nand_util.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * drivers/mtd/nand/nand_util.c
  3. *
  4. * Copyright (C) 2006 by Weiss-Electronic GmbH.
  5. * All rights reserved.
  6. *
  7. * @author: Guido Classen <clagix@gmail.com>
  8. * @descr: NAND Flash support
  9. * @references: borrowed heavily from Linux mtd-utils code:
  10. * flash_eraseall.c by Arcom Control System Ltd
  11. * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
  12. * and Thomas Gleixner (tglx@linutronix.de)
  13. *
  14. * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
  15. * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
  16. *
  17. * Copyright 2010 Freescale Semiconductor
  18. *
  19. * SPDX-License-Identifier: GPL-2.0
  20. */
  21. #include <common.h>
  22. #include <command.h>
  23. #include <watchdog.h>
  24. #include <malloc.h>
  25. #include <memalign.h>
  26. #include <div64.h>
  27. #include <linux/errno.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <nand.h>
  30. #include <jffs2/jffs2.h>
  31. typedef struct erase_info erase_info_t;
  32. typedef struct mtd_info mtd_info_t;
  33. /* support only for native endian JFFS2 */
  34. #define cpu_to_je16(x) (x)
  35. #define cpu_to_je32(x) (x)
  36. /**
  37. * nand_erase_opts: - erase NAND flash with support for various options
  38. * (jffs2 formatting)
  39. *
  40. * @param mtd nand mtd instance to erase
  41. * @param opts options, @see struct nand_erase_options
  42. * @return 0 in case of success
  43. *
  44. * This code is ported from flash_eraseall.c from Linux mtd utils by
  45. * Arcom Control System Ltd.
  46. */
  47. int nand_erase_opts(struct mtd_info *mtd,
  48. const nand_erase_options_t *opts)
  49. {
  50. struct jffs2_unknown_node cleanmarker;
  51. erase_info_t erase;
  52. unsigned long erase_length, erased_length; /* in blocks */
  53. int result;
  54. int percent_complete = -1;
  55. const char *mtd_device = mtd->name;
  56. struct mtd_oob_ops oob_opts;
  57. struct nand_chip *chip = mtd_to_nand(mtd);
  58. if ((opts->offset & (mtd->erasesize - 1)) != 0) {
  59. printf("Attempt to erase non block-aligned data\n");
  60. return -1;
  61. }
  62. memset(&erase, 0, sizeof(erase));
  63. memset(&oob_opts, 0, sizeof(oob_opts));
  64. erase.mtd = mtd;
  65. erase.len = mtd->erasesize;
  66. erase.addr = opts->offset;
  67. erase_length = lldiv(opts->length + mtd->erasesize - 1,
  68. mtd->erasesize);
  69. cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
  70. cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
  71. cleanmarker.totlen = cpu_to_je32(8);
  72. /* scrub option allows to erase badblock. To prevent internal
  73. * check from erase() method, set block check method to dummy
  74. * and disable bad block table while erasing.
  75. */
  76. if (opts->scrub) {
  77. erase.scrub = opts->scrub;
  78. /*
  79. * We don't need the bad block table anymore...
  80. * after scrub, there are no bad blocks left!
  81. */
  82. if (chip->bbt) {
  83. kfree(chip->bbt);
  84. }
  85. chip->bbt = NULL;
  86. chip->options &= ~NAND_BBT_SCANNED;
  87. }
  88. for (erased_length = 0;
  89. erased_length < erase_length;
  90. erase.addr += mtd->erasesize) {
  91. WATCHDOG_RESET();
  92. if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
  93. puts("Size of erase exceeds limit\n");
  94. return -EFBIG;
  95. }
  96. if (!opts->scrub) {
  97. int ret = mtd_block_isbad(mtd, erase.addr);
  98. if (ret > 0) {
  99. if (!opts->quiet)
  100. printf("\rSkipping bad block at "
  101. "0x%08llx "
  102. " \n",
  103. erase.addr);
  104. if (!opts->spread)
  105. erased_length++;
  106. continue;
  107. } else if (ret < 0) {
  108. printf("\n%s: MTD get bad block failed: %d\n",
  109. mtd_device,
  110. ret);
  111. return -1;
  112. }
  113. }
  114. erased_length++;
  115. result = mtd_erase(mtd, &erase);
  116. if (result != 0) {
  117. printf("\n%s: MTD Erase failure: %d\n",
  118. mtd_device, result);
  119. continue;
  120. }
  121. /* format for JFFS2 ? */
  122. if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
  123. struct mtd_oob_ops ops;
  124. ops.ooblen = 8;
  125. ops.datbuf = NULL;
  126. ops.oobbuf = (uint8_t *)&cleanmarker;
  127. ops.ooboffs = 0;
  128. ops.mode = MTD_OPS_AUTO_OOB;
  129. result = mtd_write_oob(mtd, erase.addr, &ops);
  130. if (result != 0) {
  131. printf("\n%s: MTD writeoob failure: %d\n",
  132. mtd_device, result);
  133. continue;
  134. }
  135. }
  136. if (!opts->quiet) {
  137. unsigned long long n = erased_length * 100ULL;
  138. int percent;
  139. do_div(n, erase_length);
  140. percent = (int)n;
  141. /* output progress message only at whole percent
  142. * steps to reduce the number of messages printed
  143. * on (slow) serial consoles
  144. */
  145. if (percent != percent_complete) {
  146. percent_complete = percent;
  147. printf("\rErasing at 0x%llx -- %3d%% complete.",
  148. erase.addr, percent);
  149. if (opts->jffs2 && result == 0)
  150. printf(" Cleanmarker written at 0x%llx.",
  151. erase.addr);
  152. }
  153. }
  154. }
  155. if (!opts->quiet)
  156. printf("\n");
  157. return 0;
  158. }
  159. #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
  160. #define NAND_CMD_LOCK_TIGHT 0x2c
  161. #define NAND_CMD_LOCK_STATUS 0x7a
  162. /******************************************************************************
  163. * Support for locking / unlocking operations of some NAND devices
  164. *****************************************************************************/
  165. /**
  166. * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
  167. * state
  168. *
  169. * @param mtd nand mtd instance
  170. * @param tight bring device in lock tight mode
  171. *
  172. * @return 0 on success, -1 in case of error
  173. *
  174. * The lock / lock-tight command only applies to the whole chip. To get some
  175. * parts of the chip lock and others unlocked use the following sequence:
  176. *
  177. * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
  178. * - Call nand_unlock() once for each consecutive area to be unlocked
  179. * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
  180. *
  181. * If the device is in lock-tight state software can't change the
  182. * current active lock/unlock state of all pages. nand_lock() / nand_unlock()
  183. * calls will fail. It is only posible to leave lock-tight state by
  184. * an hardware signal (low pulse on _WP pin) or by power down.
  185. */
  186. int nand_lock(struct mtd_info *mtd, int tight)
  187. {
  188. int ret = 0;
  189. int status;
  190. struct nand_chip *chip = mtd_to_nand(mtd);
  191. /* select the NAND device */
  192. chip->select_chip(mtd, 0);
  193. /* check the Lock Tight Status */
  194. chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
  195. if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
  196. printf("nand_lock: Device is locked tight!\n");
  197. ret = -1;
  198. goto out;
  199. }
  200. chip->cmdfunc(mtd,
  201. (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
  202. -1, -1);
  203. /* call wait ready function */
  204. status = chip->waitfunc(mtd, chip);
  205. /* see if device thinks it succeeded */
  206. if (status & 0x01) {
  207. ret = -1;
  208. }
  209. out:
  210. /* de-select the NAND device */
  211. chip->select_chip(mtd, -1);
  212. return ret;
  213. }
  214. /**
  215. * nand_get_lock_status: - query current lock state from one page of NAND
  216. * flash
  217. *
  218. * @param mtd nand mtd instance
  219. * @param offset page address to query (must be page-aligned!)
  220. *
  221. * @return -1 in case of error
  222. * >0 lock status:
  223. * bitfield with the following combinations:
  224. * NAND_LOCK_STATUS_TIGHT: page in tight state
  225. * NAND_LOCK_STATUS_UNLOCK: page unlocked
  226. *
  227. */
  228. int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
  229. {
  230. int ret = 0;
  231. int chipnr;
  232. int page;
  233. struct nand_chip *chip = mtd_to_nand(mtd);
  234. /* select the NAND device */
  235. chipnr = (int)(offset >> chip->chip_shift);
  236. chip->select_chip(mtd, chipnr);
  237. if ((offset & (mtd->writesize - 1)) != 0) {
  238. printf("nand_get_lock_status: "
  239. "Start address must be beginning of "
  240. "nand page!\n");
  241. ret = -1;
  242. goto out;
  243. }
  244. /* check the Lock Status */
  245. page = (int)(offset >> chip->page_shift);
  246. chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
  247. ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
  248. | NAND_LOCK_STATUS_UNLOCK);
  249. out:
  250. /* de-select the NAND device */
  251. chip->select_chip(mtd, -1);
  252. return ret;
  253. }
  254. /**
  255. * nand_unlock: - Unlock area of NAND pages
  256. * only one consecutive area can be unlocked at one time!
  257. *
  258. * @param mtd nand mtd instance
  259. * @param start start byte address
  260. * @param length number of bytes to unlock (must be a multiple of
  261. * page size mtd->writesize)
  262. * @param allexcept if set, unlock everything not selected
  263. *
  264. * @return 0 on success, -1 in case of error
  265. */
  266. int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
  267. int allexcept)
  268. {
  269. int ret = 0;
  270. int chipnr;
  271. int status;
  272. int page;
  273. struct nand_chip *chip = mtd_to_nand(mtd);
  274. debug("nand_unlock%s: start: %08llx, length: %zd!\n",
  275. allexcept ? " (allexcept)" : "", start, length);
  276. /* select the NAND device */
  277. chipnr = (int)(start >> chip->chip_shift);
  278. chip->select_chip(mtd, chipnr);
  279. /* check the WP bit */
  280. chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
  281. if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
  282. printf("nand_unlock: Device is write protected!\n");
  283. ret = -1;
  284. goto out;
  285. }
  286. /* check the Lock Tight Status */
  287. page = (int)(start >> chip->page_shift);
  288. chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
  289. if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
  290. printf("nand_unlock: Device is locked tight!\n");
  291. ret = -1;
  292. goto out;
  293. }
  294. if ((start & (mtd->erasesize - 1)) != 0) {
  295. printf("nand_unlock: Start address must be beginning of "
  296. "nand block!\n");
  297. ret = -1;
  298. goto out;
  299. }
  300. if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
  301. printf("nand_unlock: Length must be a multiple of nand block "
  302. "size %08x!\n", mtd->erasesize);
  303. ret = -1;
  304. goto out;
  305. }
  306. /*
  307. * Set length so that the last address is set to the
  308. * starting address of the last block
  309. */
  310. length -= mtd->erasesize;
  311. /* submit address of first page to unlock */
  312. chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
  313. /* submit ADDRESS of LAST page to unlock */
  314. page += (int)(length >> chip->page_shift);
  315. /*
  316. * Page addresses for unlocking are supposed to be block-aligned.
  317. * At least some NAND chips use the low bit to indicate that the
  318. * page range should be inverted.
  319. */
  320. if (allexcept)
  321. page |= 1;
  322. chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
  323. /* call wait ready function */
  324. status = chip->waitfunc(mtd, chip);
  325. /* see if device thinks it succeeded */
  326. if (status & 0x01) {
  327. /* there was an error */
  328. ret = -1;
  329. goto out;
  330. }
  331. out:
  332. /* de-select the NAND device */
  333. chip->select_chip(mtd, -1);
  334. return ret;
  335. }
  336. #endif
  337. /**
  338. * check_skip_len
  339. *
  340. * Check if there are any bad blocks, and whether length including bad
  341. * blocks fits into device
  342. *
  343. * @param mtd nand mtd instance
  344. * @param offset offset in flash
  345. * @param length image length
  346. * @param used length of flash needed for the requested length
  347. * @return 0 if the image fits and there are no bad blocks
  348. * 1 if the image fits, but there are bad blocks
  349. * -1 if the image does not fit
  350. */
  351. static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
  352. size_t *used)
  353. {
  354. size_t len_excl_bad = 0;
  355. int ret = 0;
  356. while (len_excl_bad < length) {
  357. size_t block_len, block_off;
  358. loff_t block_start;
  359. if (offset >= mtd->size)
  360. return -1;
  361. block_start = offset & ~(loff_t)(mtd->erasesize - 1);
  362. block_off = offset & (mtd->erasesize - 1);
  363. block_len = mtd->erasesize - block_off;
  364. if (!nand_block_isbad(mtd, block_start))
  365. len_excl_bad += block_len;
  366. else
  367. ret = 1;
  368. offset += block_len;
  369. *used += block_len;
  370. }
  371. /* If the length is not a multiple of block_len, adjust. */
  372. if (len_excl_bad > length)
  373. *used -= (len_excl_bad - length);
  374. return ret;
  375. }
  376. #ifdef CONFIG_CMD_NAND_TRIMFFS
  377. static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
  378. const size_t *len)
  379. {
  380. size_t l = *len;
  381. ssize_t i;
  382. for (i = l - 1; i >= 0; i--)
  383. if (buf[i] != 0xFF)
  384. break;
  385. /* The resulting length must be aligned to the minimum flash I/O size */
  386. l = i + 1;
  387. l = (l + mtd->writesize - 1) / mtd->writesize;
  388. l *= mtd->writesize;
  389. /*
  390. * since the input length may be unaligned, prevent access past the end
  391. * of the buffer
  392. */
  393. return min(l, *len);
  394. }
  395. #endif
  396. /**
  397. * nand_verify_page_oob:
  398. *
  399. * Verify a page of NAND flash, including the OOB.
  400. * Reads page of NAND and verifies the contents and OOB against the
  401. * values in ops.
  402. *
  403. * @param mtd nand mtd instance
  404. * @param ops MTD operations, including data to verify
  405. * @param ofs offset in flash
  406. * @return 0 in case of success
  407. */
  408. int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
  409. loff_t ofs)
  410. {
  411. int rval;
  412. struct mtd_oob_ops vops;
  413. size_t verlen = mtd->writesize + mtd->oobsize;
  414. memcpy(&vops, ops, sizeof(vops));
  415. vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
  416. if (!vops.datbuf)
  417. return -ENOMEM;
  418. vops.oobbuf = vops.datbuf + mtd->writesize;
  419. rval = mtd_read_oob(mtd, ofs, &vops);
  420. if (!rval)
  421. rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
  422. if (!rval)
  423. rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
  424. free(vops.datbuf);
  425. return rval ? -EIO : 0;
  426. }
  427. /**
  428. * nand_verify:
  429. *
  430. * Verify a region of NAND flash.
  431. * Reads NAND in page-sized chunks and verifies the contents against
  432. * the contents of a buffer. The offset into the NAND must be
  433. * page-aligned, and the function doesn't handle skipping bad blocks.
  434. *
  435. * @param mtd nand mtd instance
  436. * @param ofs offset in flash
  437. * @param len buffer length
  438. * @param buf buffer to read from
  439. * @return 0 in case of success
  440. */
  441. int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
  442. {
  443. int rval = 0;
  444. size_t verofs;
  445. size_t verlen = mtd->writesize;
  446. uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
  447. if (!verbuf)
  448. return -ENOMEM;
  449. /* Read the NAND back in page-size groups to limit malloc size */
  450. for (verofs = ofs; verofs < ofs + len;
  451. verofs += verlen, buf += verlen) {
  452. verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
  453. rval = nand_read(mtd, verofs, &verlen, verbuf);
  454. if (!rval || (rval == -EUCLEAN))
  455. rval = memcmp(buf, verbuf, verlen);
  456. if (rval)
  457. break;
  458. }
  459. free(verbuf);
  460. return rval ? -EIO : 0;
  461. }
  462. /**
  463. * nand_write_skip_bad:
  464. *
  465. * Write image to NAND flash.
  466. * Blocks that are marked bad are skipped and the is written to the next
  467. * block instead as long as the image is short enough to fit even after
  468. * skipping the bad blocks. Due to bad blocks we may not be able to
  469. * perform the requested write. In the case where the write would
  470. * extend beyond the end of the NAND device, both length and actual (if
  471. * not NULL) are set to 0. In the case where the write would extend
  472. * beyond the limit we are passed, length is set to 0 and actual is set
  473. * to the required length.
  474. *
  475. * @param mtd nand mtd instance
  476. * @param offset offset in flash
  477. * @param length buffer length
  478. * @param actual set to size required to write length worth of
  479. * buffer or 0 on error, if not NULL
  480. * @param lim maximum size that actual may be in order to not
  481. * exceed the buffer
  482. * @param buffer buffer to read from
  483. * @param flags flags modifying the behaviour of the write to NAND
  484. * @return 0 in case of success
  485. */
  486. int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
  487. size_t *actual, loff_t lim, u_char *buffer, int flags)
  488. {
  489. int rval = 0, blocksize;
  490. size_t left_to_write = *length;
  491. size_t used_for_write = 0;
  492. u_char *p_buffer = buffer;
  493. int need_skip;
  494. if (actual)
  495. *actual = 0;
  496. blocksize = mtd->erasesize;
  497. /*
  498. * nand_write() handles unaligned, partial page writes.
  499. *
  500. * We allow length to be unaligned, for convenience in
  501. * using the $filesize variable.
  502. *
  503. * However, starting at an unaligned offset makes the
  504. * semantics of bad block skipping ambiguous (really,
  505. * you should only start a block skipping access at a
  506. * partition boundary). So don't try to handle that.
  507. */
  508. if ((offset & (mtd->writesize - 1)) != 0) {
  509. printf("Attempt to write non page-aligned data\n");
  510. *length = 0;
  511. return -EINVAL;
  512. }
  513. need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
  514. if (actual)
  515. *actual = used_for_write;
  516. if (need_skip < 0) {
  517. printf("Attempt to write outside the flash area\n");
  518. *length = 0;
  519. return -EINVAL;
  520. }
  521. if (used_for_write > lim) {
  522. puts("Size of write exceeds partition or device limit\n");
  523. *length = 0;
  524. return -EFBIG;
  525. }
  526. if (!need_skip && !(flags & WITH_DROP_FFS)) {
  527. rval = nand_write(mtd, offset, length, buffer);
  528. if ((flags & WITH_WR_VERIFY) && !rval)
  529. rval = nand_verify(mtd, offset, *length, buffer);
  530. if (rval == 0)
  531. return 0;
  532. *length = 0;
  533. printf("NAND write to offset %llx failed %d\n",
  534. offset, rval);
  535. return rval;
  536. }
  537. while (left_to_write > 0) {
  538. size_t block_offset = offset & (mtd->erasesize - 1);
  539. size_t write_size, truncated_write_size;
  540. WATCHDOG_RESET();
  541. if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
  542. printf("Skip bad block 0x%08llx\n",
  543. offset & ~(mtd->erasesize - 1));
  544. offset += mtd->erasesize - block_offset;
  545. continue;
  546. }
  547. if (left_to_write < (blocksize - block_offset))
  548. write_size = left_to_write;
  549. else
  550. write_size = blocksize - block_offset;
  551. truncated_write_size = write_size;
  552. #ifdef CONFIG_CMD_NAND_TRIMFFS
  553. if (flags & WITH_DROP_FFS)
  554. truncated_write_size = drop_ffs(mtd, p_buffer,
  555. &write_size);
  556. #endif
  557. rval = nand_write(mtd, offset, &truncated_write_size,
  558. p_buffer);
  559. if ((flags & WITH_WR_VERIFY) && !rval)
  560. rval = nand_verify(mtd, offset,
  561. truncated_write_size, p_buffer);
  562. offset += write_size;
  563. p_buffer += write_size;
  564. if (rval != 0) {
  565. printf("NAND write to offset %llx failed %d\n",
  566. offset, rval);
  567. *length -= left_to_write;
  568. return rval;
  569. }
  570. left_to_write -= write_size;
  571. }
  572. return 0;
  573. }
  574. /**
  575. * nand_read_skip_bad:
  576. *
  577. * Read image from NAND flash.
  578. * Blocks that are marked bad are skipped and the next block is read
  579. * instead as long as the image is short enough to fit even after
  580. * skipping the bad blocks. Due to bad blocks we may not be able to
  581. * perform the requested read. In the case where the read would extend
  582. * beyond the end of the NAND device, both length and actual (if not
  583. * NULL) are set to 0. In the case where the read would extend beyond
  584. * the limit we are passed, length is set to 0 and actual is set to the
  585. * required length.
  586. *
  587. * @param mtd nand mtd instance
  588. * @param offset offset in flash
  589. * @param length buffer length, on return holds number of read bytes
  590. * @param actual set to size required to read length worth of buffer or 0
  591. * on error, if not NULL
  592. * @param lim maximum size that actual may be in order to not exceed the
  593. * buffer
  594. * @param buffer buffer to write to
  595. * @return 0 in case of success
  596. */
  597. int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
  598. size_t *actual, loff_t lim, u_char *buffer)
  599. {
  600. int rval;
  601. size_t left_to_read = *length;
  602. size_t used_for_read = 0;
  603. u_char *p_buffer = buffer;
  604. int need_skip;
  605. if ((offset & (mtd->writesize - 1)) != 0) {
  606. printf("Attempt to read non page-aligned data\n");
  607. *length = 0;
  608. if (actual)
  609. *actual = 0;
  610. return -EINVAL;
  611. }
  612. need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
  613. if (actual)
  614. *actual = used_for_read;
  615. if (need_skip < 0) {
  616. printf("Attempt to read outside the flash area\n");
  617. *length = 0;
  618. return -EINVAL;
  619. }
  620. if (used_for_read > lim) {
  621. puts("Size of read exceeds partition or device limit\n");
  622. *length = 0;
  623. return -EFBIG;
  624. }
  625. if (!need_skip) {
  626. rval = nand_read(mtd, offset, length, buffer);
  627. if (!rval || rval == -EUCLEAN)
  628. return 0;
  629. *length = 0;
  630. printf("NAND read from offset %llx failed %d\n",
  631. offset, rval);
  632. return rval;
  633. }
  634. while (left_to_read > 0) {
  635. size_t block_offset = offset & (mtd->erasesize - 1);
  636. size_t read_length;
  637. WATCHDOG_RESET();
  638. if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
  639. printf("Skipping bad block 0x%08llx\n",
  640. offset & ~(mtd->erasesize - 1));
  641. offset += mtd->erasesize - block_offset;
  642. continue;
  643. }
  644. if (left_to_read < (mtd->erasesize - block_offset))
  645. read_length = left_to_read;
  646. else
  647. read_length = mtd->erasesize - block_offset;
  648. rval = nand_read(mtd, offset, &read_length, p_buffer);
  649. if (rval && rval != -EUCLEAN) {
  650. printf("NAND read from offset %llx failed %d\n",
  651. offset, rval);
  652. *length -= left_to_read;
  653. return rval;
  654. }
  655. left_to_read -= read_length;
  656. offset += read_length;
  657. p_buffer += read_length;
  658. }
  659. return 0;
  660. }
  661. #ifdef CONFIG_CMD_NAND_TORTURE
  662. /**
  663. * check_pattern:
  664. *
  665. * Check if buffer contains only a certain byte pattern.
  666. *
  667. * @param buf buffer to check
  668. * @param patt the pattern to check
  669. * @param size buffer size in bytes
  670. * @return 1 if there are only patt bytes in buf
  671. * 0 if something else was found
  672. */
  673. static int check_pattern(const u_char *buf, u_char patt, int size)
  674. {
  675. int i;
  676. for (i = 0; i < size; i++)
  677. if (buf[i] != patt)
  678. return 0;
  679. return 1;
  680. }
  681. /**
  682. * nand_torture:
  683. *
  684. * Torture a block of NAND flash.
  685. * This is useful to determine if a block that caused a write error is still
  686. * good or should be marked as bad.
  687. *
  688. * @param mtd nand mtd instance
  689. * @param offset offset in flash
  690. * @return 0 if the block is still good
  691. */
  692. int nand_torture(struct mtd_info *mtd, loff_t offset)
  693. {
  694. u_char patterns[] = {0xa5, 0x5a, 0x00};
  695. struct erase_info instr = {
  696. .mtd = mtd,
  697. .addr = offset,
  698. .len = mtd->erasesize,
  699. };
  700. size_t retlen;
  701. int err, ret = -1, i, patt_count;
  702. u_char *buf;
  703. if ((offset & (mtd->erasesize - 1)) != 0) {
  704. puts("Attempt to torture a block at a non block-aligned offset\n");
  705. return -EINVAL;
  706. }
  707. if (offset + mtd->erasesize > mtd->size) {
  708. puts("Attempt to torture a block outside the flash area\n");
  709. return -EINVAL;
  710. }
  711. patt_count = ARRAY_SIZE(patterns);
  712. buf = malloc_cache_aligned(mtd->erasesize);
  713. if (buf == NULL) {
  714. puts("Out of memory for erase block buffer\n");
  715. return -ENOMEM;
  716. }
  717. for (i = 0; i < patt_count; i++) {
  718. err = mtd_erase(mtd, &instr);
  719. if (err) {
  720. printf("%s: erase() failed for block at 0x%llx: %d\n",
  721. mtd->name, instr.addr, err);
  722. goto out;
  723. }
  724. /* Make sure the block contains only 0xff bytes */
  725. err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
  726. if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
  727. printf("%s: read() failed for block at 0x%llx: %d\n",
  728. mtd->name, instr.addr, err);
  729. goto out;
  730. }
  731. err = check_pattern(buf, 0xff, mtd->erasesize);
  732. if (!err) {
  733. printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
  734. offset);
  735. ret = -EIO;
  736. goto out;
  737. }
  738. /* Write a pattern and check it */
  739. memset(buf, patterns[i], mtd->erasesize);
  740. err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
  741. if (err || retlen != mtd->erasesize) {
  742. printf("%s: write() failed for block at 0x%llx: %d\n",
  743. mtd->name, instr.addr, err);
  744. goto out;
  745. }
  746. err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
  747. if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
  748. printf("%s: read() failed for block at 0x%llx: %d\n",
  749. mtd->name, instr.addr, err);
  750. goto out;
  751. }
  752. err = check_pattern(buf, patterns[i], mtd->erasesize);
  753. if (!err) {
  754. printf("Pattern 0x%.2x checking failed for block at "
  755. "0x%llx\n", patterns[i], offset);
  756. ret = -EIO;
  757. goto out;
  758. }
  759. }
  760. ret = 0;
  761. out:
  762. free(buf);
  763. return ret;
  764. }
  765. #endif