pxa3xx_nand.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614
  1. /*
  2. * drivers/mtd/nand/pxa3xx_nand.c
  3. *
  4. * Copyright © 2005 Intel Corporation
  5. * Copyright © 2006 Marvell International Ltd.
  6. *
  7. * SPDX-License-Identifier: GPL-2.0
  8. */
  9. #include <common.h>
  10. #include <malloc.h>
  11. #include <nand.h>
  12. #include <linux/errno.h>
  13. #include <asm/io.h>
  14. #include <asm/arch/cpu.h>
  15. #include <linux/mtd/mtd.h>
  16. #include <linux/mtd/nand.h>
  17. #include <linux/types.h>
  18. #include "pxa3xx_nand.h"
  19. #define TIMEOUT_DRAIN_FIFO 5 /* in ms */
  20. #define CHIP_DELAY_TIMEOUT 200
  21. #define NAND_STOP_DELAY 40
  22. #define PAGE_CHUNK_SIZE (2048)
  23. /*
  24. * Define a buffer size for the initial command that detects the flash device:
  25. * STATUS, READID and PARAM. The largest of these is the PARAM command,
  26. * needing 256 bytes.
  27. */
  28. #define INIT_BUFFER_SIZE 256
  29. /* registers and bit definitions */
  30. #define NDCR (0x00) /* Control register */
  31. #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
  32. #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
  33. #define NDSR (0x14) /* Status Register */
  34. #define NDPCR (0x18) /* Page Count Register */
  35. #define NDBDR0 (0x1C) /* Bad Block Register 0 */
  36. #define NDBDR1 (0x20) /* Bad Block Register 1 */
  37. #define NDECCCTRL (0x28) /* ECC control */
  38. #define NDDB (0x40) /* Data Buffer */
  39. #define NDCB0 (0x48) /* Command Buffer0 */
  40. #define NDCB1 (0x4C) /* Command Buffer1 */
  41. #define NDCB2 (0x50) /* Command Buffer2 */
  42. #define NDCR_SPARE_EN (0x1 << 31)
  43. #define NDCR_ECC_EN (0x1 << 30)
  44. #define NDCR_DMA_EN (0x1 << 29)
  45. #define NDCR_ND_RUN (0x1 << 28)
  46. #define NDCR_DWIDTH_C (0x1 << 27)
  47. #define NDCR_DWIDTH_M (0x1 << 26)
  48. #define NDCR_PAGE_SZ (0x1 << 24)
  49. #define NDCR_NCSX (0x1 << 23)
  50. #define NDCR_ND_MODE (0x3 << 21)
  51. #define NDCR_NAND_MODE (0x0)
  52. #define NDCR_CLR_PG_CNT (0x1 << 20)
  53. #define NDCR_STOP_ON_UNCOR (0x1 << 19)
  54. #define NDCR_RD_ID_CNT_MASK (0x7 << 16)
  55. #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
  56. #define NDCR_RA_START (0x1 << 15)
  57. #define NDCR_PG_PER_BLK (0x1 << 14)
  58. #define NDCR_ND_ARB_EN (0x1 << 12)
  59. #define NDCR_INT_MASK (0xFFF)
  60. #define NDSR_MASK (0xfff)
  61. #define NDSR_ERR_CNT_OFF (16)
  62. #define NDSR_ERR_CNT_MASK (0x1f)
  63. #define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
  64. #define NDSR_RDY (0x1 << 12)
  65. #define NDSR_FLASH_RDY (0x1 << 11)
  66. #define NDSR_CS0_PAGED (0x1 << 10)
  67. #define NDSR_CS1_PAGED (0x1 << 9)
  68. #define NDSR_CS0_CMDD (0x1 << 8)
  69. #define NDSR_CS1_CMDD (0x1 << 7)
  70. #define NDSR_CS0_BBD (0x1 << 6)
  71. #define NDSR_CS1_BBD (0x1 << 5)
  72. #define NDSR_UNCORERR (0x1 << 4)
  73. #define NDSR_CORERR (0x1 << 3)
  74. #define NDSR_WRDREQ (0x1 << 2)
  75. #define NDSR_RDDREQ (0x1 << 1)
  76. #define NDSR_WRCMDREQ (0x1)
  77. #define NDCB0_LEN_OVRD (0x1 << 28)
  78. #define NDCB0_ST_ROW_EN (0x1 << 26)
  79. #define NDCB0_AUTO_RS (0x1 << 25)
  80. #define NDCB0_CSEL (0x1 << 24)
  81. #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
  82. #define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
  83. #define NDCB0_CMD_TYPE_MASK (0x7 << 21)
  84. #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
  85. #define NDCB0_NC (0x1 << 20)
  86. #define NDCB0_DBC (0x1 << 19)
  87. #define NDCB0_ADDR_CYC_MASK (0x7 << 16)
  88. #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
  89. #define NDCB0_CMD2_MASK (0xff << 8)
  90. #define NDCB0_CMD1_MASK (0xff)
  91. #define NDCB0_ADDR_CYC_SHIFT (16)
  92. #define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */
  93. #define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */
  94. #define EXT_CMD_TYPE_READ 4 /* Read */
  95. #define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */
  96. #define EXT_CMD_TYPE_FINAL 3 /* Final command */
  97. #define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */
  98. #define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */
  99. /* macros for registers read/write */
  100. #define nand_writel(info, off, val) \
  101. writel((val), (info)->mmio_base + (off))
  102. #define nand_readl(info, off) \
  103. readl((info)->mmio_base + (off))
  104. /* error code and state */
  105. enum {
  106. ERR_NONE = 0,
  107. ERR_DMABUSERR = -1,
  108. ERR_SENDCMD = -2,
  109. ERR_UNCORERR = -3,
  110. ERR_BBERR = -4,
  111. ERR_CORERR = -5,
  112. };
  113. enum {
  114. STATE_IDLE = 0,
  115. STATE_PREPARED,
  116. STATE_CMD_HANDLE,
  117. STATE_DMA_READING,
  118. STATE_DMA_WRITING,
  119. STATE_DMA_DONE,
  120. STATE_PIO_READING,
  121. STATE_PIO_WRITING,
  122. STATE_CMD_DONE,
  123. STATE_READY,
  124. };
  125. enum pxa3xx_nand_variant {
  126. PXA3XX_NAND_VARIANT_PXA,
  127. PXA3XX_NAND_VARIANT_ARMADA370,
  128. };
  129. struct pxa3xx_nand_host {
  130. struct nand_chip chip;
  131. struct mtd_info *mtd;
  132. void *info_data;
  133. /* page size of attached chip */
  134. int use_ecc;
  135. int cs;
  136. /* calculated from pxa3xx_nand_flash data */
  137. unsigned int col_addr_cycles;
  138. unsigned int row_addr_cycles;
  139. size_t read_id_bytes;
  140. };
  141. struct pxa3xx_nand_info {
  142. struct nand_hw_control controller;
  143. struct pxa3xx_nand_platform_data *pdata;
  144. struct clk *clk;
  145. void __iomem *mmio_base;
  146. unsigned long mmio_phys;
  147. int cmd_complete, dev_ready;
  148. unsigned int buf_start;
  149. unsigned int buf_count;
  150. unsigned int buf_size;
  151. unsigned int data_buff_pos;
  152. unsigned int oob_buff_pos;
  153. unsigned char *data_buff;
  154. unsigned char *oob_buff;
  155. struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
  156. unsigned int state;
  157. /*
  158. * This driver supports NFCv1 (as found in PXA SoC)
  159. * and NFCv2 (as found in Armada 370/XP SoC).
  160. */
  161. enum pxa3xx_nand_variant variant;
  162. int cs;
  163. int use_ecc; /* use HW ECC ? */
  164. int ecc_bch; /* using BCH ECC? */
  165. int use_spare; /* use spare ? */
  166. int need_wait;
  167. unsigned int data_size; /* data to be read from FIFO */
  168. unsigned int chunk_size; /* split commands chunk size */
  169. unsigned int oob_size;
  170. unsigned int spare_size;
  171. unsigned int ecc_size;
  172. unsigned int ecc_err_cnt;
  173. unsigned int max_bitflips;
  174. int retcode;
  175. /* cached register value */
  176. uint32_t reg_ndcr;
  177. uint32_t ndtr0cs0;
  178. uint32_t ndtr1cs0;
  179. /* generated NDCBx register values */
  180. uint32_t ndcb0;
  181. uint32_t ndcb1;
  182. uint32_t ndcb2;
  183. uint32_t ndcb3;
  184. };
  185. static struct pxa3xx_nand_timing timing[] = {
  186. { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
  187. { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
  188. { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
  189. { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
  190. };
  191. static struct pxa3xx_nand_flash builtin_flash_types[] = {
  192. { 0x46ec, 16, 16, &timing[1] },
  193. { 0xdaec, 8, 8, &timing[1] },
  194. { 0xd7ec, 8, 8, &timing[1] },
  195. { 0xa12c, 8, 8, &timing[2] },
  196. { 0xb12c, 16, 16, &timing[2] },
  197. { 0xdc2c, 8, 8, &timing[2] },
  198. { 0xcc2c, 16, 16, &timing[2] },
  199. { 0xba20, 16, 16, &timing[3] },
  200. };
  201. static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
  202. static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
  203. static struct nand_bbt_descr bbt_main_descr = {
  204. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  205. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  206. .offs = 8,
  207. .len = 6,
  208. .veroffs = 14,
  209. .maxblocks = 8, /* Last 8 blocks in each chip */
  210. .pattern = bbt_pattern
  211. };
  212. static struct nand_bbt_descr bbt_mirror_descr = {
  213. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  214. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  215. .offs = 8,
  216. .len = 6,
  217. .veroffs = 14,
  218. .maxblocks = 8, /* Last 8 blocks in each chip */
  219. .pattern = bbt_mirror_pattern
  220. };
  221. static struct nand_ecclayout ecc_layout_2KB_bch4bit = {
  222. .eccbytes = 32,
  223. .eccpos = {
  224. 32, 33, 34, 35, 36, 37, 38, 39,
  225. 40, 41, 42, 43, 44, 45, 46, 47,
  226. 48, 49, 50, 51, 52, 53, 54, 55,
  227. 56, 57, 58, 59, 60, 61, 62, 63},
  228. .oobfree = { {2, 30} }
  229. };
  230. static struct nand_ecclayout ecc_layout_4KB_bch4bit = {
  231. .eccbytes = 64,
  232. .eccpos = {
  233. 32, 33, 34, 35, 36, 37, 38, 39,
  234. 40, 41, 42, 43, 44, 45, 46, 47,
  235. 48, 49, 50, 51, 52, 53, 54, 55,
  236. 56, 57, 58, 59, 60, 61, 62, 63,
  237. 96, 97, 98, 99, 100, 101, 102, 103,
  238. 104, 105, 106, 107, 108, 109, 110, 111,
  239. 112, 113, 114, 115, 116, 117, 118, 119,
  240. 120, 121, 122, 123, 124, 125, 126, 127},
  241. /* Bootrom looks in bytes 0 & 5 for bad blocks */
  242. .oobfree = { {6, 26}, { 64, 32} }
  243. };
  244. static struct nand_ecclayout ecc_layout_4KB_bch8bit = {
  245. .eccbytes = 128,
  246. .eccpos = {
  247. 32, 33, 34, 35, 36, 37, 38, 39,
  248. 40, 41, 42, 43, 44, 45, 46, 47,
  249. 48, 49, 50, 51, 52, 53, 54, 55,
  250. 56, 57, 58, 59, 60, 61, 62, 63},
  251. .oobfree = { }
  252. };
  253. #define NDTR0_tCH(c) (min((c), 7) << 19)
  254. #define NDTR0_tCS(c) (min((c), 7) << 16)
  255. #define NDTR0_tWH(c) (min((c), 7) << 11)
  256. #define NDTR0_tWP(c) (min((c), 7) << 8)
  257. #define NDTR0_tRH(c) (min((c), 7) << 3)
  258. #define NDTR0_tRP(c) (min((c), 7) << 0)
  259. #define NDTR1_tR(c) (min((c), 65535) << 16)
  260. #define NDTR1_tWHR(c) (min((c), 15) << 4)
  261. #define NDTR1_tAR(c) (min((c), 15) << 0)
  262. /* convert nano-seconds to nand flash controller clock cycles */
  263. #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
  264. static enum pxa3xx_nand_variant pxa3xx_nand_get_variant(void)
  265. {
  266. /* We only support the Armada 370/XP/38x for now */
  267. return PXA3XX_NAND_VARIANT_ARMADA370;
  268. }
  269. static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
  270. const struct pxa3xx_nand_timing *t)
  271. {
  272. struct pxa3xx_nand_info *info = host->info_data;
  273. unsigned long nand_clk = mvebu_get_nand_clock();
  274. uint32_t ndtr0, ndtr1;
  275. ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
  276. NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
  277. NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
  278. NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
  279. NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
  280. NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
  281. ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
  282. NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
  283. NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
  284. info->ndtr0cs0 = ndtr0;
  285. info->ndtr1cs0 = ndtr1;
  286. nand_writel(info, NDTR0CS0, ndtr0);
  287. nand_writel(info, NDTR1CS0, ndtr1);
  288. }
  289. static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
  290. const struct nand_sdr_timings *t)
  291. {
  292. struct pxa3xx_nand_info *info = host->info_data;
  293. struct nand_chip *chip = &host->chip;
  294. unsigned long nand_clk = mvebu_get_nand_clock();
  295. uint32_t ndtr0, ndtr1;
  296. u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
  297. u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
  298. u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
  299. u32 tWP_min = DIV_ROUND_UP(t->tWC_min - tWH_min, 1000);
  300. u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
  301. u32 tRP_min = DIV_ROUND_UP(t->tRC_min - tREH_min, 1000);
  302. u32 tR = chip->chip_delay * 1000;
  303. u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
  304. u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
  305. /* fallback to a default value if tR = 0 */
  306. if (!tR)
  307. tR = 20000;
  308. ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
  309. NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
  310. NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
  311. NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
  312. NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
  313. NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
  314. ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
  315. NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
  316. NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
  317. info->ndtr0cs0 = ndtr0;
  318. info->ndtr1cs0 = ndtr1;
  319. nand_writel(info, NDTR0CS0, ndtr0);
  320. nand_writel(info, NDTR1CS0, ndtr1);
  321. }
  322. static int pxa3xx_nand_init_timings(struct pxa3xx_nand_host *host)
  323. {
  324. const struct nand_sdr_timings *timings;
  325. struct nand_chip *chip = &host->chip;
  326. struct pxa3xx_nand_info *info = host->info_data;
  327. const struct pxa3xx_nand_flash *f = NULL;
  328. int mode, id, ntypes, i;
  329. mode = onfi_get_async_timing_mode(chip);
  330. if (mode == ONFI_TIMING_MODE_UNKNOWN) {
  331. ntypes = ARRAY_SIZE(builtin_flash_types);
  332. chip->cmdfunc(host->mtd, NAND_CMD_READID, 0x00, -1);
  333. id = chip->read_byte(host->mtd);
  334. id |= chip->read_byte(host->mtd) << 0x8;
  335. for (i = 0; i < ntypes; i++) {
  336. f = &builtin_flash_types[i];
  337. if (f->chip_id == id)
  338. break;
  339. }
  340. if (i == ntypes) {
  341. dev_err(&info->pdev->dev, "Error: timings not found\n");
  342. return -EINVAL;
  343. }
  344. pxa3xx_nand_set_timing(host, f->timing);
  345. if (f->flash_width == 16) {
  346. info->reg_ndcr |= NDCR_DWIDTH_M;
  347. chip->options |= NAND_BUSWIDTH_16;
  348. }
  349. info->reg_ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
  350. } else {
  351. mode = fls(mode) - 1;
  352. if (mode < 0)
  353. mode = 0;
  354. timings = onfi_async_timing_mode_to_sdr_timings(mode);
  355. if (IS_ERR(timings))
  356. return PTR_ERR(timings);
  357. pxa3xx_nand_set_sdr_timing(host, timings);
  358. }
  359. return 0;
  360. }
  361. /*
  362. * Set the data and OOB size, depending on the selected
  363. * spare and ECC configuration.
  364. * Only applicable to READ0, READOOB and PAGEPROG commands.
  365. */
  366. static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info,
  367. struct mtd_info *mtd)
  368. {
  369. int oob_enable = info->reg_ndcr & NDCR_SPARE_EN;
  370. info->data_size = mtd->writesize;
  371. if (!oob_enable)
  372. return;
  373. info->oob_size = info->spare_size;
  374. if (!info->use_ecc)
  375. info->oob_size += info->ecc_size;
  376. }
  377. /**
  378. * NOTE: it is a must to set ND_RUN first, then write
  379. * command buffer, otherwise, it does not work.
  380. * We enable all the interrupt at the same time, and
  381. * let pxa3xx_nand_irq to handle all logic.
  382. */
  383. static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
  384. {
  385. uint32_t ndcr;
  386. ndcr = info->reg_ndcr;
  387. if (info->use_ecc) {
  388. ndcr |= NDCR_ECC_EN;
  389. if (info->ecc_bch)
  390. nand_writel(info, NDECCCTRL, 0x1);
  391. } else {
  392. ndcr &= ~NDCR_ECC_EN;
  393. if (info->ecc_bch)
  394. nand_writel(info, NDECCCTRL, 0x0);
  395. }
  396. ndcr &= ~NDCR_DMA_EN;
  397. if (info->use_spare)
  398. ndcr |= NDCR_SPARE_EN;
  399. else
  400. ndcr &= ~NDCR_SPARE_EN;
  401. ndcr |= NDCR_ND_RUN;
  402. /* clear status bits and run */
  403. nand_writel(info, NDCR, 0);
  404. nand_writel(info, NDSR, NDSR_MASK);
  405. nand_writel(info, NDCR, ndcr);
  406. }
  407. static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
  408. {
  409. uint32_t ndcr;
  410. ndcr = nand_readl(info, NDCR);
  411. nand_writel(info, NDCR, ndcr | int_mask);
  412. }
  413. static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
  414. {
  415. if (info->ecc_bch) {
  416. u32 ts;
  417. /*
  418. * According to the datasheet, when reading from NDDB
  419. * with BCH enabled, after each 32 bytes reads, we
  420. * have to make sure that the NDSR.RDDREQ bit is set.
  421. *
  422. * Drain the FIFO 8 32 bits reads at a time, and skip
  423. * the polling on the last read.
  424. */
  425. while (len > 8) {
  426. readsl(info->mmio_base + NDDB, data, 8);
  427. ts = get_timer(0);
  428. while (!(nand_readl(info, NDSR) & NDSR_RDDREQ)) {
  429. if (get_timer(ts) > TIMEOUT_DRAIN_FIFO) {
  430. dev_err(&info->pdev->dev,
  431. "Timeout on RDDREQ while draining the FIFO\n");
  432. return;
  433. }
  434. }
  435. data += 32;
  436. len -= 8;
  437. }
  438. }
  439. readsl(info->mmio_base + NDDB, data, len);
  440. }
  441. static void handle_data_pio(struct pxa3xx_nand_info *info)
  442. {
  443. unsigned int do_bytes = min(info->data_size, info->chunk_size);
  444. switch (info->state) {
  445. case STATE_PIO_WRITING:
  446. writesl(info->mmio_base + NDDB,
  447. info->data_buff + info->data_buff_pos,
  448. DIV_ROUND_UP(do_bytes, 4));
  449. if (info->oob_size > 0)
  450. writesl(info->mmio_base + NDDB,
  451. info->oob_buff + info->oob_buff_pos,
  452. DIV_ROUND_UP(info->oob_size, 4));
  453. break;
  454. case STATE_PIO_READING:
  455. drain_fifo(info,
  456. info->data_buff + info->data_buff_pos,
  457. DIV_ROUND_UP(do_bytes, 4));
  458. if (info->oob_size > 0)
  459. drain_fifo(info,
  460. info->oob_buff + info->oob_buff_pos,
  461. DIV_ROUND_UP(info->oob_size, 4));
  462. break;
  463. default:
  464. dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
  465. info->state);
  466. BUG();
  467. }
  468. /* Update buffer pointers for multi-page read/write */
  469. info->data_buff_pos += do_bytes;
  470. info->oob_buff_pos += info->oob_size;
  471. info->data_size -= do_bytes;
  472. }
  473. static void pxa3xx_nand_irq_thread(struct pxa3xx_nand_info *info)
  474. {
  475. handle_data_pio(info);
  476. info->state = STATE_CMD_DONE;
  477. nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
  478. }
  479. static irqreturn_t pxa3xx_nand_irq(struct pxa3xx_nand_info *info)
  480. {
  481. unsigned int status, is_completed = 0, is_ready = 0;
  482. unsigned int ready, cmd_done;
  483. irqreturn_t ret = IRQ_HANDLED;
  484. if (info->cs == 0) {
  485. ready = NDSR_FLASH_RDY;
  486. cmd_done = NDSR_CS0_CMDD;
  487. } else {
  488. ready = NDSR_RDY;
  489. cmd_done = NDSR_CS1_CMDD;
  490. }
  491. status = nand_readl(info, NDSR);
  492. if (status & NDSR_UNCORERR)
  493. info->retcode = ERR_UNCORERR;
  494. if (status & NDSR_CORERR) {
  495. info->retcode = ERR_CORERR;
  496. if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
  497. info->ecc_bch)
  498. info->ecc_err_cnt = NDSR_ERR_CNT(status);
  499. else
  500. info->ecc_err_cnt = 1;
  501. /*
  502. * Each chunk composing a page is corrected independently,
  503. * and we need to store maximum number of corrected bitflips
  504. * to return it to the MTD layer in ecc.read_page().
  505. */
  506. info->max_bitflips = max_t(unsigned int,
  507. info->max_bitflips,
  508. info->ecc_err_cnt);
  509. }
  510. if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
  511. info->state = (status & NDSR_RDDREQ) ?
  512. STATE_PIO_READING : STATE_PIO_WRITING;
  513. /* Call the IRQ thread in U-Boot directly */
  514. pxa3xx_nand_irq_thread(info);
  515. return 0;
  516. }
  517. if (status & cmd_done) {
  518. info->state = STATE_CMD_DONE;
  519. is_completed = 1;
  520. }
  521. if (status & ready) {
  522. info->state = STATE_READY;
  523. is_ready = 1;
  524. }
  525. if (status & NDSR_WRCMDREQ) {
  526. nand_writel(info, NDSR, NDSR_WRCMDREQ);
  527. status &= ~NDSR_WRCMDREQ;
  528. info->state = STATE_CMD_HANDLE;
  529. /*
  530. * Command buffer registers NDCB{0-2} (and optionally NDCB3)
  531. * must be loaded by writing directly either 12 or 16
  532. * bytes directly to NDCB0, four bytes at a time.
  533. *
  534. * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
  535. * but each NDCBx register can be read.
  536. */
  537. nand_writel(info, NDCB0, info->ndcb0);
  538. nand_writel(info, NDCB0, info->ndcb1);
  539. nand_writel(info, NDCB0, info->ndcb2);
  540. /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
  541. if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
  542. nand_writel(info, NDCB0, info->ndcb3);
  543. }
  544. /* clear NDSR to let the controller exit the IRQ */
  545. nand_writel(info, NDSR, status);
  546. if (is_completed)
  547. info->cmd_complete = 1;
  548. if (is_ready)
  549. info->dev_ready = 1;
  550. return ret;
  551. }
  552. static inline int is_buf_blank(uint8_t *buf, size_t len)
  553. {
  554. for (; len > 0; len--)
  555. if (*buf++ != 0xff)
  556. return 0;
  557. return 1;
  558. }
  559. static void set_command_address(struct pxa3xx_nand_info *info,
  560. unsigned int page_size, uint16_t column, int page_addr)
  561. {
  562. /* small page addr setting */
  563. if (page_size < PAGE_CHUNK_SIZE) {
  564. info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
  565. | (column & 0xFF);
  566. info->ndcb2 = 0;
  567. } else {
  568. info->ndcb1 = ((page_addr & 0xFFFF) << 16)
  569. | (column & 0xFFFF);
  570. if (page_addr & 0xFF0000)
  571. info->ndcb2 = (page_addr & 0xFF0000) >> 16;
  572. else
  573. info->ndcb2 = 0;
  574. }
  575. }
  576. static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
  577. {
  578. struct pxa3xx_nand_host *host = info->host[info->cs];
  579. struct mtd_info *mtd = host->mtd;
  580. /* reset data and oob column point to handle data */
  581. info->buf_start = 0;
  582. info->buf_count = 0;
  583. info->oob_size = 0;
  584. info->data_buff_pos = 0;
  585. info->oob_buff_pos = 0;
  586. info->use_ecc = 0;
  587. info->use_spare = 1;
  588. info->retcode = ERR_NONE;
  589. info->ecc_err_cnt = 0;
  590. info->ndcb3 = 0;
  591. info->need_wait = 0;
  592. switch (command) {
  593. case NAND_CMD_READ0:
  594. case NAND_CMD_PAGEPROG:
  595. info->use_ecc = 1;
  596. case NAND_CMD_READOOB:
  597. pxa3xx_set_datasize(info, mtd);
  598. break;
  599. case NAND_CMD_PARAM:
  600. info->use_spare = 0;
  601. break;
  602. default:
  603. info->ndcb1 = 0;
  604. info->ndcb2 = 0;
  605. break;
  606. }
  607. /*
  608. * If we are about to issue a read command, or about to set
  609. * the write address, then clean the data buffer.
  610. */
  611. if (command == NAND_CMD_READ0 ||
  612. command == NAND_CMD_READOOB ||
  613. command == NAND_CMD_SEQIN) {
  614. info->buf_count = mtd->writesize + mtd->oobsize;
  615. memset(info->data_buff, 0xFF, info->buf_count);
  616. }
  617. }
  618. static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
  619. int ext_cmd_type, uint16_t column, int page_addr)
  620. {
  621. int addr_cycle, exec_cmd;
  622. struct pxa3xx_nand_host *host;
  623. struct mtd_info *mtd;
  624. host = info->host[info->cs];
  625. mtd = host->mtd;
  626. addr_cycle = 0;
  627. exec_cmd = 1;
  628. if (info->cs != 0)
  629. info->ndcb0 = NDCB0_CSEL;
  630. else
  631. info->ndcb0 = 0;
  632. if (command == NAND_CMD_SEQIN)
  633. exec_cmd = 0;
  634. addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
  635. + host->col_addr_cycles);
  636. switch (command) {
  637. case NAND_CMD_READOOB:
  638. case NAND_CMD_READ0:
  639. info->buf_start = column;
  640. info->ndcb0 |= NDCB0_CMD_TYPE(0)
  641. | addr_cycle
  642. | NAND_CMD_READ0;
  643. if (command == NAND_CMD_READOOB)
  644. info->buf_start += mtd->writesize;
  645. /*
  646. * Multiple page read needs an 'extended command type' field,
  647. * which is either naked-read or last-read according to the
  648. * state.
  649. */
  650. if (mtd->writesize == PAGE_CHUNK_SIZE) {
  651. info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
  652. } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
  653. info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
  654. | NDCB0_LEN_OVRD
  655. | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
  656. info->ndcb3 = info->chunk_size +
  657. info->oob_size;
  658. }
  659. set_command_address(info, mtd->writesize, column, page_addr);
  660. break;
  661. case NAND_CMD_SEQIN:
  662. info->buf_start = column;
  663. set_command_address(info, mtd->writesize, 0, page_addr);
  664. /*
  665. * Multiple page programming needs to execute the initial
  666. * SEQIN command that sets the page address.
  667. */
  668. if (mtd->writesize > PAGE_CHUNK_SIZE) {
  669. info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
  670. | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
  671. | addr_cycle
  672. | command;
  673. /* No data transfer in this case */
  674. info->data_size = 0;
  675. exec_cmd = 1;
  676. }
  677. break;
  678. case NAND_CMD_PAGEPROG:
  679. if (is_buf_blank(info->data_buff,
  680. (mtd->writesize + mtd->oobsize))) {
  681. exec_cmd = 0;
  682. break;
  683. }
  684. /* Second command setting for large pages */
  685. if (mtd->writesize > PAGE_CHUNK_SIZE) {
  686. /*
  687. * Multiple page write uses the 'extended command'
  688. * field. This can be used to issue a command dispatch
  689. * or a naked-write depending on the current stage.
  690. */
  691. info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
  692. | NDCB0_LEN_OVRD
  693. | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
  694. info->ndcb3 = info->chunk_size +
  695. info->oob_size;
  696. /*
  697. * This is the command dispatch that completes a chunked
  698. * page program operation.
  699. */
  700. if (info->data_size == 0) {
  701. info->ndcb0 = NDCB0_CMD_TYPE(0x1)
  702. | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
  703. | command;
  704. info->ndcb1 = 0;
  705. info->ndcb2 = 0;
  706. info->ndcb3 = 0;
  707. }
  708. } else {
  709. info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
  710. | NDCB0_AUTO_RS
  711. | NDCB0_ST_ROW_EN
  712. | NDCB0_DBC
  713. | (NAND_CMD_PAGEPROG << 8)
  714. | NAND_CMD_SEQIN
  715. | addr_cycle;
  716. }
  717. break;
  718. case NAND_CMD_PARAM:
  719. info->buf_count = 256;
  720. info->ndcb0 |= NDCB0_CMD_TYPE(0)
  721. | NDCB0_ADDR_CYC(1)
  722. | NDCB0_LEN_OVRD
  723. | command;
  724. info->ndcb1 = (column & 0xFF);
  725. info->ndcb3 = 256;
  726. info->data_size = 256;
  727. break;
  728. case NAND_CMD_READID:
  729. info->buf_count = host->read_id_bytes;
  730. info->ndcb0 |= NDCB0_CMD_TYPE(3)
  731. | NDCB0_ADDR_CYC(1)
  732. | command;
  733. info->ndcb1 = (column & 0xFF);
  734. info->data_size = 8;
  735. break;
  736. case NAND_CMD_STATUS:
  737. info->buf_count = 1;
  738. info->ndcb0 |= NDCB0_CMD_TYPE(4)
  739. | NDCB0_ADDR_CYC(1)
  740. | command;
  741. info->data_size = 8;
  742. break;
  743. case NAND_CMD_ERASE1:
  744. info->ndcb0 |= NDCB0_CMD_TYPE(2)
  745. | NDCB0_AUTO_RS
  746. | NDCB0_ADDR_CYC(3)
  747. | NDCB0_DBC
  748. | (NAND_CMD_ERASE2 << 8)
  749. | NAND_CMD_ERASE1;
  750. info->ndcb1 = page_addr;
  751. info->ndcb2 = 0;
  752. break;
  753. case NAND_CMD_RESET:
  754. info->ndcb0 |= NDCB0_CMD_TYPE(5)
  755. | command;
  756. break;
  757. case NAND_CMD_ERASE2:
  758. exec_cmd = 0;
  759. break;
  760. default:
  761. exec_cmd = 0;
  762. dev_err(&info->pdev->dev, "non-supported command %x\n",
  763. command);
  764. break;
  765. }
  766. return exec_cmd;
  767. }
  768. static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  769. int column, int page_addr)
  770. {
  771. struct nand_chip *chip = mtd_to_nand(mtd);
  772. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  773. struct pxa3xx_nand_info *info = host->info_data;
  774. int exec_cmd;
  775. /*
  776. * if this is a x16 device ,then convert the input
  777. * "byte" address into a "word" address appropriate
  778. * for indexing a word-oriented device
  779. */
  780. if (info->reg_ndcr & NDCR_DWIDTH_M)
  781. column /= 2;
  782. /*
  783. * There may be different NAND chip hooked to
  784. * different chip select, so check whether
  785. * chip select has been changed, if yes, reset the timing
  786. */
  787. if (info->cs != host->cs) {
  788. info->cs = host->cs;
  789. nand_writel(info, NDTR0CS0, info->ndtr0cs0);
  790. nand_writel(info, NDTR1CS0, info->ndtr1cs0);
  791. }
  792. prepare_start_command(info, command);
  793. info->state = STATE_PREPARED;
  794. exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
  795. if (exec_cmd) {
  796. u32 ts;
  797. info->cmd_complete = 0;
  798. info->dev_ready = 0;
  799. info->need_wait = 1;
  800. pxa3xx_nand_start(info);
  801. ts = get_timer(0);
  802. while (1) {
  803. u32 status;
  804. status = nand_readl(info, NDSR);
  805. if (status)
  806. pxa3xx_nand_irq(info);
  807. if (info->cmd_complete)
  808. break;
  809. if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
  810. dev_err(&info->pdev->dev, "Wait timeout!!!\n");
  811. return;
  812. }
  813. }
  814. }
  815. info->state = STATE_IDLE;
  816. }
  817. static void nand_cmdfunc_extended(struct mtd_info *mtd,
  818. const unsigned command,
  819. int column, int page_addr)
  820. {
  821. struct nand_chip *chip = mtd_to_nand(mtd);
  822. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  823. struct pxa3xx_nand_info *info = host->info_data;
  824. int exec_cmd, ext_cmd_type;
  825. /*
  826. * if this is a x16 device then convert the input
  827. * "byte" address into a "word" address appropriate
  828. * for indexing a word-oriented device
  829. */
  830. if (info->reg_ndcr & NDCR_DWIDTH_M)
  831. column /= 2;
  832. /*
  833. * There may be different NAND chip hooked to
  834. * different chip select, so check whether
  835. * chip select has been changed, if yes, reset the timing
  836. */
  837. if (info->cs != host->cs) {
  838. info->cs = host->cs;
  839. nand_writel(info, NDTR0CS0, info->ndtr0cs0);
  840. nand_writel(info, NDTR1CS0, info->ndtr1cs0);
  841. }
  842. /* Select the extended command for the first command */
  843. switch (command) {
  844. case NAND_CMD_READ0:
  845. case NAND_CMD_READOOB:
  846. ext_cmd_type = EXT_CMD_TYPE_MONO;
  847. break;
  848. case NAND_CMD_SEQIN:
  849. ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
  850. break;
  851. case NAND_CMD_PAGEPROG:
  852. ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
  853. break;
  854. default:
  855. ext_cmd_type = 0;
  856. break;
  857. }
  858. prepare_start_command(info, command);
  859. /*
  860. * Prepare the "is ready" completion before starting a command
  861. * transaction sequence. If the command is not executed the
  862. * completion will be completed, see below.
  863. *
  864. * We can do that inside the loop because the command variable
  865. * is invariant and thus so is the exec_cmd.
  866. */
  867. info->need_wait = 1;
  868. info->dev_ready = 0;
  869. do {
  870. u32 ts;
  871. info->state = STATE_PREPARED;
  872. exec_cmd = prepare_set_command(info, command, ext_cmd_type,
  873. column, page_addr);
  874. if (!exec_cmd) {
  875. info->need_wait = 0;
  876. info->dev_ready = 1;
  877. break;
  878. }
  879. info->cmd_complete = 0;
  880. pxa3xx_nand_start(info);
  881. ts = get_timer(0);
  882. while (1) {
  883. u32 status;
  884. status = nand_readl(info, NDSR);
  885. if (status)
  886. pxa3xx_nand_irq(info);
  887. if (info->cmd_complete)
  888. break;
  889. if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
  890. dev_err(&info->pdev->dev, "Wait timeout!!!\n");
  891. return;
  892. }
  893. }
  894. /* Check if the sequence is complete */
  895. if (info->data_size == 0 && command != NAND_CMD_PAGEPROG)
  896. break;
  897. /*
  898. * After a splitted program command sequence has issued
  899. * the command dispatch, the command sequence is complete.
  900. */
  901. if (info->data_size == 0 &&
  902. command == NAND_CMD_PAGEPROG &&
  903. ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
  904. break;
  905. if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
  906. /* Last read: issue a 'last naked read' */
  907. if (info->data_size == info->chunk_size)
  908. ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
  909. else
  910. ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
  911. /*
  912. * If a splitted program command has no more data to transfer,
  913. * the command dispatch must be issued to complete.
  914. */
  915. } else if (command == NAND_CMD_PAGEPROG &&
  916. info->data_size == 0) {
  917. ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
  918. }
  919. } while (1);
  920. info->state = STATE_IDLE;
  921. }
  922. static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
  923. struct nand_chip *chip, const uint8_t *buf, int oob_required,
  924. int page)
  925. {
  926. chip->write_buf(mtd, buf, mtd->writesize);
  927. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  928. return 0;
  929. }
  930. static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
  931. struct nand_chip *chip, uint8_t *buf, int oob_required,
  932. int page)
  933. {
  934. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  935. struct pxa3xx_nand_info *info = host->info_data;
  936. chip->read_buf(mtd, buf, mtd->writesize);
  937. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  938. if (info->retcode == ERR_CORERR && info->use_ecc) {
  939. mtd->ecc_stats.corrected += info->ecc_err_cnt;
  940. } else if (info->retcode == ERR_UNCORERR) {
  941. /*
  942. * for blank page (all 0xff), HW will calculate its ECC as
  943. * 0, which is different from the ECC information within
  944. * OOB, ignore such uncorrectable errors
  945. */
  946. if (is_buf_blank(buf, mtd->writesize))
  947. info->retcode = ERR_NONE;
  948. else
  949. mtd->ecc_stats.failed++;
  950. }
  951. return info->max_bitflips;
  952. }
  953. static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
  954. {
  955. struct nand_chip *chip = mtd_to_nand(mtd);
  956. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  957. struct pxa3xx_nand_info *info = host->info_data;
  958. char retval = 0xFF;
  959. if (info->buf_start < info->buf_count)
  960. /* Has just send a new command? */
  961. retval = info->data_buff[info->buf_start++];
  962. return retval;
  963. }
  964. static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
  965. {
  966. struct nand_chip *chip = mtd_to_nand(mtd);
  967. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  968. struct pxa3xx_nand_info *info = host->info_data;
  969. u16 retval = 0xFFFF;
  970. if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
  971. retval = *((u16 *)(info->data_buff+info->buf_start));
  972. info->buf_start += 2;
  973. }
  974. return retval;
  975. }
  976. static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  977. {
  978. struct nand_chip *chip = mtd_to_nand(mtd);
  979. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  980. struct pxa3xx_nand_info *info = host->info_data;
  981. int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
  982. memcpy(buf, info->data_buff + info->buf_start, real_len);
  983. info->buf_start += real_len;
  984. }
  985. static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
  986. const uint8_t *buf, int len)
  987. {
  988. struct nand_chip *chip = mtd_to_nand(mtd);
  989. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  990. struct pxa3xx_nand_info *info = host->info_data;
  991. int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
  992. memcpy(info->data_buff + info->buf_start, buf, real_len);
  993. info->buf_start += real_len;
  994. }
  995. static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
  996. {
  997. return;
  998. }
  999. static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
  1000. {
  1001. struct nand_chip *chip = mtd_to_nand(mtd);
  1002. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  1003. struct pxa3xx_nand_info *info = host->info_data;
  1004. if (info->need_wait) {
  1005. u32 ts;
  1006. info->need_wait = 0;
  1007. ts = get_timer(0);
  1008. while (1) {
  1009. u32 status;
  1010. status = nand_readl(info, NDSR);
  1011. if (status)
  1012. pxa3xx_nand_irq(info);
  1013. if (info->dev_ready)
  1014. break;
  1015. if (get_timer(ts) > CHIP_DELAY_TIMEOUT) {
  1016. dev_err(&info->pdev->dev, "Ready timeout!!!\n");
  1017. return NAND_STATUS_FAIL;
  1018. }
  1019. }
  1020. }
  1021. /* pxa3xx_nand_send_command has waited for command complete */
  1022. if (this->state == FL_WRITING || this->state == FL_ERASING) {
  1023. if (info->retcode == ERR_NONE)
  1024. return 0;
  1025. else
  1026. return NAND_STATUS_FAIL;
  1027. }
  1028. return NAND_STATUS_READY;
  1029. }
  1030. static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info)
  1031. {
  1032. struct pxa3xx_nand_host *host = info->host[info->cs];
  1033. struct mtd_info *mtd = host->mtd;
  1034. struct nand_chip *chip = mtd_to_nand(mtd);
  1035. info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
  1036. info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
  1037. info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
  1038. return 0;
  1039. }
  1040. static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
  1041. {
  1042. /*
  1043. * We set 0 by hard coding here, for we don't support keep_config
  1044. * when there is more than one chip attached to the controller
  1045. */
  1046. struct pxa3xx_nand_host *host = info->host[0];
  1047. uint32_t ndcr = nand_readl(info, NDCR);
  1048. if (ndcr & NDCR_PAGE_SZ) {
  1049. /* Controller's FIFO size */
  1050. info->chunk_size = 2048;
  1051. host->read_id_bytes = 4;
  1052. } else {
  1053. info->chunk_size = 512;
  1054. host->read_id_bytes = 2;
  1055. }
  1056. /* Set an initial chunk size */
  1057. info->reg_ndcr = ndcr & ~NDCR_INT_MASK;
  1058. info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
  1059. info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
  1060. return 0;
  1061. }
  1062. static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
  1063. {
  1064. info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
  1065. if (info->data_buff == NULL)
  1066. return -ENOMEM;
  1067. return 0;
  1068. }
  1069. static int pxa3xx_nand_sensing(struct pxa3xx_nand_host *host)
  1070. {
  1071. struct pxa3xx_nand_info *info = host->info_data;
  1072. struct pxa3xx_nand_platform_data *pdata = info->pdata;
  1073. struct mtd_info *mtd;
  1074. struct nand_chip *chip;
  1075. const struct nand_sdr_timings *timings;
  1076. int ret;
  1077. mtd = info->host[info->cs]->mtd;
  1078. chip = mtd_to_nand(mtd);
  1079. /* configure default flash values */
  1080. info->reg_ndcr = 0x0; /* enable all interrupts */
  1081. info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
  1082. info->reg_ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
  1083. info->reg_ndcr |= NDCR_SPARE_EN; /* enable spare by default */
  1084. /* use the common timing to make a try */
  1085. timings = onfi_async_timing_mode_to_sdr_timings(0);
  1086. if (IS_ERR(timings))
  1087. return PTR_ERR(timings);
  1088. pxa3xx_nand_set_sdr_timing(host, timings);
  1089. chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
  1090. ret = chip->waitfunc(mtd, chip);
  1091. if (ret & NAND_STATUS_FAIL)
  1092. return -ENODEV;
  1093. return 0;
  1094. }
  1095. static int pxa_ecc_init(struct pxa3xx_nand_info *info,
  1096. struct nand_ecc_ctrl *ecc,
  1097. int strength, int ecc_stepsize, int page_size)
  1098. {
  1099. if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
  1100. info->chunk_size = 2048;
  1101. info->spare_size = 40;
  1102. info->ecc_size = 24;
  1103. ecc->mode = NAND_ECC_HW;
  1104. ecc->size = 512;
  1105. ecc->strength = 1;
  1106. } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
  1107. info->chunk_size = 512;
  1108. info->spare_size = 8;
  1109. info->ecc_size = 8;
  1110. ecc->mode = NAND_ECC_HW;
  1111. ecc->size = 512;
  1112. ecc->strength = 1;
  1113. /*
  1114. * Required ECC: 4-bit correction per 512 bytes
  1115. * Select: 16-bit correction per 2048 bytes
  1116. */
  1117. } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
  1118. info->ecc_bch = 1;
  1119. info->chunk_size = 2048;
  1120. info->spare_size = 32;
  1121. info->ecc_size = 32;
  1122. ecc->mode = NAND_ECC_HW;
  1123. ecc->size = info->chunk_size;
  1124. ecc->layout = &ecc_layout_2KB_bch4bit;
  1125. ecc->strength = 16;
  1126. } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
  1127. info->ecc_bch = 1;
  1128. info->chunk_size = 2048;
  1129. info->spare_size = 32;
  1130. info->ecc_size = 32;
  1131. ecc->mode = NAND_ECC_HW;
  1132. ecc->size = info->chunk_size;
  1133. ecc->layout = &ecc_layout_4KB_bch4bit;
  1134. ecc->strength = 16;
  1135. /*
  1136. * Required ECC: 8-bit correction per 512 bytes
  1137. * Select: 16-bit correction per 1024 bytes
  1138. */
  1139. } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
  1140. info->ecc_bch = 1;
  1141. info->chunk_size = 1024;
  1142. info->spare_size = 0;
  1143. info->ecc_size = 32;
  1144. ecc->mode = NAND_ECC_HW;
  1145. ecc->size = info->chunk_size;
  1146. ecc->layout = &ecc_layout_4KB_bch8bit;
  1147. ecc->strength = 16;
  1148. } else {
  1149. dev_err(&info->pdev->dev,
  1150. "ECC strength %d at page size %d is not supported\n",
  1151. strength, page_size);
  1152. return -ENODEV;
  1153. }
  1154. return 0;
  1155. }
  1156. static int pxa3xx_nand_scan(struct mtd_info *mtd)
  1157. {
  1158. struct nand_chip *chip = mtd_to_nand(mtd);
  1159. struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
  1160. struct pxa3xx_nand_info *info = host->info_data;
  1161. struct pxa3xx_nand_platform_data *pdata = info->pdata;
  1162. int ret;
  1163. uint16_t ecc_strength, ecc_step;
  1164. if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
  1165. goto KEEP_CONFIG;
  1166. /* Set a default chunk size */
  1167. info->chunk_size = 512;
  1168. ret = pxa3xx_nand_sensing(host);
  1169. if (ret) {
  1170. dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
  1171. info->cs);
  1172. return ret;
  1173. }
  1174. KEEP_CONFIG:
  1175. /* Device detection must be done with ECC disabled */
  1176. if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
  1177. nand_writel(info, NDECCCTRL, 0x0);
  1178. if (nand_scan_ident(mtd, 1, NULL))
  1179. return -ENODEV;
  1180. if (!pdata->keep_config) {
  1181. ret = pxa3xx_nand_init_timings(host);
  1182. if (ret) {
  1183. dev_err(&info->pdev->dev,
  1184. "Failed to set timings: %d\n", ret);
  1185. return ret;
  1186. }
  1187. }
  1188. ret = pxa3xx_nand_config_flash(info);
  1189. if (ret)
  1190. return ret;
  1191. #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
  1192. /*
  1193. * We'll use a bad block table stored in-flash and don't
  1194. * allow writing the bad block marker to the flash.
  1195. */
  1196. chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB_BBM;
  1197. chip->bbt_td = &bbt_main_descr;
  1198. chip->bbt_md = &bbt_mirror_descr;
  1199. #endif
  1200. /*
  1201. * If the page size is bigger than the FIFO size, let's check
  1202. * we are given the right variant and then switch to the extended
  1203. * (aka splitted) command handling,
  1204. */
  1205. if (mtd->writesize > PAGE_CHUNK_SIZE) {
  1206. if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
  1207. chip->cmdfunc = nand_cmdfunc_extended;
  1208. } else {
  1209. dev_err(&info->pdev->dev,
  1210. "unsupported page size on this variant\n");
  1211. return -ENODEV;
  1212. }
  1213. }
  1214. if (pdata->ecc_strength && pdata->ecc_step_size) {
  1215. ecc_strength = pdata->ecc_strength;
  1216. ecc_step = pdata->ecc_step_size;
  1217. } else {
  1218. ecc_strength = chip->ecc_strength_ds;
  1219. ecc_step = chip->ecc_step_ds;
  1220. }
  1221. /* Set default ECC strength requirements on non-ONFI devices */
  1222. if (ecc_strength < 1 && ecc_step < 1) {
  1223. ecc_strength = 1;
  1224. ecc_step = 512;
  1225. }
  1226. ret = pxa_ecc_init(info, &chip->ecc, ecc_strength,
  1227. ecc_step, mtd->writesize);
  1228. if (ret)
  1229. return ret;
  1230. /* calculate addressing information */
  1231. if (mtd->writesize >= 2048)
  1232. host->col_addr_cycles = 2;
  1233. else
  1234. host->col_addr_cycles = 1;
  1235. /* release the initial buffer */
  1236. kfree(info->data_buff);
  1237. /* allocate the real data + oob buffer */
  1238. info->buf_size = mtd->writesize + mtd->oobsize;
  1239. ret = pxa3xx_nand_init_buff(info);
  1240. if (ret)
  1241. return ret;
  1242. info->oob_buff = info->data_buff + mtd->writesize;
  1243. if ((mtd->size >> chip->page_shift) > 65536)
  1244. host->row_addr_cycles = 3;
  1245. else
  1246. host->row_addr_cycles = 2;
  1247. return nand_scan_tail(mtd);
  1248. }
  1249. static int alloc_nand_resource(struct pxa3xx_nand_info *info)
  1250. {
  1251. struct pxa3xx_nand_platform_data *pdata;
  1252. struct pxa3xx_nand_host *host;
  1253. struct nand_chip *chip = NULL;
  1254. struct mtd_info *mtd;
  1255. int ret, cs;
  1256. pdata = info->pdata;
  1257. if (pdata->num_cs <= 0)
  1258. return -ENODEV;
  1259. info->variant = pxa3xx_nand_get_variant();
  1260. for (cs = 0; cs < pdata->num_cs; cs++) {
  1261. chip = (struct nand_chip *)
  1262. ((u8 *)&info[1] + sizeof(*host) * cs);
  1263. mtd = nand_to_mtd(chip);
  1264. host = (struct pxa3xx_nand_host *)chip;
  1265. info->host[cs] = host;
  1266. host->mtd = mtd;
  1267. host->cs = cs;
  1268. host->info_data = info;
  1269. host->read_id_bytes = 4;
  1270. mtd->owner = THIS_MODULE;
  1271. nand_set_controller_data(chip, host);
  1272. chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
  1273. chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
  1274. chip->controller = &info->controller;
  1275. chip->waitfunc = pxa3xx_nand_waitfunc;
  1276. chip->select_chip = pxa3xx_nand_select_chip;
  1277. chip->read_word = pxa3xx_nand_read_word;
  1278. chip->read_byte = pxa3xx_nand_read_byte;
  1279. chip->read_buf = pxa3xx_nand_read_buf;
  1280. chip->write_buf = pxa3xx_nand_write_buf;
  1281. chip->options |= NAND_NO_SUBPAGE_WRITE;
  1282. chip->cmdfunc = nand_cmdfunc;
  1283. }
  1284. info->mmio_base = (void __iomem *)MVEBU_NAND_BASE;
  1285. /* Allocate a buffer to allow flash detection */
  1286. info->buf_size = INIT_BUFFER_SIZE;
  1287. info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
  1288. if (info->data_buff == NULL) {
  1289. ret = -ENOMEM;
  1290. goto fail_disable_clk;
  1291. }
  1292. /* initialize all interrupts to be disabled */
  1293. disable_int(info, NDSR_MASK);
  1294. return 0;
  1295. kfree(info->data_buff);
  1296. fail_disable_clk:
  1297. return ret;
  1298. }
  1299. static int pxa3xx_nand_probe_dt(struct pxa3xx_nand_info *info)
  1300. {
  1301. struct pxa3xx_nand_platform_data *pdata;
  1302. pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
  1303. if (!pdata)
  1304. return -ENOMEM;
  1305. pdata->enable_arbiter = 1;
  1306. pdata->num_cs = 1;
  1307. info->pdata = pdata;
  1308. return 0;
  1309. }
  1310. static int pxa3xx_nand_probe(struct pxa3xx_nand_info *info)
  1311. {
  1312. struct pxa3xx_nand_platform_data *pdata;
  1313. int ret, cs, probe_success;
  1314. ret = pxa3xx_nand_probe_dt(info);
  1315. if (ret)
  1316. return ret;
  1317. pdata = info->pdata;
  1318. ret = alloc_nand_resource(info);
  1319. if (ret) {
  1320. dev_err(&pdev->dev, "alloc nand resource failed\n");
  1321. return ret;
  1322. }
  1323. probe_success = 0;
  1324. for (cs = 0; cs < pdata->num_cs; cs++) {
  1325. struct mtd_info *mtd = info->host[cs]->mtd;
  1326. /*
  1327. * The mtd name matches the one used in 'mtdparts' kernel
  1328. * parameter. This name cannot be changed or otherwise
  1329. * user's mtd partitions configuration would get broken.
  1330. */
  1331. mtd->name = "pxa3xx_nand-0";
  1332. info->cs = cs;
  1333. ret = pxa3xx_nand_scan(mtd);
  1334. if (ret) {
  1335. dev_info(&pdev->dev, "failed to scan nand at cs %d\n",
  1336. cs);
  1337. continue;
  1338. }
  1339. if (nand_register(cs, mtd))
  1340. continue;
  1341. probe_success = 1;
  1342. }
  1343. if (!probe_success)
  1344. return -ENODEV;
  1345. return 0;
  1346. }
  1347. /*
  1348. * Main initialization routine
  1349. */
  1350. void board_nand_init(void)
  1351. {
  1352. struct pxa3xx_nand_info *info;
  1353. struct pxa3xx_nand_host *host;
  1354. int ret;
  1355. info = kzalloc(sizeof(*info) +
  1356. sizeof(*host) * CONFIG_SYS_MAX_NAND_DEVICE,
  1357. GFP_KERNEL);
  1358. if (!info)
  1359. return;
  1360. ret = pxa3xx_nand_probe(info);
  1361. if (ret)
  1362. return;
  1363. }