mtdpart.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. *
  10. */
  11. #ifndef __UBOOT__
  12. #include <linux/module.h>
  13. #include <linux/types.h>
  14. #include <linux/kernel.h>
  15. #include <linux/slab.h>
  16. #include <linux/list.h>
  17. #include <linux/kmod.h>
  18. #endif
  19. #include <common.h>
  20. #include <malloc.h>
  21. #include <linux/errno.h>
  22. #include <linux/compat.h>
  23. #include <ubi_uboot.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/err.h>
  27. #include "mtdcore.h"
  28. /* Our partition linked list */
  29. static LIST_HEAD(mtd_partitions);
  30. #ifndef __UBOOT__
  31. static DEFINE_MUTEX(mtd_partitions_mutex);
  32. #else
  33. DEFINE_MUTEX(mtd_partitions_mutex);
  34. #endif
  35. /* Our partition node structure */
  36. struct mtd_part {
  37. struct mtd_info mtd;
  38. struct mtd_info *master;
  39. uint64_t offset;
  40. struct list_head list;
  41. };
  42. /*
  43. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  44. * the pointer to that structure with this macro.
  45. */
  46. #define PART(x) ((struct mtd_part *)(x))
  47. #ifdef __UBOOT__
  48. /* from mm/util.c */
  49. /**
  50. * kstrdup - allocate space for and copy an existing string
  51. * @s: the string to duplicate
  52. * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  53. */
  54. char *kstrdup(const char *s, gfp_t gfp)
  55. {
  56. size_t len;
  57. char *buf;
  58. if (!s)
  59. return NULL;
  60. len = strlen(s) + 1;
  61. buf = kmalloc(len, gfp);
  62. if (buf)
  63. memcpy(buf, s, len);
  64. return buf;
  65. }
  66. #endif
  67. /*
  68. * MTD methods which simply translate the effective address and pass through
  69. * to the _real_ device.
  70. */
  71. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  72. size_t *retlen, u_char *buf)
  73. {
  74. struct mtd_part *part = PART(mtd);
  75. struct mtd_ecc_stats stats;
  76. int res;
  77. stats = part->master->ecc_stats;
  78. res = part->master->_read(part->master, from + part->offset, len,
  79. retlen, buf);
  80. if (unlikely(mtd_is_eccerr(res)))
  81. mtd->ecc_stats.failed +=
  82. part->master->ecc_stats.failed - stats.failed;
  83. else
  84. mtd->ecc_stats.corrected +=
  85. part->master->ecc_stats.corrected - stats.corrected;
  86. return res;
  87. }
  88. #ifndef __UBOOT__
  89. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  90. size_t *retlen, void **virt, resource_size_t *phys)
  91. {
  92. struct mtd_part *part = PART(mtd);
  93. return part->master->_point(part->master, from + part->offset, len,
  94. retlen, virt, phys);
  95. }
  96. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  97. {
  98. struct mtd_part *part = PART(mtd);
  99. return part->master->_unpoint(part->master, from + part->offset, len);
  100. }
  101. #endif
  102. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  103. unsigned long len,
  104. unsigned long offset,
  105. unsigned long flags)
  106. {
  107. struct mtd_part *part = PART(mtd);
  108. offset += part->offset;
  109. return part->master->_get_unmapped_area(part->master, len, offset,
  110. flags);
  111. }
  112. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  113. struct mtd_oob_ops *ops)
  114. {
  115. struct mtd_part *part = PART(mtd);
  116. int res;
  117. if (from >= mtd->size)
  118. return -EINVAL;
  119. if (ops->datbuf && from + ops->len > mtd->size)
  120. return -EINVAL;
  121. /*
  122. * If OOB is also requested, make sure that we do not read past the end
  123. * of this partition.
  124. */
  125. if (ops->oobbuf) {
  126. size_t len, pages;
  127. if (ops->mode == MTD_OPS_AUTO_OOB)
  128. len = mtd->oobavail;
  129. else
  130. len = mtd->oobsize;
  131. pages = mtd_div_by_ws(mtd->size, mtd);
  132. pages -= mtd_div_by_ws(from, mtd);
  133. if (ops->ooboffs + ops->ooblen > pages * len)
  134. return -EINVAL;
  135. }
  136. res = part->master->_read_oob(part->master, from + part->offset, ops);
  137. if (unlikely(res)) {
  138. if (mtd_is_bitflip(res))
  139. mtd->ecc_stats.corrected++;
  140. if (mtd_is_eccerr(res))
  141. mtd->ecc_stats.failed++;
  142. }
  143. return res;
  144. }
  145. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  146. size_t len, size_t *retlen, u_char *buf)
  147. {
  148. struct mtd_part *part = PART(mtd);
  149. return part->master->_read_user_prot_reg(part->master, from, len,
  150. retlen, buf);
  151. }
  152. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  153. size_t *retlen, struct otp_info *buf)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return part->master->_get_user_prot_info(part->master, len, retlen,
  157. buf);
  158. }
  159. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  160. size_t len, size_t *retlen, u_char *buf)
  161. {
  162. struct mtd_part *part = PART(mtd);
  163. return part->master->_read_fact_prot_reg(part->master, from, len,
  164. retlen, buf);
  165. }
  166. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  167. size_t *retlen, struct otp_info *buf)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. return part->master->_get_fact_prot_info(part->master, len, retlen,
  171. buf);
  172. }
  173. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  174. size_t *retlen, const u_char *buf)
  175. {
  176. struct mtd_part *part = PART(mtd);
  177. return part->master->_write(part->master, to + part->offset, len,
  178. retlen, buf);
  179. }
  180. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  181. size_t *retlen, const u_char *buf)
  182. {
  183. struct mtd_part *part = PART(mtd);
  184. return part->master->_panic_write(part->master, to + part->offset, len,
  185. retlen, buf);
  186. }
  187. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  188. struct mtd_oob_ops *ops)
  189. {
  190. struct mtd_part *part = PART(mtd);
  191. if (to >= mtd->size)
  192. return -EINVAL;
  193. if (ops->datbuf && to + ops->len > mtd->size)
  194. return -EINVAL;
  195. return part->master->_write_oob(part->master, to + part->offset, ops);
  196. }
  197. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  198. size_t len, size_t *retlen, u_char *buf)
  199. {
  200. struct mtd_part *part = PART(mtd);
  201. return part->master->_write_user_prot_reg(part->master, from, len,
  202. retlen, buf);
  203. }
  204. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  205. size_t len)
  206. {
  207. struct mtd_part *part = PART(mtd);
  208. return part->master->_lock_user_prot_reg(part->master, from, len);
  209. }
  210. #ifndef __UBOOT__
  211. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  212. unsigned long count, loff_t to, size_t *retlen)
  213. {
  214. struct mtd_part *part = PART(mtd);
  215. return part->master->_writev(part->master, vecs, count,
  216. to + part->offset, retlen);
  217. }
  218. #endif
  219. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  220. {
  221. struct mtd_part *part = PART(mtd);
  222. int ret;
  223. instr->addr += part->offset;
  224. ret = part->master->_erase(part->master, instr);
  225. if (ret) {
  226. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  227. instr->fail_addr -= part->offset;
  228. instr->addr -= part->offset;
  229. }
  230. return ret;
  231. }
  232. void mtd_erase_callback(struct erase_info *instr)
  233. {
  234. if (instr->mtd->_erase == part_erase) {
  235. struct mtd_part *part = PART(instr->mtd);
  236. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  237. instr->fail_addr -= part->offset;
  238. instr->addr -= part->offset;
  239. }
  240. if (instr->callback)
  241. instr->callback(instr);
  242. }
  243. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  244. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. return part->master->_lock(part->master, ofs + part->offset, len);
  248. }
  249. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  250. {
  251. struct mtd_part *part = PART(mtd);
  252. return part->master->_unlock(part->master, ofs + part->offset, len);
  253. }
  254. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  255. {
  256. struct mtd_part *part = PART(mtd);
  257. return part->master->_is_locked(part->master, ofs + part->offset, len);
  258. }
  259. static void part_sync(struct mtd_info *mtd)
  260. {
  261. struct mtd_part *part = PART(mtd);
  262. part->master->_sync(part->master);
  263. }
  264. #ifndef __UBOOT__
  265. static int part_suspend(struct mtd_info *mtd)
  266. {
  267. struct mtd_part *part = PART(mtd);
  268. return part->master->_suspend(part->master);
  269. }
  270. static void part_resume(struct mtd_info *mtd)
  271. {
  272. struct mtd_part *part = PART(mtd);
  273. part->master->_resume(part->master);
  274. }
  275. #endif
  276. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  277. {
  278. struct mtd_part *part = PART(mtd);
  279. ofs += part->offset;
  280. return part->master->_block_isreserved(part->master, ofs);
  281. }
  282. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  283. {
  284. struct mtd_part *part = PART(mtd);
  285. ofs += part->offset;
  286. return part->master->_block_isbad(part->master, ofs);
  287. }
  288. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  289. {
  290. struct mtd_part *part = PART(mtd);
  291. int res;
  292. ofs += part->offset;
  293. res = part->master->_block_markbad(part->master, ofs);
  294. if (!res)
  295. mtd->ecc_stats.badblocks++;
  296. return res;
  297. }
  298. static inline void free_partition(struct mtd_part *p)
  299. {
  300. kfree(p->mtd.name);
  301. kfree(p);
  302. }
  303. /*
  304. * This function unregisters and destroy all slave MTD objects which are
  305. * attached to the given master MTD object.
  306. */
  307. int del_mtd_partitions(struct mtd_info *master)
  308. {
  309. struct mtd_part *slave, *next;
  310. int ret, err = 0;
  311. mutex_lock(&mtd_partitions_mutex);
  312. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  313. if (slave->master == master) {
  314. ret = del_mtd_device(&slave->mtd);
  315. if (ret < 0) {
  316. err = ret;
  317. continue;
  318. }
  319. list_del(&slave->list);
  320. free_partition(slave);
  321. }
  322. mutex_unlock(&mtd_partitions_mutex);
  323. return err;
  324. }
  325. static struct mtd_part *allocate_partition(struct mtd_info *master,
  326. const struct mtd_partition *part, int partno,
  327. uint64_t cur_offset)
  328. {
  329. struct mtd_part *slave;
  330. char *name;
  331. /* allocate the partition structure */
  332. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  333. name = kstrdup(part->name, GFP_KERNEL);
  334. if (!name || !slave) {
  335. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  336. master->name);
  337. kfree(name);
  338. kfree(slave);
  339. return ERR_PTR(-ENOMEM);
  340. }
  341. /* set up the MTD object for this partition */
  342. slave->mtd.type = master->type;
  343. slave->mtd.flags = master->flags & ~part->mask_flags;
  344. slave->mtd.size = part->size;
  345. slave->mtd.writesize = master->writesize;
  346. slave->mtd.writebufsize = master->writebufsize;
  347. slave->mtd.oobsize = master->oobsize;
  348. slave->mtd.oobavail = master->oobavail;
  349. slave->mtd.subpage_sft = master->subpage_sft;
  350. slave->mtd.name = name;
  351. slave->mtd.owner = master->owner;
  352. #ifndef __UBOOT__
  353. slave->mtd.backing_dev_info = master->backing_dev_info;
  354. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  355. * to have the same data be in two different partitions.
  356. */
  357. slave->mtd.dev.parent = master->dev.parent;
  358. #endif
  359. slave->mtd._read = part_read;
  360. slave->mtd._write = part_write;
  361. if (master->_panic_write)
  362. slave->mtd._panic_write = part_panic_write;
  363. #ifndef __UBOOT__
  364. if (master->_point && master->_unpoint) {
  365. slave->mtd._point = part_point;
  366. slave->mtd._unpoint = part_unpoint;
  367. }
  368. #endif
  369. if (master->_get_unmapped_area)
  370. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  371. if (master->_read_oob)
  372. slave->mtd._read_oob = part_read_oob;
  373. if (master->_write_oob)
  374. slave->mtd._write_oob = part_write_oob;
  375. if (master->_read_user_prot_reg)
  376. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  377. if (master->_read_fact_prot_reg)
  378. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  379. if (master->_write_user_prot_reg)
  380. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  381. if (master->_lock_user_prot_reg)
  382. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  383. if (master->_get_user_prot_info)
  384. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  385. if (master->_get_fact_prot_info)
  386. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  387. if (master->_sync)
  388. slave->mtd._sync = part_sync;
  389. #ifndef __UBOOT__
  390. if (!partno && !master->dev.class && master->_suspend &&
  391. master->_resume) {
  392. slave->mtd._suspend = part_suspend;
  393. slave->mtd._resume = part_resume;
  394. }
  395. if (master->_writev)
  396. slave->mtd._writev = part_writev;
  397. #endif
  398. if (master->_lock)
  399. slave->mtd._lock = part_lock;
  400. if (master->_unlock)
  401. slave->mtd._unlock = part_unlock;
  402. if (master->_is_locked)
  403. slave->mtd._is_locked = part_is_locked;
  404. if (master->_block_isreserved)
  405. slave->mtd._block_isreserved = part_block_isreserved;
  406. if (master->_block_isbad)
  407. slave->mtd._block_isbad = part_block_isbad;
  408. if (master->_block_markbad)
  409. slave->mtd._block_markbad = part_block_markbad;
  410. slave->mtd._erase = part_erase;
  411. slave->master = master;
  412. slave->offset = part->offset;
  413. if (slave->offset == MTDPART_OFS_APPEND)
  414. slave->offset = cur_offset;
  415. if (slave->offset == MTDPART_OFS_NXTBLK) {
  416. slave->offset = cur_offset;
  417. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  418. /* Round up to next erasesize */
  419. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  420. debug("Moving partition %d: "
  421. "0x%012llx -> 0x%012llx\n", partno,
  422. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  423. }
  424. }
  425. if (slave->offset == MTDPART_OFS_RETAIN) {
  426. slave->offset = cur_offset;
  427. if (master->size - slave->offset >= slave->mtd.size) {
  428. slave->mtd.size = master->size - slave->offset
  429. - slave->mtd.size;
  430. } else {
  431. debug("mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  432. part->name, master->size - slave->offset,
  433. slave->mtd.size);
  434. /* register to preserve ordering */
  435. goto out_register;
  436. }
  437. }
  438. if (slave->mtd.size == MTDPART_SIZ_FULL)
  439. slave->mtd.size = master->size - slave->offset;
  440. debug("0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  441. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  442. /* let's do some sanity checks */
  443. if (slave->offset >= master->size) {
  444. /* let's register it anyway to preserve ordering */
  445. slave->offset = 0;
  446. slave->mtd.size = 0;
  447. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  448. part->name);
  449. goto out_register;
  450. }
  451. if (slave->offset + slave->mtd.size > master->size) {
  452. slave->mtd.size = master->size - slave->offset;
  453. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  454. part->name, master->name, (unsigned long long)slave->mtd.size);
  455. }
  456. if (master->numeraseregions > 1) {
  457. /* Deal with variable erase size stuff */
  458. int i, max = master->numeraseregions;
  459. u64 end = slave->offset + slave->mtd.size;
  460. struct mtd_erase_region_info *regions = master->eraseregions;
  461. /* Find the first erase regions which is part of this
  462. * partition. */
  463. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  464. ;
  465. /* The loop searched for the region _behind_ the first one */
  466. if (i > 0)
  467. i--;
  468. /* Pick biggest erasesize */
  469. for (; i < max && regions[i].offset < end; i++) {
  470. if (slave->mtd.erasesize < regions[i].erasesize) {
  471. slave->mtd.erasesize = regions[i].erasesize;
  472. }
  473. }
  474. BUG_ON(slave->mtd.erasesize == 0);
  475. } else {
  476. /* Single erase size */
  477. slave->mtd.erasesize = master->erasesize;
  478. }
  479. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  480. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  481. /* Doesn't start on a boundary of major erase size */
  482. /* FIXME: Let it be writable if it is on a boundary of
  483. * _minor_ erase size though */
  484. slave->mtd.flags &= ~MTD_WRITEABLE;
  485. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  486. part->name);
  487. }
  488. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  489. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  490. slave->mtd.flags &= ~MTD_WRITEABLE;
  491. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  492. part->name);
  493. }
  494. slave->mtd.ecclayout = master->ecclayout;
  495. slave->mtd.ecc_step_size = master->ecc_step_size;
  496. slave->mtd.ecc_strength = master->ecc_strength;
  497. slave->mtd.bitflip_threshold = master->bitflip_threshold;
  498. if (master->_block_isbad) {
  499. uint64_t offs = 0;
  500. while (offs < slave->mtd.size) {
  501. if (mtd_block_isbad(master, offs + slave->offset))
  502. slave->mtd.ecc_stats.badblocks++;
  503. offs += slave->mtd.erasesize;
  504. }
  505. }
  506. out_register:
  507. return slave;
  508. }
  509. #ifndef __UBOOT__
  510. int mtd_add_partition(struct mtd_info *master, const char *name,
  511. long long offset, long long length)
  512. {
  513. struct mtd_partition part;
  514. struct mtd_part *p, *new;
  515. uint64_t start, end;
  516. int ret = 0;
  517. /* the direct offset is expected */
  518. if (offset == MTDPART_OFS_APPEND ||
  519. offset == MTDPART_OFS_NXTBLK)
  520. return -EINVAL;
  521. if (length == MTDPART_SIZ_FULL)
  522. length = master->size - offset;
  523. if (length <= 0)
  524. return -EINVAL;
  525. part.name = name;
  526. part.size = length;
  527. part.offset = offset;
  528. part.mask_flags = 0;
  529. part.ecclayout = NULL;
  530. new = allocate_partition(master, &part, -1, offset);
  531. if (IS_ERR(new))
  532. return PTR_ERR(new);
  533. start = offset;
  534. end = offset + length;
  535. mutex_lock(&mtd_partitions_mutex);
  536. list_for_each_entry(p, &mtd_partitions, list)
  537. if (p->master == master) {
  538. if ((start >= p->offset) &&
  539. (start < (p->offset + p->mtd.size)))
  540. goto err_inv;
  541. if ((end >= p->offset) &&
  542. (end < (p->offset + p->mtd.size)))
  543. goto err_inv;
  544. }
  545. list_add(&new->list, &mtd_partitions);
  546. mutex_unlock(&mtd_partitions_mutex);
  547. add_mtd_device(&new->mtd);
  548. return ret;
  549. err_inv:
  550. mutex_unlock(&mtd_partitions_mutex);
  551. free_partition(new);
  552. return -EINVAL;
  553. }
  554. EXPORT_SYMBOL_GPL(mtd_add_partition);
  555. int mtd_del_partition(struct mtd_info *master, int partno)
  556. {
  557. struct mtd_part *slave, *next;
  558. int ret = -EINVAL;
  559. mutex_lock(&mtd_partitions_mutex);
  560. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  561. if ((slave->master == master) &&
  562. (slave->mtd.index == partno)) {
  563. ret = del_mtd_device(&slave->mtd);
  564. if (ret < 0)
  565. break;
  566. list_del(&slave->list);
  567. free_partition(slave);
  568. break;
  569. }
  570. mutex_unlock(&mtd_partitions_mutex);
  571. return ret;
  572. }
  573. EXPORT_SYMBOL_GPL(mtd_del_partition);
  574. #endif
  575. /*
  576. * This function, given a master MTD object and a partition table, creates
  577. * and registers slave MTD objects which are bound to the master according to
  578. * the partition definitions.
  579. *
  580. * We don't register the master, or expect the caller to have done so,
  581. * for reasons of data integrity.
  582. */
  583. int add_mtd_partitions(struct mtd_info *master,
  584. const struct mtd_partition *parts,
  585. int nbparts)
  586. {
  587. struct mtd_part *slave;
  588. uint64_t cur_offset = 0;
  589. int i;
  590. #ifdef __UBOOT__
  591. /*
  592. * Need to init the list here, since LIST_INIT() does not
  593. * work on platforms where relocation has problems (like MIPS
  594. * & PPC).
  595. */
  596. if (mtd_partitions.next == NULL)
  597. INIT_LIST_HEAD(&mtd_partitions);
  598. #endif
  599. debug("Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  600. for (i = 0; i < nbparts; i++) {
  601. slave = allocate_partition(master, parts + i, i, cur_offset);
  602. if (IS_ERR(slave))
  603. return PTR_ERR(slave);
  604. mutex_lock(&mtd_partitions_mutex);
  605. list_add(&slave->list, &mtd_partitions);
  606. mutex_unlock(&mtd_partitions_mutex);
  607. add_mtd_device(&slave->mtd);
  608. cur_offset = slave->offset + slave->mtd.size;
  609. }
  610. return 0;
  611. }
  612. #ifndef __UBOOT__
  613. static DEFINE_SPINLOCK(part_parser_lock);
  614. static LIST_HEAD(part_parsers);
  615. static struct mtd_part_parser *get_partition_parser(const char *name)
  616. {
  617. struct mtd_part_parser *p, *ret = NULL;
  618. spin_lock(&part_parser_lock);
  619. list_for_each_entry(p, &part_parsers, list)
  620. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  621. ret = p;
  622. break;
  623. }
  624. spin_unlock(&part_parser_lock);
  625. return ret;
  626. }
  627. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  628. void register_mtd_parser(struct mtd_part_parser *p)
  629. {
  630. spin_lock(&part_parser_lock);
  631. list_add(&p->list, &part_parsers);
  632. spin_unlock(&part_parser_lock);
  633. }
  634. EXPORT_SYMBOL_GPL(register_mtd_parser);
  635. void deregister_mtd_parser(struct mtd_part_parser *p)
  636. {
  637. spin_lock(&part_parser_lock);
  638. list_del(&p->list);
  639. spin_unlock(&part_parser_lock);
  640. }
  641. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  642. /*
  643. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  644. * are changing this array!
  645. */
  646. static const char * const default_mtd_part_types[] = {
  647. "cmdlinepart",
  648. "ofpart",
  649. NULL
  650. };
  651. /**
  652. * parse_mtd_partitions - parse MTD partitions
  653. * @master: the master partition (describes whole MTD device)
  654. * @types: names of partition parsers to try or %NULL
  655. * @pparts: array of partitions found is returned here
  656. * @data: MTD partition parser-specific data
  657. *
  658. * This function tries to find partition on MTD device @master. It uses MTD
  659. * partition parsers, specified in @types. However, if @types is %NULL, then
  660. * the default list of parsers is used. The default list contains only the
  661. * "cmdlinepart" and "ofpart" parsers ATM.
  662. * Note: If there are more then one parser in @types, the kernel only takes the
  663. * partitions parsed out by the first parser.
  664. *
  665. * This function may return:
  666. * o a negative error code in case of failure
  667. * o zero if no partitions were found
  668. * o a positive number of found partitions, in which case on exit @pparts will
  669. * point to an array containing this number of &struct mtd_info objects.
  670. */
  671. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  672. struct mtd_partition **pparts,
  673. struct mtd_part_parser_data *data)
  674. {
  675. struct mtd_part_parser *parser;
  676. int ret = 0;
  677. if (!types)
  678. types = default_mtd_part_types;
  679. for ( ; ret <= 0 && *types; types++) {
  680. parser = get_partition_parser(*types);
  681. if (!parser && !request_module("%s", *types))
  682. parser = get_partition_parser(*types);
  683. if (!parser)
  684. continue;
  685. ret = (*parser->parse_fn)(master, pparts, data);
  686. put_partition_parser(parser);
  687. if (ret > 0) {
  688. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  689. ret, parser->name, master->name);
  690. break;
  691. }
  692. }
  693. return ret;
  694. }
  695. #endif
  696. int mtd_is_partition(const struct mtd_info *mtd)
  697. {
  698. struct mtd_part *part;
  699. int ispart = 0;
  700. mutex_lock(&mtd_partitions_mutex);
  701. list_for_each_entry(part, &mtd_partitions, list)
  702. if (&part->mtd == mtd) {
  703. ispart = 1;
  704. break;
  705. }
  706. mutex_unlock(&mtd_partitions_mutex);
  707. return ispart;
  708. }
  709. EXPORT_SYMBOL_GPL(mtd_is_partition);
  710. /* Returns the size of the entire flash chip */
  711. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  712. {
  713. if (!mtd_is_partition(mtd))
  714. return mtd->size;
  715. return PART(mtd)->master->size;
  716. }
  717. EXPORT_SYMBOL_GPL(mtd_get_device_size);