status & PCI_COMMAND_IO)) {
  199. printf("Error: Can not enable I/O access.\n");
  200. continue;
  201. }
  202. #else
  203. if (!(status & PCI_COMMAND_MEMORY)) {
  204. printf("Error: Can not enable MEMORY access.\n");
  205. continue;
  206. }
  207. #endif
  208. if (!(status & PCI_COMMAND_MASTER)) {
  209. printf("Error: Can not enable Bus Mastering.\n");
  210. continue;
  211. }
  212. /* Check the latency timer for values >= 0x60. */
  213. pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
  214. if (timer < 0x60) {
  215. pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
  216. }
  217. #ifdef CONFIG_TULIP_USE_IO
  218. /* read BAR for memory space access */
  219. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
  220. iobase &= PCI_BASE_ADDRESS_IO_MASK;
  221. #else
  222. /* read BAR for memory space access */
  223. pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
  224. iobase &= PCI_BASE_ADDRESS_MEM_MASK;
  225. #endif
  226. debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
  227. dev = (struct eth_device*) malloc(sizeof *dev);
  228. if (!dev) {
  229. printf("Can not allocalte memory of dc21x4x\n");
  230. break;
  231. }
  232. memset(dev, 0, sizeof(*dev));
  233. #ifdef CONFIG_TULIP_FIX_DAVICOM
  234. sprintf(dev->name, "Davicom#%d", card_number);
  235. #else
  236. sprintf(dev->name, "dc21x4x#%d", card_number);
  237. #endif
  238. #ifdef CONFIG_TULIP_USE_IO
  239. dev->iobase = pci_io_to_phys(devbusfn, iobase);
  240. #else
  241. dev->iobase = pci_mem_to_phys(devbusfn, iobase);
  242. #endif
  243. dev->priv = (void*) devbusfn;
  244. dev->init = dc21x4x_init;
  245. dev->halt = dc21x4x_halt;
  246. dev->send = dc21x4x_send;
  247. dev->recv = dc21x4x_recv;
  248. /* Ensure we're not sleeping. */
  249. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  250. udelay(10 * 1000);
  251. #ifndef CONFIG_TULIP_FIX_DAVICOM
  252. read_hw_addr(dev, bis);
  253. #endif
  254. eth_register(dev);
  255. card_number++;
  256. }
  257. return card_number;
  258. }
  259. static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
  260. {
  261. int i;
  262. int devbusfn = (int) dev->priv;
  263. /* Ensure we're not sleeping. */
  264. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
  265. #ifdef CONFIG_TULIP_FIX_DAVICOM
  266. RESET_DM9102(dev);
  267. #else
  268. RESET_DE4X5(dev);
  269. #endif
  270. if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
  271. printf("Error: Cannot reset ethernet controller.\n");
  272. return -1;
  273. }
  274. #ifdef CONFIG_TULIP_SELECT_MEDIA
  275. dc21x4x_select_media(dev);
  276. #else
  277. OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
  278. #endif
  279. for (i = 0; i < NUM_RX_DESC; i++) {
  280. rx_ring[i].status = cpu_to_le32(R_OWN);
  281. rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
  282. rx_ring[i].buf = cpu_to_le32(
  283. phys_to_bus((u32)net_rx_packets[i]));
  284. #ifdef CONFIG_TULIP_FIX_DAVICOM
  285. rx_ring[i].next = cpu_to_le32(
  286. phys_to_bus((u32)&rx_ring[(i + 1) % NUM_RX_DESC]));
  287. #else
  288. rx_ring[i].next = 0;
  289. #endif
  290. }
  291. for (i=0; i < NUM_TX_DESC; i++) {
  292. tx_ring[i].status = 0;
  293. tx_ring[i].des1 = 0;
  294. tx_ring[i].buf = 0;
  295. #ifdef CONFIG_TULIP_FIX_DAVICOM
  296. tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
  297. #else
  298. tx_ring[i].next = 0;
  299. #endif
  300. }
  301. rxRingSize = NUM_RX_DESC;
  302. txRingSize = NUM_TX_DESC;
  303. /* Write the end of list marker to the descriptor lists. */
  304. rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
  305. tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
  306. /* Tell the adapter where the TX/RX rings are located. */
  307. OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
  308. OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
  309. START_DE4X5(dev);
  310. tx_new = 0;
  311. rx_new = 0;
  312. send_setup_frame(dev, bis);
  313. return 0;
  314. }
  315. static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
  316. {
  317. int status = -1;
  318. int i;
  319. if (length <= 0) {
  320. printf("%s: bad packet size: %d\n", dev->name, length);
  321. goto Done;
  322. }
  323. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  324. if (i >= TOUT_LOOP) {
  325. printf("%s: tx error buffer not ready\n", dev->name);
  326. goto Done;
  327. }
  328. }
  329. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
  330. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
  331. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  332. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  333. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  334. if (i >= TOUT_LOOP) {
  335. printf(".%s: tx buffer not ready\n", dev->name);
  336. goto Done;
  337. }
  338. }
  339. if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
  340. #if 0 /* test-only */
  341. printf("TX error status = 0x%08X\n",
  342. le32_to_cpu(tx_ring[tx_new].status));
  343. #endif
  344. tx_ring[tx_new].status = 0x0;
  345. goto Done;
  346. }
  347. status = length;
  348. Done:
  349. tx_new = (tx_new+1) % NUM_TX_DESC;
  350. return status;
  351. }
  352. static int dc21x4x_recv(struct eth_device* dev)
  353. {
  354. s32 status;
  355. int length = 0;
  356. for ( ; ; ) {
  357. status = (s32)le32_to_cpu(rx_ring[rx_new].status);
  358. if (status & R_OWN) {
  359. break;
  360. }
  361. if (status & RD_LS) {
  362. /* Valid frame status.
  363. */
  364. if (status & RD_ES) {
  365. /* There was an error.
  366. */
  367. printf("RX error status = 0x%08X\n", status);
  368. } else {
  369. /* A valid frame received.
  370. */
  371. length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
  372. /* Pass the packet up to the protocol
  373. * layers.
  374. */
  375. net_process_received_packet(
  376. net_rx_packets[rx_new], length - 4);
  377. }
  378. /* Change buffer ownership for this frame, back
  379. * to the adapter.
  380. */
  381. rx_ring[rx_new].status = cpu_to_le32(R_OWN);
  382. }
  383. /* Update entry information.
  384. */
  385. rx_new = (rx_new + 1) % rxRingSize;
  386. }
  387. return length;
  388. }
  389. static void dc21x4x_halt(struct eth_device* dev)
  390. {
  391. int devbusfn = (int) dev->priv;
  392. STOP_DE4X5(dev);
  393. OUTL(dev, 0, DE4X5_SICR);
  394. pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
  395. }
  396. static void send_setup_frame(struct eth_device* dev, bd_t *bis)
  397. {
  398. int i;
  399. char setup_frame[SETUP_FRAME_LEN];
  400. char *pa = &setup_frame[0];
  401. memset(pa, 0xff, SETUP_FRAME_LEN);
  402. for (i = 0; i < ETH_ALEN; i++) {
  403. *(pa + (i & 1)) = dev->enetaddr[i];
  404. if (i & 0x01) {
  405. pa += 4;
  406. }
  407. }
  408. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  409. if (i >= TOUT_LOOP) {
  410. printf("%s: tx error buffer not ready\n", dev->name);
  411. goto Done;
  412. }
  413. }
  414. tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
  415. tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
  416. tx_ring[tx_new].status = cpu_to_le32(T_OWN);
  417. OUTL(dev, POLL_DEMAND, DE4X5_TPD);
  418. for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
  419. if (i >= TOUT_LOOP) {
  420. printf("%s: tx buffer not ready\n", dev->name);
  421. goto Done;
  422. }
  423. }
  424. if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
  425. printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
  426. }
  427. tx_new = (tx_new+1) % NUM_TX_DESC;
  428. Done:
  429. return;
  430. }
  431. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  432. /* SROM Read and write routines.
  433. */
  434. static void
  435. sendto_srom(struct eth_device* dev, u_int command, u_long addr)
  436. {
  437. OUTL(dev, command, addr);
  438. udelay(1);
  439. }
  440. static int
  441. getfrom_srom(struct eth_device* dev, u_long addr)
  442. {
  443. s32 tmp;
  444. tmp = INL(dev, addr);
  445. udelay(1);
  446. return tmp;
  447. }
  448. /* Note: this routine returns extra data bits for size detection. */
  449. static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
  450. {
  451. int i;
  452. unsigned retval = 0;
  453. int read_cmd = location | (SROM_READ_CMD << addr_len);
  454. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  455. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  456. #ifdef DEBUG_SROM
  457. printf(" EEPROM read at %d ", location);
  458. #endif
  459. /* Shift the read command bits out. */
  460. for (i = 4 + addr_len; i >= 0; i--) {
  461. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  462. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
  463. udelay(10);
  464. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
  465. udelay(10);
  466. #ifdef DEBUG_SROM2
  467. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  468. #endif
  469. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  470. }
  471. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  472. #ifdef DEBUG_SROM2
  473. printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
  474. #endif
  475. for (i = 16; i > 0; i--) {
  476. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  477. udelay(10);
  478. #ifdef DEBUG_SROM2
  479. printf("%X", getfrom_srom(dev, ioaddr) & 15);
  480. #endif
  481. retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
  482. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  483. udelay(10);
  484. }
  485. /* Terminate the EEPROM access. */
  486. sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
  487. #ifdef DEBUG_SROM2
  488. printf(" EEPROM value at %d is %5.5x.\n", location, retval);
  489. #endif
  490. return retval;
  491. }
  492. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  493. /* This executes a generic EEPROM command, typically a write or write
  494. * enable. It returns the data output from the EEPROM, and thus may
  495. * also be used for reads.
  496. */
  497. #if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
  498. static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
  499. {
  500. unsigned retval = 0;
  501. #ifdef DEBUG_SROM
  502. printf(" EEPROM op 0x%x: ", cmd);
  503. #endif
  504. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
  505. /* Shift the command bits out. */
  506. do {
  507. short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
  508. sendto_srom(dev,dataval, ioaddr);
  509. udelay(10);
  510. #ifdef DEBUG_SROM2
  511. printf("%X", getfrom_srom(dev,ioaddr) & 15);
  512. #endif
  513. sendto_srom(dev,dataval | DT_CLK, ioaddr);
  514. udelay(10);
  515. retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
  516. } while (--cmd_len >= 0);
  517. sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
  518. /* Terminate the EEPROM access. */
  519. sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
  520. #ifdef DEBUG_SROM
  521. printf(" EEPROM result is 0x%5.5x.\n", retval);
  522. #endif
  523. return retval;
  524. }
  525. #endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
  526. #ifndef CONFIG_TULIP_FIX_DAVICOM
  527. static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
  528. {
  529. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  530. return do_eeprom_cmd(dev, ioaddr,
  531. (((SROM_READ_CMD << ee_addr_size) | index) << 16)
  532. | 0xffff, 3 + ee_addr_size + 16);
  533. }
  534. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  535. #ifdef UPDATE_SROM
  536. static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
  537. {
  538. int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
  539. int i;
  540. unsigned short newval;
  541. udelay(10*1000); /* test-only */
  542. #ifdef DEBUG_SROM
  543. printf("ee_addr_size=%d.\n", ee_addr_size);
  544. printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
  545. #endif
  546. /* Enable programming modes. */
  547. do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
  548. /* Do the actual write. */
  549. do_eeprom_cmd(dev, ioaddr,
  550. (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
  551. 3 + ee_addr_size + 16);
  552. /* Poll for write finished. */
  553. sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
  554. for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
  555. if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
  556. break;
  557. #ifdef DEBUG_SROM
  558. printf(" Write finished after %d ticks.\n", i);
  559. #endif
  560. /* Disable programming. */
  561. do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
  562. /* And read the result. */
  563. newval = do_eeprom_cmd(dev, ioaddr,
  564. (((SROM_READ_CMD<<ee_addr_size)|index) << 16)
  565. | 0xffff, 3 + ee_addr_size + 16);
  566. #ifdef DEBUG_SROM
  567. printf(" New value at offset %d is %4.4x.\n", index, newval);
  568. #endif
  569. return 1;
  570. }
  571. #endif
  572. #ifndef CONFIG_TULIP_FIX_DAVICOM
  573. static void read_hw_addr(struct eth_device *dev, bd_t *bis)
  574. {
  575. u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
  576. int i, j = 0;
  577. for (i = 0; i < (ETH_ALEN >> 1); i++) {
  578. tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
  579. *p = le16_to_cpu(tmp);
  580. j += *p++;
  581. }
  582. if ((j == 0) || (j == 0x2fffd)) {
  583. memset (dev->enetaddr, 0, ETH_ALEN);
  584. debug ("Warning: can't read HW address from SROM.\n");
  585. goto Done;
  586. }
  587. return;
  588. Done:
  589. #ifdef UPDATE_SROM
  590. update_srom(dev, bis);
  591. #endif
  592. return;
  593. }
  594. #endif /* CONFIG_TULIP_FIX_DAVICOM */
  595. #ifdef UPDATE_SROM
  596. static void update_srom(struct eth_device *dev, bd_t *bis)
  597. {
  598. int i;
  599. static unsigned short eeprom[0x40] = {
  600. 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
  601. 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
  602. 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
  603. 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
  604. 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
  605. 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
  606. 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
  607. 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
  608. 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
  609. 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
  610. 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
  611. 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
  612. 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
  613. 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
  614. 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
  615. 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
  616. };
  617. uchar enetaddr[6];
  618. /* Ethernet Addr... */
  619. if (!eth_getenv_enetaddr("ethaddr", enetaddr))
  620. return;
  621. eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
  622. eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
  623. eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
  624. for (i=0; i<0x40; i++) {
  625. write_srom(dev, DE4X5_APROM, i, eeprom[i]);
  626. }
  627. }
  628. #endif /* UPDATE_SROM */