ftsdc010_mci.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. /*
  2. * Faraday MMC/SD Host Controller
  3. *
  4. * (C) Copyright 2010 Faraday Technology
  5. * Dante Su <dantesu@faraday-tech.com>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <malloc.h>
  11. #include <part.h>
  12. #include <mmc.h>
  13. #include <asm/io.h>
  14. #include <linux/errno.h>
  15. #include <asm/byteorder.h>
  16. #include <faraday/ftsdc010.h>
  17. #define CFG_CMD_TIMEOUT (CONFIG_SYS_HZ >> 4) /* 250 ms */
  18. #define CFG_RST_TIMEOUT CONFIG_SYS_HZ /* 1 sec reset timeout */
  19. struct ftsdc010_chip {
  20. void __iomem *regs;
  21. uint32_t wprot; /* write protected (locked) */
  22. uint32_t rate; /* actual SD clock in Hz */
  23. uint32_t sclk; /* FTSDC010 source clock in Hz */
  24. uint32_t fifo; /* fifo depth in bytes */
  25. uint32_t acmd;
  26. struct mmc_config cfg; /* mmc configuration */
  27. };
  28. static inline int ftsdc010_send_cmd(struct mmc *mmc, struct mmc_cmd *mmc_cmd)
  29. {
  30. struct ftsdc010_chip *chip = mmc->priv;
  31. struct ftsdc010_mmc __iomem *regs = chip->regs;
  32. int ret = -ETIMEDOUT;
  33. uint32_t ts, st;
  34. uint32_t cmd = FTSDC010_CMD_IDX(mmc_cmd->cmdidx);
  35. uint32_t arg = mmc_cmd->cmdarg;
  36. uint32_t flags = mmc_cmd->resp_type;
  37. cmd |= FTSDC010_CMD_CMD_EN;
  38. if (chip->acmd) {
  39. cmd |= FTSDC010_CMD_APP_CMD;
  40. chip->acmd = 0;
  41. }
  42. if (flags & MMC_RSP_PRESENT)
  43. cmd |= FTSDC010_CMD_NEED_RSP;
  44. if (flags & MMC_RSP_136)
  45. cmd |= FTSDC010_CMD_LONG_RSP;
  46. writel(FTSDC010_STATUS_RSP_MASK | FTSDC010_STATUS_CMD_SEND,
  47. &regs->clr);
  48. writel(arg, &regs->argu);
  49. writel(cmd, &regs->cmd);
  50. if (!(flags & (MMC_RSP_PRESENT | MMC_RSP_136))) {
  51. for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
  52. if (readl(&regs->status) & FTSDC010_STATUS_CMD_SEND) {
  53. writel(FTSDC010_STATUS_CMD_SEND, &regs->clr);
  54. ret = 0;
  55. break;
  56. }
  57. }
  58. } else {
  59. st = 0;
  60. for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
  61. st = readl(&regs->status);
  62. writel(st & FTSDC010_STATUS_RSP_MASK, &regs->clr);
  63. if (st & FTSDC010_STATUS_RSP_MASK)
  64. break;
  65. }
  66. if (st & FTSDC010_STATUS_RSP_CRC_OK) {
  67. if (flags & MMC_RSP_136) {
  68. mmc_cmd->response[0] = readl(&regs->rsp3);
  69. mmc_cmd->response[1] = readl(&regs->rsp2);
  70. mmc_cmd->response[2] = readl(&regs->rsp1);
  71. mmc_cmd->response[3] = readl(&regs->rsp0);
  72. } else {
  73. mmc_cmd->response[0] = readl(&regs->rsp0);
  74. }
  75. ret = 0;
  76. } else {
  77. debug("ftsdc010: rsp err (cmd=%d, st=0x%x)\n",
  78. mmc_cmd->cmdidx, st);
  79. }
  80. }
  81. if (ret) {
  82. debug("ftsdc010: cmd timeout (op code=%d)\n",
  83. mmc_cmd->cmdidx);
  84. } else if (mmc_cmd->cmdidx == MMC_CMD_APP_CMD) {
  85. chip->acmd = 1;
  86. }
  87. return ret;
  88. }
  89. static void ftsdc010_clkset(struct mmc *mmc, uint32_t rate)
  90. {
  91. struct ftsdc010_chip *chip = mmc->priv;
  92. struct ftsdc010_mmc __iomem *regs = chip->regs;
  93. uint32_t div;
  94. for (div = 0; div < 0x7f; ++div) {
  95. if (rate >= chip->sclk / (2 * (div + 1)))
  96. break;
  97. }
  98. chip->rate = chip->sclk / (2 * (div + 1));
  99. writel(FTSDC010_CCR_CLK_DIV(div), &regs->ccr);
  100. if (IS_SD(mmc)) {
  101. setbits_le32(&regs->ccr, FTSDC010_CCR_CLK_SD);
  102. if (chip->rate > 25000000)
  103. setbits_le32(&regs->ccr, FTSDC010_CCR_CLK_HISPD);
  104. else
  105. clrbits_le32(&regs->ccr, FTSDC010_CCR_CLK_HISPD);
  106. }
  107. }
  108. static int ftsdc010_wait(struct ftsdc010_mmc __iomem *regs, uint32_t mask)
  109. {
  110. int ret = -ETIMEDOUT;
  111. uint32_t st, ts;
  112. for (ts = get_timer(0); get_timer(ts) < CFG_CMD_TIMEOUT; ) {
  113. st = readl(&regs->status);
  114. if (!(st & mask))
  115. continue;
  116. writel(st & mask, &regs->clr);
  117. ret = 0;
  118. break;
  119. }
  120. if (ret)
  121. debug("ftsdc010: wait st(0x%x) timeout\n", mask);
  122. return ret;
  123. }
  124. /*
  125. * u-boot mmc api
  126. */
  127. static int ftsdc010_request(struct mmc *mmc, struct mmc_cmd *cmd,
  128. struct mmc_data *data)
  129. {
  130. int ret = -EOPNOTSUPP;
  131. uint32_t len = 0;
  132. struct ftsdc010_chip *chip = mmc->priv;
  133. struct ftsdc010_mmc __iomem *regs = chip->regs;
  134. if (data && (data->flags & MMC_DATA_WRITE) && chip->wprot) {
  135. printf("ftsdc010: the card is write protected!\n");
  136. return ret;
  137. }
  138. if (data) {
  139. uint32_t dcr;
  140. len = data->blocksize * data->blocks;
  141. /* 1. data disable + fifo reset */
  142. dcr = 0;
  143. #ifdef CONFIG_FTSDC010_SDIO
  144. dcr |= FTSDC010_DCR_FIFO_RST;
  145. #endif
  146. writel(dcr, &regs->dcr);
  147. /* 2. clear status register */
  148. writel(FTSDC010_STATUS_DATA_MASK | FTSDC010_STATUS_FIFO_URUN
  149. | FTSDC010_STATUS_FIFO_ORUN, &regs->clr);
  150. /* 3. data timeout (1 sec) */
  151. writel(chip->rate, &regs->dtr);
  152. /* 4. data length (bytes) */
  153. writel(len, &regs->dlr);
  154. /* 5. data enable */
  155. dcr = (ffs(data->blocksize) - 1) | FTSDC010_DCR_DATA_EN;
  156. if (data->flags & MMC_DATA_WRITE)
  157. dcr |= FTSDC010_DCR_DATA_WRITE;
  158. writel(dcr, &regs->dcr);
  159. }
  160. ret = ftsdc010_send_cmd(mmc, cmd);
  161. if (ret) {
  162. printf("ftsdc010: CMD%d failed\n", cmd->cmdidx);
  163. return ret;
  164. }
  165. if (!data)
  166. return ret;
  167. if (data->flags & MMC_DATA_WRITE) {
  168. const uint8_t *buf = (const uint8_t *)data->src;
  169. while (len > 0) {
  170. int wlen;
  171. /* wait for tx ready */
  172. ret = ftsdc010_wait(regs, FTSDC010_STATUS_FIFO_URUN);
  173. if (ret)
  174. break;
  175. /* write bytes to ftsdc010 */
  176. for (wlen = 0; wlen < len && wlen < chip->fifo; ) {
  177. writel(*(uint32_t *)buf, &regs->dwr);
  178. buf += 4;
  179. wlen += 4;
  180. }
  181. len -= wlen;
  182. }
  183. } else {
  184. uint8_t *buf = (uint8_t *)data->dest;
  185. while (len > 0) {
  186. int rlen;
  187. /* wait for rx ready */
  188. ret = ftsdc010_wait(regs, FTSDC010_STATUS_FIFO_ORUN);
  189. if (ret)
  190. break;
  191. /* fetch bytes from ftsdc010 */
  192. for (rlen = 0; rlen < len && rlen < chip->fifo; ) {
  193. *(uint32_t *)buf = readl(&regs->dwr);
  194. buf += 4;
  195. rlen += 4;
  196. }
  197. len -= rlen;
  198. }
  199. }
  200. if (!ret) {
  201. ret = ftsdc010_wait(regs,
  202. FTSDC010_STATUS_DATA_END | FTSDC010_STATUS_DATA_ERROR);
  203. }
  204. return ret;
  205. }
  206. static int ftsdc010_set_ios(struct mmc *mmc)
  207. {
  208. struct ftsdc010_chip *chip = mmc->priv;
  209. struct ftsdc010_mmc __iomem *regs = chip->regs;
  210. ftsdc010_clkset(mmc, mmc->clock);
  211. clrbits_le32(&regs->bwr, FTSDC010_BWR_MODE_MASK);
  212. switch (mmc->bus_width) {
  213. case 4:
  214. setbits_le32(&regs->bwr, FTSDC010_BWR_MODE_4BIT);
  215. break;
  216. case 8:
  217. setbits_le32(&regs->bwr, FTSDC010_BWR_MODE_8BIT);
  218. break;
  219. default:
  220. setbits_le32(&regs->bwr, FTSDC010_BWR_MODE_1BIT);
  221. break;
  222. }
  223. return 0;
  224. }
  225. static int ftsdc010_init(struct mmc *mmc)
  226. {
  227. struct ftsdc010_chip *chip = mmc->priv;
  228. struct ftsdc010_mmc __iomem *regs = chip->regs;
  229. uint32_t ts;
  230. if (readl(&regs->status) & FTSDC010_STATUS_CARD_DETECT)
  231. return -ENOMEDIUM;
  232. if (readl(&regs->status) & FTSDC010_STATUS_WRITE_PROT) {
  233. printf("ftsdc010: write protected\n");
  234. chip->wprot = 1;
  235. }
  236. chip->fifo = (readl(&regs->feature) & 0xff) << 2;
  237. /* 1. chip reset */
  238. writel(FTSDC010_CMD_SDC_RST, &regs->cmd);
  239. for (ts = get_timer(0); get_timer(ts) < CFG_RST_TIMEOUT; ) {
  240. if (readl(&regs->cmd) & FTSDC010_CMD_SDC_RST)
  241. continue;
  242. break;
  243. }
  244. if (readl(&regs->cmd) & FTSDC010_CMD_SDC_RST) {
  245. printf("ftsdc010: reset failed\n");
  246. return -EOPNOTSUPP;
  247. }
  248. /* 2. enter low speed mode (400k card detection) */
  249. ftsdc010_clkset(mmc, 400000);
  250. /* 3. interrupt disabled */
  251. writel(0, &regs->int_mask);
  252. return 0;
  253. }
  254. static const struct mmc_ops ftsdc010_ops = {
  255. .send_cmd = ftsdc010_request,
  256. .set_ios = ftsdc010_set_ios,
  257. .init = ftsdc010_init,
  258. };
  259. int ftsdc010_mmc_init(int devid)
  260. {
  261. struct mmc *mmc;
  262. struct ftsdc010_chip *chip;
  263. struct ftsdc010_mmc __iomem *regs;
  264. #ifdef CONFIG_FTSDC010_BASE_LIST
  265. uint32_t base_list[] = CONFIG_FTSDC010_BASE_LIST;
  266. if (devid < 0 || devid >= ARRAY_SIZE(base_list))
  267. return -1;
  268. regs = (void __iomem *)base_list[devid];
  269. #else
  270. regs = (void __iomem *)(CONFIG_FTSDC010_BASE + (devid << 20));
  271. #endif
  272. chip = malloc(sizeof(struct ftsdc010_chip));
  273. if (!chip)
  274. return -ENOMEM;
  275. memset(chip, 0, sizeof(struct ftsdc010_chip));
  276. chip->regs = regs;
  277. #ifdef CONFIG_SYS_CLK_FREQ
  278. chip->sclk = CONFIG_SYS_CLK_FREQ;
  279. #else
  280. chip->sclk = clk_get_rate("SDC");
  281. #endif
  282. chip->cfg.name = "ftsdc010";
  283. chip->cfg.ops = &ftsdc010_ops;
  284. chip->cfg.host_caps = MMC_MODE_HS | MMC_MODE_HS_52MHz;
  285. switch (readl(&regs->bwr) & FTSDC010_BWR_CAPS_MASK) {
  286. case FTSDC010_BWR_CAPS_4BIT:
  287. chip->cfg.host_caps |= MMC_MODE_4BIT;
  288. break;
  289. case FTSDC010_BWR_CAPS_8BIT:
  290. chip->cfg.host_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT;
  291. break;
  292. default:
  293. break;
  294. }
  295. chip->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
  296. chip->cfg.f_max = chip->sclk / 2;
  297. chip->cfg.f_min = chip->sclk / 0x100;
  298. chip->cfg.part_type = PART_TYPE_DOS;
  299. chip->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
  300. mmc = mmc_create(&chip->cfg, chip);
  301. if (mmc == NULL) {
  302. free(chip);
  303. return -ENOMEM;
  304. }
  305. return 0;
  306. }