omap_hsmmc.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970
  1. /*
  2. * (C) Copyright 2008
  3. * Texas Instruments, <www.ti.com>
  4. * Sukumar Ghorai <s-ghorai@ti.com>
  5. *
  6. * See file CREDITS for list of people who contributed to this
  7. * project.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation's version 2 of
  12. * the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  22. * MA 02111-1307 USA
  23. */
  24. #include <config.h>
  25. #include <common.h>
  26. #include <malloc.h>
  27. #include <memalign.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <i2c.h>
  31. #include <twl4030.h>
  32. #include <twl6030.h>
  33. #include <palmas.h>
  34. #include <asm/io.h>
  35. #include <asm/arch/mmc_host_def.h>
  36. #ifdef CONFIG_OMAP54XX
  37. #include <asm/arch/mux_dra7xx.h>
  38. #include <asm/arch/dra7xx_iodelay.h>
  39. #endif
  40. #if !defined(CONFIG_SOC_KEYSTONE)
  41. #include <asm/gpio.h>
  42. #include <asm/arch/sys_proto.h>
  43. #endif
  44. #include <dm.h>
  45. #include <power/regulator.h>
  46. DECLARE_GLOBAL_DATA_PTR;
  47. /* simplify defines to OMAP_HSMMC_USE_GPIO */
  48. #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
  49. (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
  50. #define OMAP_HSMMC_USE_GPIO
  51. #else
  52. #undef OMAP_HSMMC_USE_GPIO
  53. #endif
  54. /* common definitions for all OMAPs */
  55. #define SYSCTL_SRC (1 << 25)
  56. #define SYSCTL_SRD (1 << 26)
  57. struct omap_hsmmc_plat {
  58. struct mmc_config cfg;
  59. struct mmc mmc;
  60. };
  61. struct omap_hsmmc_data {
  62. struct hsmmc *base_addr;
  63. #ifndef CONFIG_DM_MMC
  64. struct mmc_config cfg;
  65. #endif
  66. uint bus_width;
  67. uint clock;
  68. #ifdef OMAP_HSMMC_USE_GPIO
  69. #ifdef CONFIG_DM_MMC
  70. struct gpio_desc cd_gpio; /* Change Detect GPIO */
  71. struct gpio_desc wp_gpio; /* Write Protect GPIO */
  72. bool cd_inverted;
  73. #else
  74. int cd_gpio;
  75. int wp_gpio;
  76. #endif
  77. #endif
  78. #ifdef CONFIG_DM_MMC
  79. uint iov;
  80. uint timing;
  81. u8 controller_flags;
  82. struct omap_hsmmc_adma_desc *adma_desc_table;
  83. uint desc_slot;
  84. int node;
  85. char *version;
  86. struct udevice *vmmc_supply;
  87. struct udevice *vmmc_aux_supply;
  88. ushort last_cmd;
  89. #ifdef CONFIG_IODELAY_RECALIBRATION
  90. struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
  91. struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
  92. struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
  93. struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
  94. struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
  95. struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
  96. struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
  97. struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
  98. struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
  99. #endif
  100. #endif
  101. uint signal_voltage;
  102. };
  103. #ifdef CONFIG_DM_MMC
  104. struct omap_hsmmc_adma_desc {
  105. u8 attr;
  106. u8 reserved;
  107. u16 len;
  108. u32 addr;
  109. };
  110. struct omap_mmc_of_data {
  111. u8 controller_flags;
  112. };
  113. #define ADMA_MAX_LEN 63488
  114. /* Decriptor table defines */
  115. #define ADMA_DESC_ATTR_VALID BIT(0)
  116. #define ADMA_DESC_ATTR_END BIT(1)
  117. #define ADMA_DESC_ATTR_INT BIT(2)
  118. #define ADMA_DESC_ATTR_ACT1 BIT(4)
  119. #define ADMA_DESC_ATTR_ACT2 BIT(5)
  120. #define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
  121. #define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
  122. #endif
  123. /* If we fail after 1 second wait, something is really bad */
  124. #define MAX_RETRY_MS 1000
  125. #define MMC_TIMEOUT_MS 20
  126. #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0)
  127. #define OMAP_HSMMC_NO_1_8_V BIT(1)
  128. #define OMAP_HSMMC_USE_ADMA BIT(2)
  129. #define OMAP_HSMMC_REQUIRE_IODELAY BIT(3)
  130. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
  131. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  132. unsigned int siz);
  133. static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
  134. static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
  135. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
  136. static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
  137. {
  138. #ifdef CONFIG_DM_MMC
  139. return dev_get_priv(mmc->dev);
  140. #else
  141. return (struct omap_hsmmc_data *)mmc->priv;
  142. #endif
  143. }
  144. static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
  145. {
  146. #ifdef CONFIG_DM_MMC
  147. struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
  148. return &plat->cfg;
  149. #else
  150. return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
  151. #endif
  152. }
  153. #if defined(OMAP_HSMMC_USE_GPIO) && !defined(CONFIG_DM_MMC)
  154. static int omap_mmc_setup_gpio_in(int gpio, const char *label)
  155. {
  156. int ret;
  157. #ifndef CONFIG_DM_GPIO
  158. if (!gpio_is_valid(gpio))
  159. return -1;
  160. #endif
  161. ret = gpio_request(gpio, label);
  162. if (ret)
  163. return ret;
  164. ret = gpio_direction_input(gpio);
  165. if (ret)
  166. return ret;
  167. return gpio;
  168. }
  169. #endif
  170. static unsigned char mmc_board_init(struct mmc *mmc)
  171. {
  172. #if defined(CONFIG_OMAP34XX)
  173. struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
  174. t2_t *t2_base = (t2_t *)T2_BASE;
  175. struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
  176. u32 pbias_lite;
  177. pbias_lite = readl(&t2_base->pbias_lite);
  178. pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
  179. #ifdef CONFIG_TARGET_OMAP3_CAIRO
  180. /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
  181. pbias_lite &= ~PBIASLITEVMODE0;
  182. #endif
  183. writel(pbias_lite, &t2_base->pbias_lite);
  184. writel(pbias_lite | PBIASLITEPWRDNZ1 |
  185. PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
  186. &t2_base->pbias_lite);
  187. writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
  188. &t2_base->devconf0);
  189. writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
  190. &t2_base->devconf1);
  191. /* Change from default of 52MHz to 26MHz if necessary */
  192. if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
  193. writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
  194. &t2_base->ctl_prog_io1);
  195. writel(readl(&prcm_base->fclken1_core) |
  196. EN_MMC1 | EN_MMC2 | EN_MMC3,
  197. &prcm_base->fclken1_core);
  198. writel(readl(&prcm_base->iclken1_core) |
  199. EN_MMC1 | EN_MMC2 | EN_MMC3,
  200. &prcm_base->iclken1_core);
  201. #endif
  202. #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
  203. /* PBIAS config needed for MMC1 only */
  204. if (mmc_get_blk_desc(mmc)->devnum == 0)
  205. vmmc_pbias_config(LDO_VOLT_3V0);
  206. #endif
  207. return 0;
  208. }
  209. void mmc_init_stream(struct hsmmc *mmc_base)
  210. {
  211. ulong start;
  212. writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
  213. writel(MMC_CMD0, &mmc_base->cmd);
  214. start = get_timer(0);
  215. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  216. if (get_timer(0) - start > MAX_RETRY_MS) {
  217. printf("%s: timedout waiting for cc!\n", __func__);
  218. return;
  219. }
  220. }
  221. writel(CC_MASK, &mmc_base->stat)
  222. ;
  223. writel(MMC_CMD0, &mmc_base->cmd)
  224. ;
  225. start = get_timer(0);
  226. while (!(readl(&mmc_base->stat) & CC_MASK)) {
  227. if (get_timer(0) - start > MAX_RETRY_MS) {
  228. printf("%s: timedout waiting for cc2!\n", __func__);
  229. return;
  230. }
  231. }
  232. writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
  233. }
  234. #ifdef CONFIG_DM_MMC
  235. #ifdef CONFIG_IODELAY_RECALIBRATION
  236. #ifdef DEBUG
  237. static inline void show_mmc_timing(struct mmc *mmc)
  238. {
  239. const char *str;
  240. switch (mmc->timing) {
  241. case MMC_TIMING_MMC_HS200:
  242. str = "HS200";
  243. break;
  244. case MMC_TIMING_UHS_SDR104:
  245. str = "SDR104";
  246. break;
  247. case MMC_TIMING_UHS_DDR50:
  248. str = "DDR50";
  249. break;
  250. case MMC_TIMING_UHS_SDR50:
  251. str = "SDR50";
  252. break;
  253. case MMC_TIMING_UHS_SDR25:
  254. str = "SDR25";
  255. break;
  256. case MMC_TIMING_UHS_SDR12:
  257. str = "SDR12";
  258. break;
  259. case MMC_TIMING_SD_HS:
  260. str = "HS(sd)";
  261. break;
  262. case MMC_TIMING_MMC_HS:
  263. str = "HS(mmc)";
  264. break;
  265. case MMC_TIMING_MMC_DDR52:
  266. str = "DDR52";
  267. break;
  268. default:
  269. str = "std";
  270. break;
  271. }
  272. printf("mmc %d mode %s\n", mmc->block_dev.devnum + 1, str);
  273. }
  274. #else
  275. static inline void show_mmc_timing(struct mmc *mmc)
  276. {
  277. }
  278. #endif
  279. static void omap_hsmmc_set_timing(struct mmc *mmc)
  280. {
  281. u32 val;
  282. struct hsmmc *mmc_base;
  283. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  284. struct omap_hsmmc_pinctrl_state *pinctrl_state;
  285. mmc_base = priv->base_addr;
  286. writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
  287. omap_hsmmc_stop_clock(mmc_base);
  288. val = readl(&mmc_base->ac12);
  289. val &= ~AC12_UHSMC_MASK;
  290. switch (mmc->timing) {
  291. case MMC_TIMING_MMC_HS200:
  292. val |= AC12_UHSMC_SDR104;
  293. pinctrl_state = priv->hs200_1_8v_pinctrl_state;
  294. break;
  295. case MMC_TIMING_UHS_SDR104:
  296. val |= AC12_UHSMC_SDR104;
  297. pinctrl_state = priv->sdr104_pinctrl_state;
  298. break;
  299. case MMC_TIMING_UHS_DDR50:
  300. val |= AC12_UHSMC_DDR50;
  301. writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
  302. pinctrl_state = priv->ddr50_pinctrl_state;
  303. break;
  304. case MMC_TIMING_UHS_SDR50:
  305. val |= AC12_UHSMC_SDR50;
  306. pinctrl_state = priv->sdr50_pinctrl_state;
  307. break;
  308. case MMC_TIMING_UHS_SDR25:
  309. val |= AC12_UHSMC_SDR25;
  310. pinctrl_state = priv->sdr25_pinctrl_state;
  311. break;
  312. case MMC_TIMING_UHS_SDR12:
  313. val |= AC12_UHSMC_SDR12;
  314. pinctrl_state = priv->sdr12_pinctrl_state;
  315. break;
  316. case MMC_TIMING_SD_HS:
  317. case MMC_TIMING_MMC_HS:
  318. val |= AC12_UHSMC_RES;
  319. pinctrl_state = priv->hs_pinctrl_state;
  320. break;
  321. case MMC_TIMING_MMC_DDR52:
  322. val |= AC12_UHSMC_RES;
  323. writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
  324. pinctrl_state = priv->ddr_1_8v_pinctrl_state;
  325. break;
  326. default:
  327. val |= AC12_UHSMC_RES;
  328. pinctrl_state = priv->default_pinctrl_state;
  329. break;
  330. }
  331. writel(val, &mmc_base->ac12);
  332. if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
  333. if (pinctrl_state->iodelay)
  334. late_recalibrate_iodelay(pinctrl_state->padconf,
  335. pinctrl_state->npads,
  336. pinctrl_state->iodelay,
  337. pinctrl_state->niodelays);
  338. else
  339. do_set_mux32((*ctrl)->control_padconf_core_base,
  340. pinctrl_state->padconf,
  341. pinctrl_state->npads);
  342. }
  343. omap_hsmmc_start_clock(mmc_base);
  344. priv->timing = mmc->timing;
  345. show_mmc_timing(mmc);
  346. }
  347. #endif
  348. #endif
  349. static void omap_hsmmc_conf_bus_power(struct mmc *mmc, uint signal_voltage)
  350. {
  351. struct hsmmc *mmc_base;
  352. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  353. u32 val;
  354. mmc_base = priv->base_addr;
  355. val = readl(&mmc_base->hctl) & ~SDVS_MASK;
  356. switch (signal_voltage) {
  357. case IOV_3V3:
  358. val |= SDVS_3V3;
  359. break;
  360. case IOV_3V0:
  361. val |= SDVS_3V0;
  362. break;
  363. case IOV_1V8:
  364. val |= SDVS_1V8;
  365. break;
  366. }
  367. writel(val, &mmc_base->hctl);
  368. }
  369. #if defined(CONFIG_DM_MMC)
  370. static int omap_hsmmc_card_busy_low(struct mmc *mmc)
  371. {
  372. u32 val;
  373. int i;
  374. struct hsmmc *mmc_base;
  375. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  376. mmc_base = priv->base_addr;
  377. val = readl(&mmc_base->con);
  378. val &= ~CON_CLKEXTFREE;
  379. val |= CON_PADEN;
  380. writel(val, &mmc_base->con);
  381. /* By observation, card busy status reflects in 100 - 200us */
  382. for (i = 0; i < 5; i++) {
  383. val = readl(&mmc_base->pstate);
  384. if (!(val & (PSTATE_CLEV | PSTATE_DLEV)))
  385. return true;
  386. udelay(200);
  387. }
  388. return false;
  389. }
  390. static int omap_hsmmc_card_busy_high(struct mmc *mmc)
  391. {
  392. int ret = true;
  393. u32 val;
  394. int i;
  395. struct hsmmc *mmc_base;
  396. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  397. mmc_base = priv->base_addr;
  398. val = readl(&mmc_base->con);
  399. val |= CON_CLKEXTFREE;
  400. writel(val, &mmc_base->con);
  401. /* By observation, card busy status reflects in 100 - 200us */
  402. for (i = 0; i < 5; i++) {
  403. val = readl(&mmc_base->pstate);
  404. if ((val & PSTATE_CLEV) && (val & PSTATE_DLEV)) {
  405. val = readl(&mmc_base->con);
  406. val &= ~(CON_CLKEXTFREE | CON_PADEN);
  407. writel(val, &mmc_base->con);
  408. ret = false;
  409. goto ret;
  410. }
  411. udelay(200);
  412. }
  413. ret:
  414. return ret;
  415. }
  416. static int omap_hsmmc_card_busy(struct mmc *mmc)
  417. {
  418. int ret;
  419. u32 val;
  420. struct hsmmc *mmc_base;
  421. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  422. mmc_base = priv->base_addr;
  423. if (priv->last_cmd != SD_CMD_SWITCH_UHS18V) {
  424. val = readl(&mmc_base->pstate);
  425. if (val & PSTATE_DLEV_DAT0)
  426. return true;
  427. return false;
  428. }
  429. val = readl(&mmc_base->ac12);
  430. if (val & AC12_V1V8_SIGEN)
  431. ret = omap_hsmmc_card_busy_high(mmc);
  432. else
  433. ret = omap_hsmmc_card_busy_low(mmc);
  434. return ret;
  435. }
  436. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  437. static int omap_hsmmc_set_io_regulator(struct mmc *mmc, int uV)
  438. {
  439. int ret;
  440. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  441. if (!priv->vmmc_aux_supply)
  442. return 0;
  443. ret = regulator_set_enable(priv->vmmc_aux_supply, false);
  444. if (ret && ret != -ENOSYS)
  445. return ret;
  446. ret = regulator_set_value(priv->vmmc_aux_supply, uV);
  447. if (ret)
  448. return ret;
  449. ret = regulator_set_enable(priv->vmmc_aux_supply, true);
  450. if (ret && ret != -ENOSYS)
  451. return ret;
  452. return 0;
  453. }
  454. #endif
  455. #endif
  456. static int omap_hsmmc_set_signal_voltage(struct mmc *mmc)
  457. {
  458. u32 val;
  459. struct hsmmc *mmc_base;
  460. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  461. mmc_base = priv->base_addr;
  462. priv->signal_voltage = mmc->signal_voltage;
  463. if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
  464. val = readl(&mmc_base->capa);
  465. if (!(val & VS30_3V0SUP))
  466. return -EOPNOTSUPP;
  467. omap_hsmmc_conf_bus_power(mmc, IOV_3V0);
  468. val = readl(&mmc_base->ac12);
  469. val &= ~AC12_V1V8_SIGEN;
  470. writel(val, &mmc_base->ac12);
  471. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  472. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  473. return omap_hsmmc_set_io_regulator(mmc, 3000000);
  474. #else
  475. vmmc_pbias_config(LDO_VOLT_3V0);
  476. #endif
  477. #endif
  478. } else if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
  479. val = readl(&mmc_base->capa);
  480. if (!(val & VS18_1V8SUP))
  481. return -EOPNOTSUPP;
  482. omap_hsmmc_conf_bus_power(mmc, IOV_1V8);
  483. val = readl(&mmc_base->ac12);
  484. val |= AC12_V1V8_SIGEN;
  485. writel(val, &mmc_base->ac12);
  486. #if defined(CONFIG_OMAP54XX) && defined(CONFIG_PALMAS_POWER)
  487. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  488. return omap_hsmmc_set_io_regulator(mmc, 1800000);
  489. #else
  490. vmmc_pbias_config(LDO_VOLT_1V8);
  491. #endif
  492. #endif
  493. } else {
  494. return -EOPNOTSUPP;
  495. }
  496. return 0;
  497. }
  498. #if defined(CONFIG_DM_MMC)
  499. static void omap_hsmmc_set_capabilities(struct mmc *mmc)
  500. {
  501. struct hsmmc *mmc_base;
  502. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  503. u32 val;
  504. mmc_base = priv->base_addr;
  505. val = readl(&mmc_base->capa);
  506. if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
  507. val |= (VS30_3V0SUP | VS18_1V8SUP);
  508. priv->iov = IOV_3V0;
  509. } else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
  510. val |= VS30_3V0SUP;
  511. val &= ~VS18_1V8SUP;
  512. priv->iov = IOV_3V0;
  513. } else {
  514. val |= VS18_1V8SUP;
  515. val &= ~VS30_3V0SUP;
  516. priv->iov = IOV_1V8;
  517. }
  518. writel(val, &mmc_base->capa);
  519. }
  520. static void omap_hsmmc_disable_tuning(struct mmc *mmc)
  521. {
  522. int val;
  523. struct hsmmc *mmc_base;
  524. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  525. mmc_base = priv->base_addr;
  526. val = readl(&mmc_base->ac12);
  527. val &= ~(AC12_SCLK_SEL);
  528. writel(val, &mmc_base->ac12);
  529. val = readl(&mmc_base->dll);
  530. val &= ~(DLL_FORCE_VALUE | DLL_SWT);
  531. writel(val, &mmc_base->dll);
  532. }
  533. static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
  534. {
  535. int i;
  536. u32 val;
  537. struct hsmmc *mmc_base;
  538. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  539. mmc_base = priv->base_addr;
  540. val = readl(&mmc_base->dll);
  541. val |= DLL_FORCE_VALUE;
  542. val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
  543. val |= (count << DLL_FORCE_SR_C_SHIFT);
  544. writel(val, &mmc_base->dll);
  545. val |= DLL_CALIB;
  546. writel(val, &mmc_base->dll);
  547. for (i = 0; i < 1000; i++) {
  548. if (readl(&mmc_base->dll) & DLL_CALIB)
  549. break;
  550. }
  551. val &= ~DLL_CALIB;
  552. writel(val, &mmc_base->dll);
  553. }
  554. static int omap_hsmmc_execute_tuning(struct mmc *mmc, uint opcode)
  555. {
  556. struct hsmmc *mmc_base;
  557. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  558. u32 val;
  559. u8 cur_match, prev_match = 0;
  560. int ret;
  561. u32 phase_delay = 0;
  562. u32 start_window = 0, max_window = 0;
  563. u32 length = 0, max_len = 0;
  564. /* clock tuning is not needed for upto 52MHz */
  565. if (mmc->clock <= 52000000)
  566. return 0;
  567. mmc_base = priv->base_addr;
  568. val = readl(&mmc_base->ac12);
  569. val |= AC12_V1V8_SIGEN;
  570. writel(val, &mmc_base->ac12);
  571. val = readl(&mmc_base->dll);
  572. val |= DLL_SWT;
  573. writel(val, &mmc_base->dll);
  574. while (phase_delay <= MAX_PHASE_DELAY) {
  575. omap_hsmmc_set_dll(mmc, phase_delay);
  576. cur_match = !mmc_send_tuning(mmc, opcode, NULL);
  577. if (cur_match) {
  578. if (prev_match) {
  579. length++;
  580. } else {
  581. start_window = phase_delay;
  582. length = 1;
  583. }
  584. }
  585. if (length > max_len) {
  586. max_window = start_window;
  587. max_len = length;
  588. }
  589. prev_match = cur_match;
  590. phase_delay += 4;
  591. udelay(100);
  592. val = readl(&mmc_base->dll);
  593. val &= ~DLL_FORCE_VALUE;
  594. writel(val, &mmc_base->dll);
  595. }
  596. if (!max_len) {
  597. ret = -EIO;
  598. goto tuning_error;
  599. }
  600. val = readl(&mmc_base->ac12);
  601. if (!(val & AC12_SCLK_SEL)) {
  602. ret = -EIO;
  603. goto tuning_error;
  604. }
  605. phase_delay = max_window + 4 * ((3 * max_len) >> 2);
  606. omap_hsmmc_set_dll(mmc, phase_delay);
  607. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  608. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  609. return 0;
  610. tuning_error:
  611. omap_hsmmc_disable_tuning(mmc);
  612. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  613. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  614. return ret;
  615. }
  616. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  617. static int omap_hsmmc_set_vdd(struct mmc *mmc, bool enable)
  618. {
  619. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  620. struct hsmmc *mmc_base = priv->base_addr;
  621. if (enable) {
  622. regulator_set_enable(priv->vmmc_supply, true);
  623. mmc_init_stream(mmc_base);
  624. } else {
  625. regulator_set_enable(priv->vmmc_supply, false);
  626. }
  627. return 0;
  628. }
  629. #endif
  630. #endif
  631. static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
  632. {
  633. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  634. u32 irq_mask = INT_EN_MASK;
  635. struct hsmmc *mmc_base;
  636. mmc_base = priv->base_addr;
  637. /*
  638. * TODO: Errata i802 indicates only DCRC interrupts can occur during
  639. * tuning procedure and DCRC should be disabled. But see occurences
  640. * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
  641. * interrupts occur along with BRR, so the data is actually in the
  642. * buffer. It has to be debugged why these interrutps occur
  643. */
  644. if (cmd && cmd->cmdidx == MMC_SEND_TUNING_BLOCK_HS200)
  645. irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
  646. writel(irq_mask, &mmc_base->ie);
  647. }
  648. static int omap_hsmmc_init_setup(struct mmc *mmc)
  649. {
  650. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  651. struct hsmmc *mmc_base;
  652. unsigned int reg_val;
  653. unsigned int dsor;
  654. ulong start;
  655. mmc_base = priv->base_addr;
  656. mmc_board_init(mmc);
  657. writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
  658. &mmc_base->sysconfig);
  659. start = get_timer(0);
  660. while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
  661. if (get_timer(0) - start > MAX_RETRY_MS) {
  662. printf("%s: timedout waiting for cc2!\n", __func__);
  663. return -ETIMEDOUT;
  664. }
  665. }
  666. writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
  667. start = get_timer(0);
  668. while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
  669. if (get_timer(0) - start > MAX_RETRY_MS) {
  670. printf("%s: timedout waiting for softresetall!\n",
  671. __func__);
  672. return -ETIMEDOUT;
  673. }
  674. }
  675. #ifdef CONFIG_DM_MMC
  676. omap_hsmmc_set_capabilities(mmc);
  677. omap_hsmmc_conf_bus_power(mmc, priv->iov);
  678. reg_val = readl(&mmc_base->hl_hwinfo);
  679. if (reg_val & MADMA_EN)
  680. priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
  681. #else
  682. writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
  683. writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
  684. &mmc_base->capa);
  685. #endif
  686. reg_val = readl(&mmc_base->con) & RESERVED_MASK;
  687. writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
  688. MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
  689. HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
  690. dsor = 240;
  691. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
  692. (ICE_STOP | DTO_15THDTO));
  693. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  694. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  695. start = get_timer(0);
  696. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  697. if (get_timer(0) - start > MAX_RETRY_MS) {
  698. printf("%s: timedout waiting for ics!\n", __func__);
  699. return -ETIMEDOUT;
  700. }
  701. }
  702. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  703. writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
  704. mmc_enable_irq(mmc, NULL);
  705. #ifndef CONFIG_DM_REGULATOR
  706. mmc_init_stream(mmc_base);
  707. #endif
  708. return 0;
  709. }
  710. /*
  711. * MMC controller internal finite state machine reset
  712. *
  713. * Used to reset command or data internal state machines, using respectively
  714. * SRC or SRD bit of SYSCTL register
  715. */
  716. static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
  717. {
  718. ulong start;
  719. mmc_reg_out(&mmc_base->sysctl, bit, bit);
  720. /*
  721. * CMD(DAT) lines reset procedures are slightly different
  722. * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
  723. * According to OMAP3 TRM:
  724. * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
  725. * returns to 0x0.
  726. * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
  727. * procedure steps must be as follows:
  728. * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
  729. * MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
  730. * 2. Poll the SRC(SRD) bit until it is set to 0x1.
  731. * 3. Wait until the SRC (SRD) bit returns to 0x0
  732. * (reset procedure is completed).
  733. */
  734. #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  735. defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
  736. if (!(readl(&mmc_base->sysctl) & bit)) {
  737. start = get_timer(0);
  738. /* To check why this bit is never set in DRA7xx */
  739. while (!(readl(&mmc_base->sysctl) & bit)) {
  740. if (get_timer(0) - start > MMC_TIMEOUT_MS)
  741. return;
  742. }
  743. }
  744. #endif
  745. start = get_timer(0);
  746. while ((readl(&mmc_base->sysctl) & bit) != 0) {
  747. if (get_timer(0) - start > MAX_RETRY_MS) {
  748. printf("%s: timedout waiting for sysctl %x to clear\n",
  749. __func__, bit);
  750. return;
  751. }
  752. }
  753. }
  754. #ifdef CONFIG_DM_MMC
  755. static int omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
  756. {
  757. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  758. struct omap_hsmmc_adma_desc *desc;
  759. u8 attr;
  760. desc = &priv->adma_desc_table[priv->desc_slot];
  761. attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
  762. if (!end)
  763. priv->desc_slot++;
  764. else
  765. attr |= ADMA_DESC_ATTR_END;
  766. desc->len = len;
  767. desc->addr = (u32)buf;
  768. desc->reserved = 0;
  769. desc->attr = attr;
  770. return 0;
  771. }
  772. static int omap_hsmmc_prepare_adma_table(struct mmc *mmc, struct mmc_data *data)
  773. {
  774. uint total_len = data->blocksize * data->blocks;
  775. uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
  776. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  777. int i = desc_count;
  778. char *buf;
  779. priv->desc_slot = 0;
  780. priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
  781. memalign(ARCH_DMA_MINALIGN, desc_count *
  782. sizeof(struct omap_hsmmc_adma_desc));
  783. if (data->flags & MMC_DATA_READ)
  784. buf = data->dest;
  785. else
  786. buf = (char *)data->src;
  787. while (--i) {
  788. omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
  789. buf += ADMA_MAX_LEN;
  790. total_len -= ADMA_MAX_LEN;
  791. }
  792. omap_hsmmc_adma_desc(mmc, buf, total_len, true);
  793. flush_dcache_range((long)priv->adma_desc_table,
  794. (long)priv->adma_desc_table +
  795. ROUND(desc_count *
  796. sizeof(struct omap_hsmmc_adma_desc),
  797. ARCH_DMA_MINALIGN));
  798. return 0;
  799. }
  800. static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
  801. {
  802. struct hsmmc *mmc_base;
  803. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  804. u32 val;
  805. char *buf;
  806. mmc_base = priv->base_addr;
  807. omap_hsmmc_prepare_adma_table(mmc, data);
  808. if (data->flags & MMC_DATA_READ)
  809. buf = data->dest;
  810. else
  811. buf = (char *)data->src;
  812. val = readl(&mmc_base->hctl);
  813. val |= DMA_SELECT;
  814. writel(val, &mmc_base->hctl);
  815. val = readl(&mmc_base->con);
  816. val |= DMA_MASTER;
  817. writel(val, &mmc_base->con);
  818. writel((u32)priv->adma_desc_table, &mmc_base->admasal);
  819. /* TODO: This shouldn't be required for read. However I don't seem
  820. * to get valid data without this.
  821. */
  822. flush_dcache_range((u32)buf,
  823. (u32)buf +
  824. ROUND(data->blocksize * data->blocks,
  825. ARCH_DMA_MINALIGN));
  826. }
  827. static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
  828. {
  829. struct hsmmc *mmc_base;
  830. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  831. u32 val;
  832. mmc_base = priv->base_addr;
  833. val = readl(&mmc_base->con);
  834. val &= ~DMA_MASTER;
  835. writel(val, &mmc_base->con);
  836. val = readl(&mmc_base->hctl);
  837. val &= ~DMA_SELECT;
  838. writel(val, &mmc_base->hctl);
  839. kfree(priv->adma_desc_table);
  840. }
  841. #endif
  842. static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
  843. struct mmc_data *data)
  844. {
  845. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  846. struct hsmmc *mmc_base;
  847. unsigned int flags, mmc_stat;
  848. ulong start;
  849. #ifdef CONFIG_DM_MMC
  850. priv->last_cmd = cmd->cmdidx;
  851. #endif
  852. mmc_base = priv->base_addr;
  853. if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
  854. return 0;
  855. start = get_timer(0);
  856. while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
  857. if (get_timer(0) - start > MAX_RETRY_MS) {
  858. printf("%s: timedout waiting on cmd inhibit to clear\n",
  859. __func__);
  860. return -ETIMEDOUT;
  861. }
  862. }
  863. writel(0xFFFFFFFF, &mmc_base->stat);
  864. start = get_timer(0);
  865. while (readl(&mmc_base->stat)) {
  866. if (get_timer(0) - start > MAX_RETRY_MS) {
  867. printf("%s: timedout waiting for STAT (%x) to clear\n",
  868. __func__, readl(&mmc_base->stat));
  869. return -ETIMEDOUT;
  870. }
  871. }
  872. /*
  873. * CMDREG
  874. * CMDIDX[13:8] : Command index
  875. * DATAPRNT[5] : Data Present Select
  876. * ENCMDIDX[4] : Command Index Check Enable
  877. * ENCMDCRC[3] : Command CRC Check Enable
  878. * RSPTYP[1:0]
  879. * 00 = No Response
  880. * 01 = Length 136
  881. * 10 = Length 48
  882. * 11 = Length 48 Check busy after response
  883. */
  884. /* Delay added before checking the status of frq change
  885. * retry not supported by mmc.c(core file)
  886. */
  887. if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
  888. udelay(50000); /* wait 50 ms */
  889. if (!(cmd->resp_type & MMC_RSP_PRESENT))
  890. flags = 0;
  891. else if (cmd->resp_type & MMC_RSP_136)
  892. flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
  893. else if (cmd->resp_type & MMC_RSP_BUSY)
  894. flags = RSP_TYPE_LGHT48B;
  895. else
  896. flags = RSP_TYPE_LGHT48;
  897. /* enable default flags */
  898. flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
  899. MSBS_SGLEBLK);
  900. flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
  901. if (cmd->resp_type & MMC_RSP_CRC)
  902. flags |= CCCE_CHECK;
  903. if (cmd->resp_type & MMC_RSP_OPCODE)
  904. flags |= CICE_CHECK;
  905. if (data) {
  906. if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
  907. (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
  908. flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
  909. data->blocksize = 512;
  910. writel(data->blocksize | (data->blocks << 16),
  911. &mmc_base->blk);
  912. } else
  913. writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
  914. if (data->flags & MMC_DATA_READ)
  915. flags |= (DP_DATA | DDIR_READ);
  916. else
  917. flags |= (DP_DATA | DDIR_WRITE);
  918. #ifdef CONFIG_DM_MMC
  919. if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
  920. cmd->cmdidx != MMC_SEND_TUNING_BLOCK_HS200) {
  921. omap_hsmmc_prepare_data(mmc, data);
  922. flags |= DE_ENABLE;
  923. }
  924. #endif
  925. }
  926. mmc_enable_irq(mmc, cmd);
  927. writel(cmd->cmdarg, &mmc_base->arg);
  928. udelay(20); /* To fix "No status update" error on eMMC */
  929. writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
  930. start = get_timer(0);
  931. do {
  932. mmc_stat = readl(&mmc_base->stat);
  933. if (get_timer(0) - start > MAX_RETRY_MS) {
  934. printf("%s : timeout: No status update\n", __func__);
  935. return -ETIMEDOUT;
  936. }
  937. } while (!mmc_stat);
  938. if ((mmc_stat & IE_CTO) != 0) {
  939. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
  940. return -ETIMEDOUT;
  941. } else if ((mmc_stat & ERRI_MASK) != 0)
  942. return -1;
  943. if (mmc_stat & CC_MASK) {
  944. writel(CC_MASK, &mmc_base->stat);
  945. if (cmd->resp_type & MMC_RSP_PRESENT) {
  946. if (cmd->resp_type & MMC_RSP_136) {
  947. /* response type 2 */
  948. cmd->response[3] = readl(&mmc_base->rsp10);
  949. cmd->response[2] = readl(&mmc_base->rsp32);
  950. cmd->response[1] = readl(&mmc_base->rsp54);
  951. cmd->response[0] = readl(&mmc_base->rsp76);
  952. } else
  953. /* response types 1, 1b, 3, 4, 5, 6 */
  954. cmd->response[0] = readl(&mmc_base->rsp10);
  955. }
  956. }
  957. #ifdef CONFIG_DM_MMC
  958. if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
  959. cmd->cmdidx != MMC_SEND_TUNING_BLOCK_HS200) {
  960. if (mmc_stat & IE_ADMAE) {
  961. omap_hsmmc_dma_cleanup(mmc);
  962. return -1;
  963. }
  964. do {
  965. mmc_stat = readl(&mmc_base->stat);
  966. if (mmc_stat & TC_MASK) {
  967. writel(readl(&mmc_base->stat) | TC_MASK,
  968. &mmc_base->stat);
  969. break;
  970. }
  971. } while (1);
  972. omap_hsmmc_dma_cleanup(mmc);
  973. if ((mmc_stat & ERRI_MASK) != 0)
  974. return 1;
  975. return 0;
  976. }
  977. #endif
  978. if (data && (data->flags & MMC_DATA_READ)) {
  979. return mmc_read_data(mmc_base, data->dest,
  980. data->blocksize * data->blocks);
  981. } else if (data && (data->flags & MMC_DATA_WRITE)) {
  982. return mmc_write_data(mmc_base, data->src,
  983. data->blocksize * data->blocks);
  984. }
  985. return 0;
  986. }
  987. static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
  988. {
  989. unsigned int *output_buf = (unsigned int *)buf;
  990. unsigned int mmc_stat;
  991. unsigned int count;
  992. /*
  993. * Start Polled Read
  994. */
  995. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  996. count /= 4;
  997. while (size) {
  998. ulong start = get_timer(0);
  999. do {
  1000. mmc_stat = readl(&mmc_base->stat);
  1001. if (get_timer(0) - start > MAX_RETRY_MS) {
  1002. printf("%s: timedout waiting for status!\n",
  1003. __func__);
  1004. return -ETIMEDOUT;
  1005. }
  1006. } while (mmc_stat == 0);
  1007. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  1008. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  1009. if ((mmc_stat & ERRI_MASK) != 0)
  1010. return 1;
  1011. if (mmc_stat & BRR_MASK) {
  1012. unsigned int k;
  1013. writel(readl(&mmc_base->stat) | BRR_MASK,
  1014. &mmc_base->stat);
  1015. for (k = 0; k < count; k++) {
  1016. *output_buf = readl(&mmc_base->data);
  1017. output_buf++;
  1018. }
  1019. size -= (count*4);
  1020. }
  1021. if (mmc_stat & BWR_MASK)
  1022. writel(readl(&mmc_base->stat) | BWR_MASK,
  1023. &mmc_base->stat);
  1024. if (mmc_stat & TC_MASK) {
  1025. writel(readl(&mmc_base->stat) | TC_MASK,
  1026. &mmc_base->stat);
  1027. break;
  1028. }
  1029. }
  1030. return 0;
  1031. }
  1032. static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
  1033. unsigned int size)
  1034. {
  1035. unsigned int *input_buf = (unsigned int *)buf;
  1036. unsigned int mmc_stat;
  1037. unsigned int count;
  1038. /*
  1039. * Start Polled Write
  1040. */
  1041. count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
  1042. count /= 4;
  1043. while (size) {
  1044. ulong start = get_timer(0);
  1045. do {
  1046. mmc_stat = readl(&mmc_base->stat);
  1047. if (get_timer(0) - start > MAX_RETRY_MS) {
  1048. printf("%s: timedout waiting for status!\n",
  1049. __func__);
  1050. return -ETIMEDOUT;
  1051. }
  1052. } while (mmc_stat == 0);
  1053. if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
  1054. mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
  1055. if ((mmc_stat & ERRI_MASK) != 0)
  1056. return 1;
  1057. if (mmc_stat & BWR_MASK) {
  1058. unsigned int k;
  1059. writel(readl(&mmc_base->stat) | BWR_MASK,
  1060. &mmc_base->stat);
  1061. for (k = 0; k < count; k++) {
  1062. writel(*input_buf, &mmc_base->data);
  1063. input_buf++;
  1064. }
  1065. size -= (count*4);
  1066. }
  1067. if (mmc_stat & BRR_MASK)
  1068. writel(readl(&mmc_base->stat) | BRR_MASK,
  1069. &mmc_base->stat);
  1070. if (mmc_stat & TC_MASK) {
  1071. writel(readl(&mmc_base->stat) | TC_MASK,
  1072. &mmc_base->stat);
  1073. break;
  1074. }
  1075. }
  1076. return 0;
  1077. }
  1078. static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
  1079. {
  1080. writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
  1081. }
  1082. static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
  1083. {
  1084. writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
  1085. }
  1086. static void omap_hsmmc_set_clock(struct mmc *mmc)
  1087. {
  1088. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1089. struct hsmmc *mmc_base;
  1090. unsigned int dsor = 0;
  1091. ulong start;
  1092. mmc_base = priv->base_addr;
  1093. omap_hsmmc_stop_clock(mmc_base);
  1094. /* TODO: Is setting DTO required here? */
  1095. mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
  1096. (ICE_STOP | DTO_15THDTO));
  1097. if (mmc->clock != 0) {
  1098. dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
  1099. if (dsor > CLKD_MAX)
  1100. dsor = CLKD_MAX;
  1101. }
  1102. mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
  1103. (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
  1104. start = get_timer(0);
  1105. while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
  1106. if (get_timer(0) - start > MAX_RETRY_MS) {
  1107. printf("%s: timedout waiting for ics!\n", __func__);
  1108. return;
  1109. }
  1110. }
  1111. priv->clock = mmc->clock;
  1112. omap_hsmmc_start_clock(mmc_base);
  1113. }
  1114. static void omap_hsmmc_set_bus_width(struct mmc *mmc)
  1115. {
  1116. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1117. struct hsmmc *mmc_base;
  1118. mmc_base = priv->base_addr;
  1119. /* configue bus width */
  1120. switch (mmc->bus_width) {
  1121. case 8:
  1122. writel(readl(&mmc_base->con) | DTW_8_BITMODE,
  1123. &mmc_base->con);
  1124. break;
  1125. case 4:
  1126. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  1127. &mmc_base->con);
  1128. writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
  1129. &mmc_base->hctl);
  1130. break;
  1131. case 1:
  1132. default:
  1133. writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
  1134. &mmc_base->con);
  1135. writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
  1136. &mmc_base->hctl);
  1137. break;
  1138. }
  1139. priv->bus_width = mmc->bus_width;
  1140. }
  1141. static int omap_hsmmc_set_ios(struct mmc *mmc)
  1142. {
  1143. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1144. struct hsmmc *mmc_base = priv->base_addr;
  1145. int ret = 0;
  1146. if (priv->bus_width != mmc->bus_width)
  1147. omap_hsmmc_set_bus_width(mmc);
  1148. if (priv->clock != mmc->clock)
  1149. omap_hsmmc_set_clock(mmc);
  1150. if (mmc->clk_disable)
  1151. omap_hsmmc_stop_clock(mmc_base);
  1152. else
  1153. omap_hsmmc_start_clock(mmc_base);
  1154. #if defined(CONFIG_DM_MMC) && defined(CONFIG_IODELAY_RECALIBRATION)
  1155. if (priv->timing != mmc->timing)
  1156. omap_hsmmc_set_timing(mmc);
  1157. #endif
  1158. if (priv->signal_voltage != mmc->signal_voltage)
  1159. ret = omap_hsmmc_set_signal_voltage(mmc);
  1160. return ret;
  1161. }
  1162. #ifdef OMAP_HSMMC_USE_GPIO
  1163. #ifdef CONFIG_DM_MMC
  1164. static int omap_hsmmc_getcd(struct mmc *mmc)
  1165. {
  1166. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1167. int value;
  1168. value = dm_gpio_get_value(&priv->cd_gpio);
  1169. /* if no CD return as 1 */
  1170. if (value < 0)
  1171. return 1;
  1172. if (priv->cd_inverted)
  1173. return !value;
  1174. return value;
  1175. }
  1176. static int omap_hsmmc_getwp(struct mmc *mmc)
  1177. {
  1178. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1179. int value;
  1180. value = dm_gpio_get_value(&priv->wp_gpio);
  1181. /* if no WP return as 0 */
  1182. if (value < 0)
  1183. return 0;
  1184. return value;
  1185. }
  1186. #else
  1187. static int omap_hsmmc_getcd(struct mmc *mmc)
  1188. {
  1189. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1190. int cd_gpio;
  1191. /* if no CD return as 1 */
  1192. cd_gpio = priv->cd_gpio;
  1193. if (cd_gpio < 0)
  1194. return 1;
  1195. /* NOTE: assumes card detect signal is active-low */
  1196. return !gpio_get_value(cd_gpio);
  1197. }
  1198. static int omap_hsmmc_getwp(struct mmc *mmc)
  1199. {
  1200. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1201. int wp_gpio;
  1202. /* if no WP return as 0 */
  1203. wp_gpio = priv->wp_gpio;
  1204. if (wp_gpio < 0)
  1205. return 0;
  1206. /* NOTE: assumes write protect signal is active-high */
  1207. return gpio_get_value(wp_gpio);
  1208. }
  1209. #endif
  1210. #endif
  1211. static const struct mmc_ops omap_hsmmc_ops = {
  1212. .send_cmd = omap_hsmmc_send_cmd,
  1213. .set_ios = omap_hsmmc_set_ios,
  1214. .init = omap_hsmmc_init_setup,
  1215. #ifdef OMAP_HSMMC_USE_GPIO
  1216. .getcd = omap_hsmmc_getcd,
  1217. .getwp = omap_hsmmc_getwp,
  1218. #endif
  1219. #ifdef CONFIG_DM_MMC
  1220. .execute_tuning = omap_hsmmc_execute_tuning,
  1221. .card_busy = omap_hsmmc_card_busy,
  1222. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  1223. .set_vdd = omap_hsmmc_set_vdd,
  1224. #endif
  1225. #endif
  1226. };
  1227. #ifndef CONFIG_DM_MMC
  1228. int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
  1229. int wp_gpio)
  1230. {
  1231. struct mmc *mmc;
  1232. struct omap_hsmmc_data *priv;
  1233. struct mmc_config *cfg;
  1234. uint host_caps_val;
  1235. priv = malloc(sizeof(*priv));
  1236. if (priv == NULL)
  1237. return -1;
  1238. host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
  1239. switch (dev_index) {
  1240. case 0:
  1241. priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  1242. break;
  1243. #ifdef OMAP_HSMMC2_BASE
  1244. case 1:
  1245. priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
  1246. #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
  1247. defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
  1248. defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
  1249. defined(CONFIG_HSMMC2_8BIT)
  1250. /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
  1251. host_caps_val |= MMC_MODE_8BIT;
  1252. #endif
  1253. break;
  1254. #endif
  1255. #ifdef OMAP_HSMMC3_BASE
  1256. case 2:
  1257. priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
  1258. #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
  1259. /* Enable 8-bit interface for eMMC on DRA7XX */
  1260. host_caps_val |= MMC_MODE_8BIT;
  1261. #endif
  1262. break;
  1263. #endif
  1264. default:
  1265. priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
  1266. return 1;
  1267. }
  1268. #ifdef OMAP_HSMMC_USE_GPIO
  1269. /* on error gpio values are set to -1, which is what we want */
  1270. priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
  1271. priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
  1272. #endif
  1273. cfg = &priv->cfg;
  1274. cfg->name = "OMAP SD/MMC";
  1275. cfg->ops = &omap_hsmmc_ops;
  1276. cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  1277. cfg->host_caps = host_caps_val & ~host_caps_mask;
  1278. cfg->f_min = 400000;
  1279. if (f_max != 0)
  1280. cfg->f_max = f_max;
  1281. else {
  1282. if (cfg->host_caps & MMC_MODE_HS) {
  1283. if (cfg->host_caps & MMC_MODE_HS_52MHz)
  1284. cfg->f_max = 52000000;
  1285. else
  1286. cfg->f_max = 26000000;
  1287. } else
  1288. cfg->f_max = 20000000;
  1289. }
  1290. cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1291. #if defined(CONFIG_OMAP34XX)
  1292. /*
  1293. * Silicon revs 2.1 and older do not support multiblock transfers.
  1294. */
  1295. if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
  1296. cfg->b_max = 1;
  1297. #endif
  1298. mmc = mmc_create(cfg, priv);
  1299. if (mmc == NULL)
  1300. return -1;
  1301. return 0;
  1302. }
  1303. #else
  1304. #ifdef CONFIG_IODELAY_RECALIBRATION
  1305. #ifdef CONFIG_SPL_BUILD
  1306. __weak struct omap_hsmmc_pinctrl_state *platform_fixup_get_pinctrl_by_mode
  1307. (struct hsmmc *base, const char *mode)
  1308. {
  1309. static struct omap_hsmmc_pinctrl_state empty = {
  1310. .padconf = NULL,
  1311. .npads = 0,
  1312. .iodelay = NULL,
  1313. .niodelays = 0,
  1314. };
  1315. return &empty;
  1316. }
  1317. static struct omap_hsmmc_pinctrl_state *
  1318. omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
  1319. {
  1320. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1321. return platform_fixup_get_pinctrl_by_mode(priv->base_addr, mode);
  1322. }
  1323. #else
  1324. static struct pad_conf_entry *
  1325. omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
  1326. {
  1327. int index = 0;
  1328. struct pad_conf_entry *padconf;
  1329. padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
  1330. if (!padconf) {
  1331. printf("failed to allocate memory\n");
  1332. return 0;
  1333. }
  1334. while (index < count) {
  1335. padconf[index].offset = fdt32_to_cpu(*pinctrl++);
  1336. padconf[index].val = fdt32_to_cpu(*pinctrl++);
  1337. index++;
  1338. }
  1339. return padconf;
  1340. }
  1341. static struct iodelay_cfg_entry *
  1342. omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
  1343. {
  1344. int index = 0;
  1345. struct iodelay_cfg_entry *iodelay;
  1346. iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
  1347. if (!iodelay) {
  1348. printf("failed to allocate memory\n");
  1349. return 0;
  1350. }
  1351. while (index < count) {
  1352. iodelay[index].offset = fdt32_to_cpu(*pinctrl++);
  1353. iodelay[index].a_delay = fdt32_to_cpu(*pinctrl++);
  1354. iodelay[index].g_delay = fdt32_to_cpu(*pinctrl++);
  1355. index++;
  1356. }
  1357. return iodelay;
  1358. }
  1359. static const fdt32_t *omap_hsmmc_get_pinctrl_entry(uint32_t phandle,
  1360. const char *name, int *len)
  1361. {
  1362. const void *fdt = gd->fdt_blob;
  1363. int offset;
  1364. const fdt32_t *pinctrl;
  1365. offset = fdt_node_offset_by_phandle(fdt, phandle);
  1366. if (offset < 0) {
  1367. printf("failed to get pinctrl node %s.\n",
  1368. fdt_strerror(offset));
  1369. return 0;
  1370. }
  1371. pinctrl = fdt_getprop(fdt, offset, name, len);
  1372. if (!pinctrl) {
  1373. printf("failed to get property %s\n", name);
  1374. return 0;
  1375. }
  1376. return pinctrl;
  1377. }
  1378. static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
  1379. char *prop_name)
  1380. {
  1381. const void *fdt = gd->fdt_blob;
  1382. const __be32 *phandle;
  1383. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1384. int node = priv->node;
  1385. phandle = fdt_getprop(fdt, node, prop_name, NULL);
  1386. if (!phandle) {
  1387. printf("failed to get property %s\n", prop_name);
  1388. return 0;
  1389. }
  1390. return fdt32_to_cpu(*phandle);
  1391. }
  1392. static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
  1393. char *prop_name)
  1394. {
  1395. const void *fdt = gd->fdt_blob;
  1396. const __be32 *phandle;
  1397. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1398. int len;
  1399. int count;
  1400. int node = priv->node;
  1401. phandle = fdt_getprop(fdt, node, prop_name, &len);
  1402. if (!phandle) {
  1403. printf("failed to get property %s\n", prop_name);
  1404. return 0;
  1405. }
  1406. /* No manual mode iodelay values if count < 2 */
  1407. count = len / sizeof(*phandle);
  1408. if (count < 2)
  1409. return 0;
  1410. return fdt32_to_cpu(*(phandle + 1));
  1411. }
  1412. static struct pad_conf_entry *
  1413. omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
  1414. {
  1415. int len;
  1416. int count;
  1417. struct pad_conf_entry *padconf;
  1418. uint32_t phandle;
  1419. const fdt32_t *pinctrl;
  1420. phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
  1421. if (!phandle)
  1422. return ERR_PTR(-EINVAL);
  1423. pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
  1424. &len);
  1425. if (!pinctrl)
  1426. return ERR_PTR(-EINVAL);
  1427. count = (len / sizeof(*pinctrl)) / 2;
  1428. padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
  1429. if (!padconf)
  1430. return ERR_PTR(-EINVAL);
  1431. *npads = count;
  1432. return padconf;
  1433. }
  1434. static struct iodelay_cfg_entry *
  1435. omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
  1436. {
  1437. int len;
  1438. int count;
  1439. struct iodelay_cfg_entry *iodelay;
  1440. uint32_t phandle;
  1441. const fdt32_t *pinctrl;
  1442. phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
  1443. /* Not all modes have manual mode iodelay values. So its not fatal */
  1444. if (!phandle)
  1445. return 0;
  1446. pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
  1447. &len);
  1448. if (!pinctrl)
  1449. return ERR_PTR(-EINVAL);
  1450. count = (len / sizeof(*pinctrl)) / 3;
  1451. iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
  1452. if (!iodelay)
  1453. return ERR_PTR(-EINVAL);
  1454. *niodelay = count;
  1455. return iodelay;
  1456. }
  1457. static struct omap_hsmmc_pinctrl_state *
  1458. omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
  1459. {
  1460. int index;
  1461. int npads = 0;
  1462. int niodelays = 0;
  1463. const void *fdt = gd->fdt_blob;
  1464. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1465. int node = priv->node;
  1466. char prop_name[11];
  1467. struct omap_hsmmc_pinctrl_state *pinctrl_state;
  1468. pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
  1469. malloc(sizeof(*pinctrl_state));
  1470. if (!pinctrl_state) {
  1471. printf("%s: failed to allocate memory\n",
  1472. fdt_get_name(fdt, node, NULL));
  1473. return 0;
  1474. }
  1475. index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
  1476. if (index < 0) {
  1477. debug("%s: fail to find %s mode %s\n",
  1478. fdt_get_name(fdt, node, NULL),
  1479. mode, fdt_strerror(index));
  1480. goto err_pinctrl_state;
  1481. }
  1482. sprintf(prop_name, "pinctrl-%d", index);
  1483. pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
  1484. &npads);
  1485. if (IS_ERR(pinctrl_state->padconf))
  1486. goto err_pinctrl_state;
  1487. pinctrl_state->npads = npads;
  1488. pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
  1489. &niodelays);
  1490. if (IS_ERR(pinctrl_state->iodelay))
  1491. goto err_padconf;
  1492. pinctrl_state->niodelays = niodelays;
  1493. return pinctrl_state;
  1494. err_padconf:
  1495. kfree(pinctrl_state->padconf);
  1496. err_pinctrl_state:
  1497. kfree(pinctrl_state);
  1498. return 0;
  1499. }
  1500. #endif
  1501. #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode) \
  1502. do { \
  1503. struct omap_hsmmc_pinctrl_state *s = NULL; \
  1504. char str[20]; \
  1505. if (!(cfg->host_caps & capmask)) \
  1506. break; \
  1507. \
  1508. if (priv->version) { \
  1509. sprintf(str, "%s-%s", #mode, priv->version); \
  1510. s = omap_hsmmc_get_pinctrl_by_mode(mmc, str); \
  1511. } \
  1512. \
  1513. if (!s) \
  1514. s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \
  1515. \
  1516. if (!s) { \
  1517. debug("no pinctrl for %s\n", #mode); \
  1518. cfg->host_caps &= ~(capmask); \
  1519. } else { \
  1520. priv->mode##_pinctrl_state = s; \
  1521. } \
  1522. } while (0)
  1523. static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
  1524. {
  1525. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1526. struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
  1527. struct omap_hsmmc_pinctrl_state *default_pinctrl;
  1528. if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
  1529. return 0;
  1530. default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
  1531. if (!default_pinctrl) {
  1532. debug("no pinctrl state for default mode\n");
  1533. return -EINVAL;
  1534. }
  1535. priv->default_pinctrl_state = default_pinctrl;
  1536. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS200, hs200_1_8v);
  1537. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_DDR_52MHz, ddr_1_8v);
  1538. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs);
  1539. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_UHS_SDR104, sdr104);
  1540. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_UHS_DDR50, ddr50);
  1541. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_UHS_SDR50, sdr50);
  1542. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_UHS_SDR25, sdr25);
  1543. OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_UHS_SDR12, sdr12);
  1544. return 0;
  1545. }
  1546. #endif
  1547. static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
  1548. {
  1549. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1550. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1551. struct mmc_config *cfg = &plat->cfg;
  1552. const void *fdt = gd->fdt_blob;
  1553. int node = dev->of_offset;
  1554. int ret;
  1555. priv->base_addr = map_physmem(dev_get_addr(dev), sizeof(struct hsmmc *),
  1556. MAP_NOCACHE);
  1557. priv->node = node;
  1558. ret = mmc_of_parse(fdt, node, cfg);
  1559. if (ret < 0)
  1560. return ret;
  1561. cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  1562. cfg->f_min = 400000;
  1563. cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
  1564. cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  1565. if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
  1566. priv->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
  1567. if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
  1568. priv->controller_flags |= OMAP_HSMMC_NO_1_8_V;
  1569. #ifdef OMAP_HSMMC_USE_GPIO
  1570. priv->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
  1571. #endif
  1572. return 0;
  1573. }
  1574. __weak int platform_fixup_disable_uhs_mode(void)
  1575. {
  1576. return 0;
  1577. }
  1578. static int omap_hsmmc_platform_fixup(struct mmc *mmc)
  1579. {
  1580. struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
  1581. struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
  1582. priv->version = NULL;
  1583. if (platform_fixup_disable_uhs_mode()) {
  1584. priv->version = "rev11";
  1585. cfg->host_caps &= ~(MMC_MODE_HS200 | MMC_MODE_UHS_SDR104
  1586. | MMC_MODE_UHS_SDR50);
  1587. }
  1588. return 0;
  1589. }
  1590. static int omap_hsmmc_probe(struct udevice *dev)
  1591. {
  1592. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1593. struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
  1594. struct omap_hsmmc_data *priv = dev_get_priv(dev);
  1595. struct mmc_config *cfg = &plat->cfg;
  1596. struct mmc *mmc;
  1597. #ifdef CONFIG_IODELAY_RECALIBRATION
  1598. int ret;
  1599. struct omap_mmc_of_data *data;
  1600. #endif
  1601. cfg->name = "OMAP SD/MMC";
  1602. cfg->ops = &omap_hsmmc_ops;
  1603. #ifdef CONFIG_BLK
  1604. mmc = &plat->mmc;
  1605. #else
  1606. mmc = mmc_create(cfg, priv);
  1607. if (mmc == NULL)
  1608. return -1;
  1609. #endif
  1610. mmc->dev = dev;
  1611. omap_hsmmc_platform_fixup(mmc);
  1612. #if CONFIG_IS_ENABLED(DM_REGULATOR) && defined(CONFIG_DM_MMC)
  1613. device_get_supply_regulator(dev, "vmmc-supply", &priv->vmmc_supply);
  1614. device_get_supply_regulator(dev, "vmmc_aux-supply",
  1615. &priv->vmmc_aux_supply);
  1616. #endif
  1617. #ifdef OMAP_HSMMC_USE_GPIO
  1618. gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
  1619. gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
  1620. #endif
  1621. #ifdef CONFIG_IODELAY_RECALIBRATION
  1622. data = (struct omap_mmc_of_data *)dev_get_driver_data(dev);
  1623. if (data && data->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)
  1624. priv->controller_flags |= OMAP_HSMMC_REQUIRE_IODELAY;
  1625. ret = omap_hsmmc_get_pinctrl_state(mmc);
  1626. if (ret < 0) {
  1627. priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
  1628. cfg->host_caps &= ~(MMC_MODE_UHS_SDR12 | MMC_MODE_UHS_SDR25
  1629. | MMC_MODE_UHS_SDR50 | MMC_MODE_UHS_SDR104
  1630. | MMC_MODE_UHS_DDR50 | MMC_MODE_DDR_52MHz
  1631. | MMC_MODE_HS200);
  1632. }
  1633. #endif
  1634. upriv->mmc = mmc;
  1635. return 0;
  1636. }
  1637. #ifdef CONFIG_BLK
  1638. static int omap_hsmmc_bind(struct udevice *dev)
  1639. {
  1640. struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
  1641. return mmc_bind(dev, &plat->mmc, &plat->cfg);
  1642. }
  1643. #endif
  1644. static const struct omap_mmc_of_data dra7_mmc_of_data = {
  1645. .controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
  1646. };
  1647. static const struct udevice_id omap_hsmmc_ids[] = {
  1648. { .compatible = "ti,omap3-hsmmc" },
  1649. { .compatible = "ti,omap4-hsmmc" },
  1650. { .compatible = "ti,am33xx-hsmmc" },
  1651. { .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
  1652. { }
  1653. };
  1654. U_BOOT_DRIVER(omap_hsmmc) = {
  1655. .name = "omap_hsmmc",
  1656. .id = UCLASS_MMC,
  1657. .of_match = omap_hsmmc_ids,
  1658. .ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
  1659. #ifdef CONFIG_BLK
  1660. .bind = omap_hsmmc_bind,
  1661. #endif
  1662. .probe = omap_hsmmc_probe,
  1663. .priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
  1664. .platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
  1665. };
  1666. #endif