123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- /*
- * SEC Descriptor Construction Library
- * Basic job descriptor construction
- *
- * Copyright 2014 Freescale Semiconductor, Inc.
- *
- * SPDX-License-Identifier: GPL-2.0+
- *
- */
- #include <common.h>
- #include <fsl_sec.h>
- #include "desc_constr.h"
- #include "jobdesc.h"
- #include "rsa_caam.h"
- #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
- /*!
- * Secure memory run command
- *
- * @param sec_mem_cmd Secure memory command register
- * @return cmd_status Secure memory command status register
- */
- uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
- {
- uint32_t temp_reg;
- ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
- uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
- uint32_t jr_id = 0;
- sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
- do {
- temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
- } while (temp_reg & CMD_COMPLETE);
- return temp_reg;
- }
- /*!
- * CAAM page allocation:
- * Allocates a partition from secure memory, with the id
- * equal to partition_num. This will de-allocate the page
- * if it is already allocated. The partition will have
- * full access permissions. The permissions are set before,
- * running a job descriptor. A memory page of secure RAM
- * is allocated for the partition.
- *
- * @param page Number of the page to allocate.
- * @param partition Number of the partition to allocate.
- * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
- */
- int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
- {
- uint32_t temp_reg;
- ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
- uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
- uint32_t jr_id = 0;
- /*
- * De-Allocate partition_num if already allocated to ARM core
- */
- if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
- temp_reg = secmem_set_cmd(PARTITION(partition_num) |
- CMD_PART_DEALLOC);
- if (temp_reg & SMCSJR_AERR) {
- printf("Error: De-allocation status 0x%X\n", temp_reg);
- return ERROR_IN_PAGE_ALLOC;
- }
- }
- /* set the access rights to allow full access */
- sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
- sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
- sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
- /* Now need to allocate partition_num of secure RAM. */
- /* De-Allocate page_num by starting with a page inquiry command */
- temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
- /* if the page is owned, de-allocate it */
- if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
- temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
- if (temp_reg & SMCSJR_AERR) {
- printf("Error: Allocation status 0x%X\n", temp_reg);
- return ERROR_IN_PAGE_ALLOC;
- }
- }
- /* Allocate page_num to partition_num */
- temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
- | CMD_PAGE_ALLOC);
- if (temp_reg & SMCSJR_AERR) {
- printf("Error: Allocation status 0x%X\n", temp_reg);
- return ERROR_IN_PAGE_ALLOC;
- }
- /* page inquiry command to ensure that the page was allocated */
- temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
- /* if the page is not owned => problem */
- if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
- printf("Allocation of page %d in partition %d failed 0x%X\n",
- temp_reg, page_num, partition_num);
- return ERROR_IN_PAGE_ALLOC;
- }
- return 0;
- }
- int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
- uint8_t *dek_blob, uint32_t in_sz)
- {
- ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
- uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
- uint32_t jr_id = 0;
- uint32_t ret = 0;
- u32 aad_w1, aad_w2;
- /* output blob will have 32 bytes key blob in beginning and
- * 16 byte HMAC identifier at end of data blob */
- uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
- /* Setting HDR for blob */
- uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
- HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
- /* initialize the blob array */
- memset(dek_blob, 0, out_sz + 8);
- /* Copy the header into the DEK blob buffer */
- memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
- /* allocating secure memory */
- ret = caam_page_alloc(PAGE_1, PARTITION_1);
- if (ret)
- return ret;
- /* Write DEK to secure memory */
- memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
- unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
- ~(ARCH_DMA_MINALIGN - 1);
- unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
- flush_dcache_range(start, end);
- /* Now configure the access rights of the partition */
- sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
- sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
- sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
- /* construct aad for AES */
- aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
- aad_w2 = 0x0;
- init_job_desc(desc, 0);
- append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
- (0x0c << LDST_OFFSET_SHIFT) | 0x08);
- append_u32(desc, aad_w1);
- append_u32(desc, aad_w2);
- append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
- append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
- append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
- OP_PCLID_SECMEM);
- return ret;
- }
- #endif
- void inline_cnstr_jobdesc_hash(uint32_t *desc,
- const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
- u32 alg_type, uint32_t alg_size, int sg_tbl)
- {
- /* SHA 256 , output is of length 32 words */
- uint32_t storelen = alg_size;
- u32 options;
- dma_addr_t dma_addr_in, dma_addr_out;
- dma_addr_in = virt_to_phys((void *)msg);
- dma_addr_out = virt_to_phys((void *)digest);
- init_job_desc(desc, 0);
- append_operation(desc, OP_TYPE_CLASS2_ALG |
- OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
- OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
- options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
- if (sg_tbl)
- options |= FIFOLDST_SGF;
- if (msgsz > 0xffff) {
- options |= FIFOLDST_EXT;
- append_fifo_load(desc, dma_addr_in, 0, options);
- append_cmd(desc, msgsz);
- } else {
- append_fifo_load(desc, dma_addr_in, msgsz, options);
- }
- append_store(desc, dma_addr_out, storelen,
- LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
- }
- void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
- uint8_t *plain_txt, uint8_t *enc_blob,
- uint32_t in_sz)
- {
- dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
- uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
- /* output blob will have 32 bytes key blob in beginning and
- * 16 byte HMAC identifier at end of data blob */
- uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
- dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
- dma_addr_in = virt_to_phys((void *)plain_txt);
- dma_addr_out = virt_to_phys((void *)enc_blob);
- init_job_desc(desc, 0);
- append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
- append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
- append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
- append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
- }
- void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
- uint8_t *enc_blob, uint8_t *plain_txt,
- uint32_t out_sz)
- {
- dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
- uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
- uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
- dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
- dma_addr_in = virt_to_phys((void *)enc_blob);
- dma_addr_out = virt_to_phys((void *)plain_txt);
- init_job_desc(desc, 0);
- append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
- append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
- append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
- append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
- }
- /*
- * Descriptor to instantiate RNG State Handle 0 in normal mode and
- * load the JDKEK, TDKEK and TDSK registers
- */
- void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
- {
- u32 *jump_cmd;
- init_job_desc(desc, 0);
- /* INIT RNG in non-test mode */
- append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
- OP_ALG_AS_INIT);
- /* wait for done */
- jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
- set_jump_tgt_here(desc, jump_cmd);
- /*
- * load 1 to clear written reg:
- * resets the done interrrupt and returns the RNG to idle.
- */
- append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
- /* generate secure keys (non-test) */
- append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
- OP_ALG_RNG4_SK);
- }
- /* Change key size to bytes form bits in calling function*/
- void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
- struct pk_in_params *pkin, uint8_t *out,
- uint32_t out_siz)
- {
- dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
- dma_addr_e = virt_to_phys((void *)pkin->e);
- dma_addr_a = virt_to_phys((void *)pkin->a);
- dma_addr_n = virt_to_phys((void *)pkin->n);
- dma_addr_out = virt_to_phys((void *)out);
- init_job_desc(desc, 0);
- append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
- append_fifo_load(desc, dma_addr_a,
- pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
- append_fifo_load(desc, dma_addr_n,
- pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
- append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
- append_fifo_store(desc, dma_addr_out, out_siz,
- LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
- }
|