i2c.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * (C) Copyright 2000
  3. * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
  4. *
  5. * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
  6. * Marius Groeger <mgroeger@sysgo.de>
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. *
  10. * Back ported to the 8xx platform (from the 8260 platform) by
  11. * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
  12. */
  13. #include <common.h>
  14. #include <console.h>
  15. #ifdef CONFIG_HARD_I2C
  16. #include <commproc.h>
  17. #include <i2c.h>
  18. DECLARE_GLOBAL_DATA_PTR;
  19. /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
  20. #define TOUT_LOOP 1000000
  21. #define NUM_RX_BDS 4
  22. #define NUM_TX_BDS 4
  23. #define MAX_TX_SPACE 256
  24. #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
  25. typedef struct I2C_BD {
  26. unsigned short status;
  27. unsigned short length;
  28. unsigned char *addr;
  29. } I2C_BD;
  30. #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
  31. #define BD_I2C_TX_CL 0x0001 /* collision error */
  32. #define BD_I2C_TX_UN 0x0002 /* underflow error */
  33. #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
  34. #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
  35. #define BD_I2C_RX_ERR BD_SC_OV
  36. typedef void (*i2c_ecb_t) (int, int); /* error callback function */
  37. /* This structure keeps track of the bd and buffer space usage. */
  38. typedef struct i2c_state {
  39. int rx_idx; /* index to next free Rx BD */
  40. int tx_idx; /* index to next free Tx BD */
  41. void *rxbd; /* pointer to next free Rx BD */
  42. void *txbd; /* pointer to next free Tx BD */
  43. int tx_space; /* number of Tx bytes left */
  44. unsigned char *tx_buf; /* pointer to free Tx area */
  45. i2c_ecb_t err_cb; /* error callback function */
  46. } i2c_state_t;
  47. /* flags for i2c_send() and i2c_receive() */
  48. #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
  49. #define I2CF_START_COND 0x02 /* tx: generate start condition */
  50. #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
  51. /* return codes */
  52. #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
  53. #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
  54. #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
  55. #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
  56. /* error callback flags */
  57. #define I2CECB_RX_ERR 0x10 /* this is a receive error */
  58. #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
  59. #define I2CECB_RX_MASK 0x0f /* mask for error bits */
  60. #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
  61. #define I2CECB_TX_CL 0x01 /* transmit collision error */
  62. #define I2CECB_TX_UN 0x02 /* transmit underflow error */
  63. #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
  64. #define I2CECB_TX_MASK 0x0f /* mask for error bits */
  65. #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
  66. /*
  67. * Returns the best value of I2BRG to meet desired clock speed of I2C with
  68. * input parameters (clock speed, filter, and predivider value).
  69. * It returns computer speed value and the difference between it and desired
  70. * speed.
  71. */
  72. static inline int
  73. i2c_roundrate(int hz, int speed, int filter, int modval,
  74. int *brgval, int *totspeed)
  75. {
  76. int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
  77. debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
  78. hz, speed, filter, modval);
  79. div = moddiv * speed;
  80. brgdiv = (hz + div - 1) / div;
  81. debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
  82. *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
  83. if ((*brgval < 0) || (*brgval > 255)) {
  84. debug("\t\trejected brgval=%d\n", *brgval);
  85. return -1;
  86. }
  87. brgdiv = 2 * (*brgval + 3 + (2 * filter));
  88. div = moddiv * brgdiv;
  89. *totspeed = hz / div;
  90. debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
  91. return 0;
  92. }
  93. /*
  94. * Sets the I2C clock predivider and divider to meet required clock speed.
  95. */
  96. static int i2c_setrate(int hz, int speed)
  97. {
  98. immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
  99. volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
  100. int brgval,
  101. modval, /* 0-3 */
  102. bestspeed_diff = speed,
  103. bestspeed_brgval = 0,
  104. bestspeed_modval = 0,
  105. bestspeed_filter = 0,
  106. totspeed,
  107. filter = 0; /* Use this fixed value */
  108. for (modval = 0; modval < 4; modval++) {
  109. if (i2c_roundrate
  110. (hz, speed, filter, modval, &brgval, &totspeed) == 0) {
  111. int diff = speed - totspeed;
  112. if ((diff >= 0) && (diff < bestspeed_diff)) {
  113. bestspeed_diff = diff;
  114. bestspeed_modval = modval;
  115. bestspeed_brgval = brgval;
  116. bestspeed_filter = filter;
  117. }
  118. }
  119. }
  120. debug("[I2C] Best is:\n");
  121. debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
  122. hz,
  123. speed,
  124. bestspeed_filter,
  125. bestspeed_modval,
  126. bestspeed_brgval,
  127. bestspeed_diff);
  128. i2c->i2c_i2mod |=
  129. ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
  130. i2c->i2c_i2brg = bestspeed_brgval & 0xff;
  131. debug("[I2C] i2mod=%08x i2brg=%08x\n",
  132. i2c->i2c_i2mod,
  133. i2c->i2c_i2brg);
  134. return 1;
  135. }
  136. void i2c_init(int speed, int slaveaddr)
  137. {
  138. volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
  139. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  140. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  141. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  142. ulong rbase, tbase;
  143. volatile I2C_BD *rxbd, *txbd;
  144. uint dpaddr;
  145. #ifdef CONFIG_SYS_I2C_INIT_BOARD
  146. /* call board specific i2c bus reset routine before accessing the */
  147. /* environment, which might be in a chip on that bus. For details */
  148. /* about this problem see doc/I2C_Edge_Conditions. */
  149. i2c_init_board();
  150. #endif
  151. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  152. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  153. #else
  154. /* Disable relocation */
  155. iip->iic_rpbase = 0;
  156. #endif
  157. #ifdef CONFIG_SYS_ALLOC_DPRAM
  158. dpaddr = iip->iic_rbase;
  159. if (dpaddr == 0) {
  160. /* need to allocate dual port ram */
  161. dpaddr = dpram_alloc_align((NUM_RX_BDS * sizeof(I2C_BD)) +
  162. (NUM_TX_BDS * sizeof(I2C_BD)) +
  163. MAX_TX_SPACE, 8);
  164. }
  165. #else
  166. dpaddr = CPM_I2C_BASE;
  167. #endif
  168. /*
  169. * initialise data in dual port ram:
  170. *
  171. * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
  172. * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
  173. * tx buffer (MAX_TX_SPACE bytes)
  174. */
  175. rbase = dpaddr;
  176. tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
  177. /* Initialize Port B I2C pins. */
  178. cp->cp_pbpar |= 0x00000030;
  179. cp->cp_pbdir |= 0x00000030;
  180. cp->cp_pbodr |= 0x00000030;
  181. /* Disable interrupts */
  182. i2c->i2c_i2mod = 0x00;
  183. i2c->i2c_i2cmr = 0x00;
  184. i2c->i2c_i2cer = 0xff;
  185. i2c->i2c_i2add = slaveaddr;
  186. /*
  187. * Set the I2C BRG Clock division factor from desired i2c rate
  188. * and current CPU rate (we assume sccr dfbgr field is 0;
  189. * divide BRGCLK by 1)
  190. */
  191. debug("[I2C] Setting rate...\n");
  192. i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED);
  193. /* Set I2C controller in master mode */
  194. i2c->i2c_i2com = 0x01;
  195. /* Set SDMA bus arbitration level to 5 (SDCR) */
  196. immap->im_siu_conf.sc_sdcr = 0x0001;
  197. /* Initialize Tx/Rx parameters */
  198. iip->iic_rbase = rbase;
  199. iip->iic_tbase = tbase;
  200. rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]);
  201. txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]);
  202. debug("[I2C] rbase = %04x\n", iip->iic_rbase);
  203. debug("[I2C] tbase = %04x\n", iip->iic_tbase);
  204. debug("[I2C] rxbd = %08x\n", (int)rxbd);
  205. debug("[I2C] txbd = %08x\n", (int)txbd);
  206. /* Set big endian byte order */
  207. iip->iic_tfcr = 0x10;
  208. iip->iic_rfcr = 0x10;
  209. /* Set maximum receive size. */
  210. iip->iic_mrblr = I2C_RXTX_LEN;
  211. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  212. /*
  213. * Initialize required parameters if using microcode patch.
  214. */
  215. iip->iic_rbptr = iip->iic_rbase;
  216. iip->iic_tbptr = iip->iic_tbase;
  217. iip->iic_rstate = 0;
  218. iip->iic_tstate = 0;
  219. #else
  220. cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
  221. do {
  222. __asm__ __volatile__("eieio");
  223. } while (cp->cp_cpcr & CPM_CR_FLG);
  224. #endif
  225. /* Clear events and interrupts */
  226. i2c->i2c_i2cer = 0xff;
  227. i2c->i2c_i2cmr = 0x00;
  228. }
  229. static void i2c_newio(i2c_state_t *state)
  230. {
  231. volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
  232. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  233. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  234. debug("[I2C] i2c_newio\n");
  235. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  236. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  237. #endif
  238. state->rx_idx = 0;
  239. state->tx_idx = 0;
  240. state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase];
  241. state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase];
  242. state->tx_space = MAX_TX_SPACE;
  243. state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
  244. state->err_cb = NULL;
  245. debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
  246. debug("[I2C] txbd = %08x\n", (int)state->txbd);
  247. debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
  248. /* clear the buffer memory */
  249. memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
  250. }
  251. static int
  252. i2c_send(i2c_state_t *state,
  253. unsigned char address,
  254. unsigned char secondary_address,
  255. unsigned int flags, unsigned short size, unsigned char *dataout)
  256. {
  257. volatile I2C_BD *txbd;
  258. int i, j;
  259. debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
  260. address, secondary_address, flags, size);
  261. /* trying to send message larger than BD */
  262. if (size > I2C_RXTX_LEN)
  263. return I2CERR_MSG_TOO_LONG;
  264. /* no more free bds */
  265. if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
  266. return I2CERR_NO_BUFFERS;
  267. txbd = (I2C_BD *) state->txbd;
  268. txbd->addr = state->tx_buf;
  269. debug("[I2C] txbd = %08x\n", (int)txbd);
  270. if (flags & I2CF_START_COND) {
  271. debug("[I2C] Formatting addresses...\n");
  272. if (flags & I2CF_ENABLE_SECONDARY) {
  273. /* Length of msg + dest addr */
  274. txbd->length = size + 2;
  275. txbd->addr[0] = address << 1;
  276. txbd->addr[1] = secondary_address;
  277. i = 2;
  278. } else {
  279. /* Length of msg + dest addr */
  280. txbd->length = size + 1;
  281. /* Write dest addr to BD */
  282. txbd->addr[0] = address << 1;
  283. i = 1;
  284. }
  285. } else {
  286. txbd->length = size; /* Length of message */
  287. i = 0;
  288. }
  289. /* set up txbd */
  290. txbd->status = BD_SC_READY;
  291. if (flags & I2CF_START_COND)
  292. txbd->status |= BD_I2C_TX_START;
  293. if (flags & I2CF_STOP_COND)
  294. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  295. /* Copy data to send into buffer */
  296. debug("[I2C] copy data...\n");
  297. for(j = 0; j < size; i++, j++)
  298. txbd->addr[i] = dataout[j];
  299. debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  300. txbd->length,
  301. txbd->status,
  302. txbd->addr[0],
  303. txbd->addr[1]);
  304. /* advance state */
  305. state->tx_buf += txbd->length;
  306. state->tx_space -= txbd->length;
  307. state->tx_idx++;
  308. state->txbd = (void *) (txbd + 1);
  309. return 0;
  310. }
  311. static int
  312. i2c_receive(i2c_state_t *state,
  313. unsigned char address,
  314. unsigned char secondary_address,
  315. unsigned int flags,
  316. unsigned short size_to_expect, unsigned char *datain)
  317. {
  318. volatile I2C_BD *rxbd, *txbd;
  319. debug("[I2C] i2c_receive %02d %02d %02d\n",
  320. address, secondary_address, flags);
  321. /* Expected to receive too much */
  322. if (size_to_expect > I2C_RXTX_LEN)
  323. return I2CERR_MSG_TOO_LONG;
  324. /* no more free bds */
  325. if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
  326. || state->tx_space < 2)
  327. return I2CERR_NO_BUFFERS;
  328. rxbd = (I2C_BD *) state->rxbd;
  329. txbd = (I2C_BD *) state->txbd;
  330. debug("[I2C] rxbd = %08x\n", (int)rxbd);
  331. debug("[I2C] txbd = %08x\n", (int)txbd);
  332. txbd->addr = state->tx_buf;
  333. /* set up TXBD for destination address */
  334. if (flags & I2CF_ENABLE_SECONDARY) {
  335. txbd->length = 2;
  336. txbd->addr[0] = address << 1; /* Write data */
  337. txbd->addr[1] = secondary_address; /* Internal address */
  338. txbd->status = BD_SC_READY;
  339. } else {
  340. txbd->length = 1 + size_to_expect;
  341. txbd->addr[0] = (address << 1) | 0x01;
  342. txbd->status = BD_SC_READY;
  343. memset(&txbd->addr[1], 0, txbd->length);
  344. }
  345. /* set up rxbd for reception */
  346. rxbd->status = BD_SC_EMPTY;
  347. rxbd->length = size_to_expect;
  348. rxbd->addr = datain;
  349. txbd->status |= BD_I2C_TX_START;
  350. if (flags & I2CF_STOP_COND) {
  351. txbd->status |= BD_SC_LAST | BD_SC_WRAP;
  352. rxbd->status |= BD_SC_WRAP;
  353. }
  354. debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  355. txbd->length,
  356. txbd->status,
  357. txbd->addr[0],
  358. txbd->addr[1]);
  359. debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
  360. rxbd->length,
  361. rxbd->status,
  362. rxbd->addr[0],
  363. rxbd->addr[1]);
  364. /* advance state */
  365. state->tx_buf += txbd->length;
  366. state->tx_space -= txbd->length;
  367. state->tx_idx++;
  368. state->txbd = (void *) (txbd + 1);
  369. state->rx_idx++;
  370. state->rxbd = (void *) (rxbd + 1);
  371. return 0;
  372. }
  373. static int i2c_doio(i2c_state_t *state)
  374. {
  375. volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
  376. volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
  377. volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
  378. volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
  379. volatile I2C_BD *txbd, *rxbd;
  380. volatile int j = 0;
  381. debug("[I2C] i2c_doio\n");
  382. #ifdef CONFIG_SYS_I2C_UCODE_PATCH
  383. iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
  384. #endif
  385. if (state->tx_idx <= 0 && state->rx_idx <= 0) {
  386. debug("[I2C] No I/O is queued\n");
  387. return I2CERR_QUEUE_EMPTY;
  388. }
  389. iip->iic_rbptr = iip->iic_rbase;
  390. iip->iic_tbptr = iip->iic_tbase;
  391. /* Enable I2C */
  392. debug("[I2C] Enabling I2C...\n");
  393. i2c->i2c_i2mod |= 0x01;
  394. /* Begin transmission */
  395. i2c->i2c_i2com |= 0x80;
  396. /* Loop until transmit & receive completed */
  397. if (state->tx_idx > 0) {
  398. txbd = ((I2C_BD*)state->txbd) - 1;
  399. debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
  400. (ulong)txbd);
  401. while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
  402. if (ctrlc())
  403. return (-1);
  404. __asm__ __volatile__("eieio");
  405. }
  406. }
  407. if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
  408. rxbd = ((I2C_BD*)state->rxbd) - 1;
  409. debug("[I2C] Receiving...(rxbd=0x%08lx)\n",
  410. (ulong)rxbd);
  411. while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
  412. if (ctrlc())
  413. return (-1);
  414. __asm__ __volatile__("eieio");
  415. }
  416. }
  417. /* Turn off I2C */
  418. i2c->i2c_i2mod &= ~0x01;
  419. if (state->err_cb != NULL) {
  420. int n, i, b;
  421. /*
  422. * if we have an error callback function, look at the
  423. * error bits in the bd status and pass them back
  424. */
  425. if ((n = state->tx_idx) > 0) {
  426. for (i = 0; i < n; i++) {
  427. txbd = ((I2C_BD *) state->txbd) - (n - i);
  428. if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
  429. (*state->err_cb) (I2CECB_TX_ERR | b,
  430. i);
  431. }
  432. }
  433. if ((n = state->rx_idx) > 0) {
  434. for (i = 0; i < n; i++) {
  435. rxbd = ((I2C_BD *) state->rxbd) - (n - i);
  436. if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
  437. (*state->err_cb) (I2CECB_RX_ERR | b,
  438. i);
  439. }
  440. }
  441. if (j >= TOUT_LOOP)
  442. (*state->err_cb) (I2CECB_TIMEOUT, 0);
  443. }
  444. return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
  445. }
  446. static int had_tx_nak;
  447. static void i2c_test_callback(int flags, int xnum)
  448. {
  449. if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
  450. had_tx_nak = 1;
  451. }
  452. int i2c_probe(uchar chip)
  453. {
  454. i2c_state_t state;
  455. int rc;
  456. uchar buf[1];
  457. i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
  458. i2c_newio(&state);
  459. state.err_cb = i2c_test_callback;
  460. had_tx_nak = 0;
  461. rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
  462. buf);
  463. if (rc != 0)
  464. return (rc);
  465. rc = i2c_doio(&state);
  466. if ((rc != 0) && (rc != I2CERR_TIMEOUT))
  467. return (rc);
  468. return (had_tx_nak);
  469. }
  470. int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
  471. {
  472. i2c_state_t state;
  473. uchar xaddr[4];
  474. int rc;
  475. xaddr[0] = (addr >> 24) & 0xFF;
  476. xaddr[1] = (addr >> 16) & 0xFF;
  477. xaddr[2] = (addr >> 8) & 0xFF;
  478. xaddr[3] = addr & 0xFF;
  479. #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
  480. /*
  481. * EEPROM chips that implement "address overflow" are ones like
  482. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  483. * extra bits end up in the "chip address" bit slots. This makes
  484. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  485. *
  486. * Note that we consider the length of the address field to still
  487. * be one byte because the extra address bits are hidden in the
  488. * chip address.
  489. */
  490. chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
  491. #endif
  492. i2c_newio(&state);
  493. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
  494. &xaddr[4 - alen]);
  495. if (rc != 0) {
  496. printf("i2c_read: i2c_send failed (%d)\n", rc);
  497. return 1;
  498. }
  499. rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
  500. if (rc != 0) {
  501. printf("i2c_read: i2c_receive failed (%d)\n", rc);
  502. return 1;
  503. }
  504. rc = i2c_doio(&state);
  505. if (rc != 0) {
  506. printf("i2c_read: i2c_doio failed (%d)\n", rc);
  507. return 1;
  508. }
  509. return 0;
  510. }
  511. int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
  512. {
  513. i2c_state_t state;
  514. uchar xaddr[4];
  515. int rc;
  516. xaddr[0] = (addr >> 24) & 0xFF;
  517. xaddr[1] = (addr >> 16) & 0xFF;
  518. xaddr[2] = (addr >> 8) & 0xFF;
  519. xaddr[3] = addr & 0xFF;
  520. #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
  521. /*
  522. * EEPROM chips that implement "address overflow" are ones like
  523. * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
  524. * extra bits end up in the "chip address" bit slots. This makes
  525. * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
  526. *
  527. * Note that we consider the length of the address field to still
  528. * be one byte because the extra address bits are hidden in the
  529. * chip address.
  530. */
  531. chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
  532. #endif
  533. i2c_newio(&state);
  534. rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
  535. &xaddr[4 - alen]);
  536. if (rc != 0) {
  537. printf("i2c_write: first i2c_send failed (%d)\n", rc);
  538. return 1;
  539. }
  540. rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
  541. if (rc != 0) {
  542. printf("i2c_write: second i2c_send failed (%d)\n", rc);
  543. return 1;
  544. }
  545. rc = i2c_doio(&state);
  546. if (rc != 0) {
  547. printf("i2c_write: i2c_doio failed (%d)\n", rc);
  548. return 1;
  549. }
  550. return 0;
  551. }
  552. #endif /* CONFIG_HARD_I2C */