12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217 |
- /*
- * Freescale i.MX28 NAND flash driver
- *
- * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
- * on behalf of DENX Software Engineering GmbH
- *
- * Based on code from LTIB:
- * Freescale GPMI NFC NAND Flash Driver
- *
- * Copyright (C) 2010 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * SPDX-License-Identifier: GPL-2.0+
- */
- #include <common.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/nand.h>
- #include <linux/types.h>
- #include <malloc.h>
- #include <linux/errno.h>
- #include <asm/io.h>
- #include <asm/arch/clock.h>
- #include <asm/arch/imx-regs.h>
- #include <asm/imx-common/regs-bch.h>
- #include <asm/imx-common/regs-gpmi.h>
- #include <asm/arch/sys_proto.h>
- #include <asm/imx-common/dma.h>
- #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
- #if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
- #else
- #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
- #endif
- #define MXS_NAND_METADATA_SIZE 10
- #define MXS_NAND_BITS_PER_ECC_LEVEL 13
- #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
- #define MXS_NAND_COMMAND_BUFFER_SIZE 32
- #else
- #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE
- #endif
- #define MXS_NAND_BCH_TIMEOUT 10000
- struct mxs_nand_info {
- int cur_chip;
- uint32_t cmd_queue_len;
- uint32_t data_buf_size;
- uint8_t *cmd_buf;
- uint8_t *data_buf;
- uint8_t *oob_buf;
- uint8_t marking_block_bad;
- uint8_t raw_oob_mode;
- /* Functions with altered behaviour */
- int (*hooked_read_oob)(struct mtd_info *mtd,
- loff_t from, struct mtd_oob_ops *ops);
- int (*hooked_write_oob)(struct mtd_info *mtd,
- loff_t to, struct mtd_oob_ops *ops);
- int (*hooked_block_markbad)(struct mtd_info *mtd,
- loff_t ofs);
- /* DMA descriptors */
- struct mxs_dma_desc **desc;
- uint32_t desc_index;
- };
- struct nand_ecclayout fake_ecc_layout;
- static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
- static int galois_field = 13;
- /*
- * Cache management functions
- */
- #ifndef CONFIG_SYS_DCACHE_OFF
- static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->data_buf;
- flush_dcache_range(addr, addr + info->data_buf_size);
- }
- static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->data_buf;
- invalidate_dcache_range(addr, addr + info->data_buf_size);
- }
- static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
- {
- uint32_t addr = (uint32_t)info->cmd_buf;
- flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
- }
- #else
- static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
- static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
- static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
- #endif
- static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
- {
- struct mxs_dma_desc *desc;
- if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
- printf("MXS NAND: Too many DMA descriptors requested\n");
- return NULL;
- }
- desc = info->desc[info->desc_index];
- info->desc_index++;
- return desc;
- }
- static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
- {
- int i;
- struct mxs_dma_desc *desc;
- for (i = 0; i < info->desc_index; i++) {
- desc = info->desc[i];
- memset(desc, 0, sizeof(struct mxs_dma_desc));
- desc->address = (dma_addr_t)desc;
- }
- info->desc_index = 0;
- }
- static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
- {
- return page_data_size / chunk_data_size;
- }
- static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
- {
- return ecc_strength * galois_field;
- }
- static uint32_t mxs_nand_aux_status_offset(void)
- {
- return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
- }
- static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
- uint32_t page_oob_size)
- {
- int ecc_strength;
- int max_ecc_strength_supported;
- /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
- if (is_mx6sx() || is_mx7())
- max_ecc_strength_supported = 62;
- else
- max_ecc_strength_supported = 40;
- /*
- * Determine the ECC layout with the formula:
- * ECC bits per chunk = (total page spare data bits) /
- * (bits per ECC level) / (chunks per page)
- * where:
- * total page spare data bits =
- * (page oob size - meta data size) * (bits per byte)
- */
- ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
- / (galois_field *
- mxs_nand_ecc_chunk_cnt(page_data_size));
- return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
- }
- static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
- uint32_t ecc_strength)
- {
- uint32_t chunk_data_size_in_bits;
- uint32_t chunk_ecc_size_in_bits;
- uint32_t chunk_total_size_in_bits;
- uint32_t block_mark_chunk_number;
- uint32_t block_mark_chunk_bit_offset;
- uint32_t block_mark_bit_offset;
- chunk_data_size_in_bits = chunk_data_size * 8;
- chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
- chunk_total_size_in_bits =
- chunk_data_size_in_bits + chunk_ecc_size_in_bits;
- /* Compute the bit offset of the block mark within the physical page. */
- block_mark_bit_offset = page_data_size * 8;
- /* Subtract the metadata bits. */
- block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
- /*
- * Compute the chunk number (starting at zero) in which the block mark
- * appears.
- */
- block_mark_chunk_number =
- block_mark_bit_offset / chunk_total_size_in_bits;
- /*
- * Compute the bit offset of the block mark within its chunk, and
- * validate it.
- */
- block_mark_chunk_bit_offset = block_mark_bit_offset -
- (block_mark_chunk_number * chunk_total_size_in_bits);
- if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
- return 1;
- /*
- * Now that we know the chunk number in which the block mark appears,
- * we can subtract all the ECC bits that appear before it.
- */
- block_mark_bit_offset -=
- block_mark_chunk_number * chunk_ecc_size_in_bits;
- return block_mark_bit_offset;
- }
- static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
- {
- uint32_t ecc_strength;
- ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
- return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
- }
- static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
- {
- uint32_t ecc_strength;
- ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
- return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
- }
- /*
- * Wait for BCH complete IRQ and clear the IRQ
- */
- static int mxs_nand_wait_for_bch_complete(void)
- {
- struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
- int timeout = MXS_NAND_BCH_TIMEOUT;
- int ret;
- ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
- BCH_CTRL_COMPLETE_IRQ, timeout);
- writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
- return ret;
- }
- /*
- * This is the function that we install in the cmd_ctrl function pointer of the
- * owning struct nand_chip. The only functions in the reference implementation
- * that use these functions pointers are cmdfunc and select_chip.
- *
- * In this driver, we implement our own select_chip, so this function will only
- * be called by the reference implementation's cmdfunc. For this reason, we can
- * ignore the chip enable bit and concentrate only on sending bytes to the NAND
- * Flash.
- */
- static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- /*
- * If this condition is true, something is _VERY_ wrong in MTD
- * subsystem!
- */
- if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
- printf("MXS NAND: Command queue too long\n");
- return;
- }
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will
- * deasert both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes.
- */
- if (ctrl & (NAND_ALE | NAND_CLE)) {
- if (data != NAND_CMD_NONE)
- nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
- return;
- }
- /*
- * If control arrives here, MTD has deasserted both the ALE and CLE,
- * which means it's ready to run an operation. Check if we have any
- * bytes to send.
- */
- if (nand_info->cmd_queue_len == 0)
- return;
- /* Compile the DMA descriptor -- a descriptor that sends command. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
- MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_CLE |
- GPMI_CTRL0_ADDRESS_INCREMENT |
- nand_info->cmd_queue_len;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_cmd_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret)
- printf("MXS NAND: Error sending command\n");
- mxs_nand_return_dma_descs(nand_info);
- /* Reset the command queue. */
- nand_info->cmd_queue_len = 0;
- }
- /*
- * Test if the NAND flash is ready.
- */
- static int mxs_nand_device_ready(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
- struct mxs_gpmi_regs *gpmi_regs =
- (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
- uint32_t tmp;
- tmp = readl(&gpmi_regs->hw_gpmi_stat);
- tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
- return tmp & 1;
- }
- /*
- * Select the NAND chip.
- */
- static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- nand_info->cur_chip = chip;
- }
- /*
- * Handle block mark swapping.
- *
- * Note that, when this function is called, it doesn't know whether it's
- * swapping the block mark, or swapping it *back* -- but it doesn't matter
- * because the the operation is the same.
- */
- static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
- uint8_t *data_buf, uint8_t *oob_buf)
- {
- uint32_t bit_offset;
- uint32_t buf_offset;
- uint32_t src;
- uint32_t dst;
- bit_offset = mxs_nand_mark_bit_offset(mtd);
- buf_offset = mxs_nand_mark_byte_offset(mtd);
- /*
- * Get the byte from the data area that overlays the block mark. Since
- * the ECC engine applies its own view to the bits in the page, the
- * physical block mark won't (in general) appear on a byte boundary in
- * the data.
- */
- src = data_buf[buf_offset] >> bit_offset;
- src |= data_buf[buf_offset + 1] << (8 - bit_offset);
- dst = oob_buf[0];
- oob_buf[0] = src;
- data_buf[buf_offset] &= ~(0xff << bit_offset);
- data_buf[buf_offset + 1] &= 0xff << bit_offset;
- data_buf[buf_offset] |= dst << bit_offset;
- data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
- }
- /*
- * Read data from NAND.
- */
- static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- if (length > NAND_MAX_PAGESIZE) {
- printf("MXS NAND: DMA buffer too big\n");
- return;
- }
- if (!buf) {
- printf("MXS NAND: DMA buffer is NULL\n");
- return;
- }
- /* Compile the DMA descriptor - a descriptor that reads data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (length << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_READ |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- length;
- mxs_dma_desc_append(channel, d);
- /*
- * A DMA descriptor that waits for the command to end and the chip to
- * become ready.
- *
- * I think we actually should *not* be waiting for the chip to become
- * ready because, after all, we don't care. I think the original code
- * did that and no one has re-thought it yet.
- */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
- MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- mxs_dma_desc_append(channel, d);
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA read error\n");
- goto rtn;
- }
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- memcpy(buf, nand_info->data_buf, length);
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- }
- /*
- * Write data to NAND.
- */
- static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
- int length)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- if (length > NAND_MAX_PAGESIZE) {
- printf("MXS NAND: DMA buffer too big\n");
- return;
- }
- if (!buf) {
- printf("MXS NAND: DMA buffer is NULL\n");
- return;
- }
- memcpy(nand_info->data_buf, buf, length);
- /* Compile the DMA descriptor - a descriptor that writes data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
- (length << MXS_DMA_DESC_BYTES_OFFSET);
- d->cmd.address = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- length;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret)
- printf("MXS NAND: DMA write error\n");
- mxs_nand_return_dma_descs(nand_info);
- }
- /*
- * Read a single byte from NAND.
- */
- static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
- {
- uint8_t buf;
- mxs_nand_read_buf(mtd, &buf, 1);
- return buf;
- }
- /*
- * Read a page from NAND.
- */
- static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
- uint8_t *buf, int oob_required,
- int page)
- {
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- uint32_t corrected = 0, failed = 0;
- uint8_t *status;
- int i, ret;
- /* Compile the DMA descriptor - wait for ready. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
- (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - enable the BCH block and read. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_READ |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] =
- GPMI_ECCCTRL_ENABLE_ECC |
- GPMI_ECCCTRL_ECC_CMD_DECODE |
- GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
- d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
- d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - disable the BCH block. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
- MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
- (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA |
- (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] = 0;
- mxs_dma_desc_append(channel, d);
- /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM;
- d->cmd.address = 0;
- mxs_dma_desc_append(channel, d);
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA read error\n");
- goto rtn;
- }
- ret = mxs_nand_wait_for_bch_complete();
- if (ret) {
- printf("MXS NAND: BCH read timeout\n");
- goto rtn;
- }
- /* Invalidate caches */
- mxs_nand_inval_data_buf(nand_info);
- /* Read DMA completed, now do the mark swapping. */
- mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
- /* Loop over status bytes, accumulating ECC status. */
- status = nand_info->oob_buf + mxs_nand_aux_status_offset();
- for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
- if (status[i] == 0x00)
- continue;
- if (status[i] == 0xff)
- continue;
- if (status[i] == 0xfe) {
- failed++;
- continue;
- }
- corrected += status[i];
- }
- /* Propagate ECC status to the owning MTD. */
- mtd->ecc_stats.failed += failed;
- mtd->ecc_stats.corrected += corrected;
- /*
- * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
- * details about our policy for delivering the OOB.
- *
- * We fill the caller's buffer with set bits, and then copy the block
- * mark to the caller's buffer. Note that, if block mark swapping was
- * necessary, it has already been done, so we can rely on the first
- * byte of the auxiliary buffer to contain the block mark.
- */
- memset(nand->oob_poi, 0xff, mtd->oobsize);
- nand->oob_poi[0] = nand_info->oob_buf[0];
- memcpy(buf, nand_info->data_buf, mtd->writesize);
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- return ret;
- }
- /*
- * Write a page to NAND.
- */
- static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
- struct nand_chip *nand, const uint8_t *buf,
- int oob_required, int page)
- {
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_dma_desc *d;
- uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
- int ret;
- memcpy(nand_info->data_buf, buf, mtd->writesize);
- memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
- /* Handle block mark swapping. */
- mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
- /* Compile the DMA descriptor - write data. */
- d = mxs_nand_get_dma_desc(nand_info);
- d->cmd.data =
- MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
- MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
- (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
- d->cmd.address = 0;
- d->cmd.pio_words[0] =
- GPMI_CTRL0_COMMAND_MODE_WRITE |
- GPMI_CTRL0_WORD_LENGTH |
- (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
- GPMI_CTRL0_ADDRESS_NAND_DATA;
- d->cmd.pio_words[1] = 0;
- d->cmd.pio_words[2] =
- GPMI_ECCCTRL_ENABLE_ECC |
- GPMI_ECCCTRL_ECC_CMD_ENCODE |
- GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
- d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
- d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
- d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
- mxs_dma_desc_append(channel, d);
- /* Flush caches */
- mxs_nand_flush_data_buf(nand_info);
- /* Execute the DMA chain. */
- ret = mxs_dma_go(channel);
- if (ret) {
- printf("MXS NAND: DMA write error\n");
- goto rtn;
- }
- ret = mxs_nand_wait_for_bch_complete();
- if (ret) {
- printf("MXS NAND: BCH write timeout\n");
- goto rtn;
- }
- rtn:
- mxs_nand_return_dma_descs(nand_info);
- return 0;
- }
- /*
- * Read OOB from NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
- struct mtd_oob_ops *ops)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
- int ret;
- if (ops->mode == MTD_OPS_RAW)
- nand_info->raw_oob_mode = 1;
- else
- nand_info->raw_oob_mode = 0;
- ret = nand_info->hooked_read_oob(mtd, from, ops);
- nand_info->raw_oob_mode = 0;
- return ret;
- }
- /*
- * Write OOB to NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
- struct mtd_oob_ops *ops)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
- int ret;
- if (ops->mode == MTD_OPS_RAW)
- nand_info->raw_oob_mode = 1;
- else
- nand_info->raw_oob_mode = 0;
- ret = nand_info->hooked_write_oob(mtd, to, ops);
- nand_info->raw_oob_mode = 0;
- return ret;
- }
- /*
- * Mark a block bad in NAND.
- *
- * This function is a veneer that replaces the function originally installed by
- * the NAND Flash MTD code.
- */
- static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
- int ret;
- nand_info->marking_block_bad = 1;
- ret = nand_info->hooked_block_markbad(mtd, ofs);
- nand_info->marking_block_bad = 0;
- return ret;
- }
- /*
- * There are several places in this driver where we have to handle the OOB and
- * block marks. This is the function where things are the most complicated, so
- * this is where we try to explain it all. All the other places refer back to
- * here.
- *
- * These are the rules, in order of decreasing importance:
- *
- * 1) Nothing the caller does can be allowed to imperil the block mark, so all
- * write operations take measures to protect it.
- *
- * 2) In read operations, the first byte of the OOB we return must reflect the
- * true state of the block mark, no matter where that block mark appears in
- * the physical page.
- *
- * 3) ECC-based read operations return an OOB full of set bits (since we never
- * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
- * return).
- *
- * 4) "Raw" read operations return a direct view of the physical bytes in the
- * page, using the conventional definition of which bytes are data and which
- * are OOB. This gives the caller a way to see the actual, physical bytes
- * in the page, without the distortions applied by our ECC engine.
- *
- * What we do for this specific read operation depends on whether we're doing
- * "raw" read, or an ECC-based read.
- *
- * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
- * easy. When reading a page, for example, the NAND Flash MTD code calls our
- * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
- * ECC-based or raw view of the page is implicit in which function it calls
- * (there is a similar pair of ECC-based/raw functions for writing).
- *
- * Since MTD assumes the OOB is not covered by ECC, there is no pair of
- * ECC-based/raw functions for reading or or writing the OOB. The fact that the
- * caller wants an ECC-based or raw view of the page is not propagated down to
- * this driver.
- *
- * Since our OOB *is* covered by ECC, we need this information. So, we hook the
- * ecc.read_oob and ecc.write_oob function pointers in the owning
- * struct mtd_info with our own functions. These hook functions set the
- * raw_oob_mode field so that, when control finally arrives here, we'll know
- * what to do.
- */
- static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
- {
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- /*
- * First, fill in the OOB buffer. If we're doing a raw read, we need to
- * get the bytes from the physical page. If we're not doing a raw read,
- * we need to fill the buffer with set bits.
- */
- if (nand_info->raw_oob_mode) {
- /*
- * If control arrives here, we're doing a "raw" read. Send the
- * command to read the conventional OOB and read it.
- */
- nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
- } else {
- /*
- * If control arrives here, we're not doing a "raw" read. Fill
- * the OOB buffer with set bits and correct the block mark.
- */
- memset(nand->oob_poi, 0xff, mtd->oobsize);
- nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- mxs_nand_read_buf(mtd, nand->oob_poi, 1);
- }
- return 0;
- }
- /*
- * Write OOB data to NAND.
- */
- static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
- int page)
- {
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- uint8_t block_mark = 0;
- /*
- * There are fundamental incompatibilities between the i.MX GPMI NFC and
- * the NAND Flash MTD model that make it essentially impossible to write
- * the out-of-band bytes.
- *
- * We permit *ONE* exception. If the *intent* of writing the OOB is to
- * mark a block bad, we can do that.
- */
- if (!nand_info->marking_block_bad) {
- printf("NXS NAND: Writing OOB isn't supported\n");
- return -EIO;
- }
- /* Write the block mark. */
- nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
- nand->write_buf(mtd, &block_mark, 1);
- nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- /* Check if it worked. */
- if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
- return -EIO;
- return 0;
- }
- /*
- * Claims all blocks are good.
- *
- * In principle, this function is *only* called when the NAND Flash MTD system
- * isn't allowed to keep an in-memory bad block table, so it is forced to ask
- * the driver for bad block information.
- *
- * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
- * this function is *only* called when we take it away.
- *
- * Thus, this function is only called when we want *all* blocks to look good,
- * so it *always* return success.
- */
- static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
- {
- return 0;
- }
- /*
- * Nominally, the purpose of this function is to look for or create the bad
- * block table. In fact, since the we call this function at the very end of
- * the initialization process started by nand_scan(), and we doesn't have a
- * more formal mechanism, we "hook" this function to continue init process.
- *
- * At this point, the physical NAND Flash chips have been identified and
- * counted, so we know the physical geometry. This enables us to make some
- * important configuration decisions.
- *
- * The return value of this function propagates directly back to this driver's
- * call to nand_scan(). Anything other than zero will cause this driver to
- * tear everything down and declare failure.
- */
- static int mxs_nand_scan_bbt(struct mtd_info *mtd)
- {
- struct nand_chip *nand = mtd_to_nand(mtd);
- struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
- struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
- uint32_t tmp;
- if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
- galois_field = 14;
- chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
- }
- if (mtd->oobsize > chunk_data_size) {
- printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
- return -EINVAL;
- }
- /* Configure BCH and set NFC geometry */
- mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
- /* Configure layout 0 */
- tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
- << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
- tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
- tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
- << BCH_FLASHLAYOUT0_ECC0_OFFSET;
- tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
- tmp |= (14 == galois_field ? 1 : 0) <<
- BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
- writel(tmp, &bch_regs->hw_bch_flash0layout0);
- tmp = (mtd->writesize + mtd->oobsize)
- << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
- tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
- << BCH_FLASHLAYOUT1_ECCN_OFFSET;
- tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
- tmp |= (14 == galois_field ? 1 : 0) <<
- BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
- writel(tmp, &bch_regs->hw_bch_flash0layout1);
- /* Set *all* chip selects to use layout 0 */
- writel(0, &bch_regs->hw_bch_layoutselect);
- /* Enable BCH complete interrupt */
- writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
- /* Hook some operations at the MTD level. */
- if (mtd->_read_oob != mxs_nand_hook_read_oob) {
- nand_info->hooked_read_oob = mtd->_read_oob;
- mtd->_read_oob = mxs_nand_hook_read_oob;
- }
- if (mtd->_write_oob != mxs_nand_hook_write_oob) {
- nand_info->hooked_write_oob = mtd->_write_oob;
- mtd->_write_oob = mxs_nand_hook_write_oob;
- }
- if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
- nand_info->hooked_block_markbad = mtd->_block_markbad;
- mtd->_block_markbad = mxs_nand_hook_block_markbad;
- }
- /* We use the reference implementation for bad block management. */
- return nand_default_bbt(mtd);
- }
- /*
- * Allocate DMA buffers
- */
- int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
- {
- uint8_t *buf;
- const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
- nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
- /* DMA buffers */
- buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
- if (!buf) {
- printf("MXS NAND: Error allocating DMA buffers\n");
- return -ENOMEM;
- }
- memset(buf, 0, nand_info->data_buf_size);
- nand_info->data_buf = buf;
- nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
- /* Command buffers */
- nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
- MXS_NAND_COMMAND_BUFFER_SIZE);
- if (!nand_info->cmd_buf) {
- free(buf);
- printf("MXS NAND: Error allocating command buffers\n");
- return -ENOMEM;
- }
- memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
- nand_info->cmd_queue_len = 0;
- return 0;
- }
- /*
- * Initializes the NFC hardware.
- */
- int mxs_nand_init(struct mxs_nand_info *info)
- {
- struct mxs_gpmi_regs *gpmi_regs =
- (struct mxs_gpmi_regs *)MXS_GPMI_BASE;
- struct mxs_bch_regs *bch_regs =
- (struct mxs_bch_regs *)MXS_BCH_BASE;
- int i = 0, j, ret = 0;
- info->desc = malloc(sizeof(struct mxs_dma_desc *) *
- MXS_NAND_DMA_DESCRIPTOR_COUNT);
- if (!info->desc) {
- ret = -ENOMEM;
- goto err1;
- }
- /* Allocate the DMA descriptors. */
- for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
- info->desc[i] = mxs_dma_desc_alloc();
- if (!info->desc[i]) {
- ret = -ENOMEM;
- goto err2;
- }
- }
- /* Init the DMA controller. */
- for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
- j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
- ret = mxs_dma_init_channel(j);
- if (ret)
- goto err3;
- }
- /* Reset the GPMI block. */
- mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
- mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
- /*
- * Choose NAND mode, set IRQ polarity, disable write protection and
- * select BCH ECC.
- */
- clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
- GPMI_CTRL1_GPMI_MODE,
- GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
- GPMI_CTRL1_BCH_MODE);
- return 0;
- err3:
- for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
- mxs_dma_release(j);
- err2:
- for (--i; i >= 0; i--)
- mxs_dma_desc_free(info->desc[i]);
- free(info->desc);
- err1:
- if (ret == -ENOMEM)
- printf("MXS NAND: Unable to allocate DMA descriptors\n");
- return ret;
- }
- /*!
- * This function is called during the driver binding process.
- *
- * @param pdev the device structure used to store device specific
- * information that is used by the suspend, resume and
- * remove functions
- *
- * @return The function always returns 0.
- */
- int board_nand_init(struct nand_chip *nand)
- {
- struct mxs_nand_info *nand_info;
- int err;
- nand_info = malloc(sizeof(struct mxs_nand_info));
- if (!nand_info) {
- printf("MXS NAND: Failed to allocate private data\n");
- return -ENOMEM;
- }
- memset(nand_info, 0, sizeof(struct mxs_nand_info));
- err = mxs_nand_alloc_buffers(nand_info);
- if (err)
- goto err1;
- err = mxs_nand_init(nand_info);
- if (err)
- goto err2;
- memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
- nand_set_controller_data(nand, nand_info);
- nand->options |= NAND_NO_SUBPAGE_WRITE;
- nand->cmd_ctrl = mxs_nand_cmd_ctrl;
- nand->dev_ready = mxs_nand_device_ready;
- nand->select_chip = mxs_nand_select_chip;
- nand->block_bad = mxs_nand_block_bad;
- nand->scan_bbt = mxs_nand_scan_bbt;
- nand->read_byte = mxs_nand_read_byte;
- nand->read_buf = mxs_nand_read_buf;
- nand->write_buf = mxs_nand_write_buf;
- nand->ecc.read_page = mxs_nand_ecc_read_page;
- nand->ecc.write_page = mxs_nand_ecc_write_page;
- nand->ecc.read_oob = mxs_nand_ecc_read_oob;
- nand->ecc.write_oob = mxs_nand_ecc_write_oob;
- nand->ecc.layout = &fake_ecc_layout;
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.bytes = 9;
- nand->ecc.size = 512;
- nand->ecc.strength = 8;
- return 0;
- err2:
- free(nand_info->data_buf);
- free(nand_info->cmd_buf);
- err1:
- free(nand_info);
- return err;
- }
|