clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. /*
  2. * Copyright (c) 2011 The Chromium OS Authors.
  3. * (C) Copyright 2010-2015
  4. * NVIDIA Corporation <www.nvidia.com>
  5. *
  6. * SPDX-License-Identifier: GPL-2.0+
  7. */
  8. /* Tegra20 Clock control functions */
  9. #include <common.h>
  10. #include <errno.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/clock.h>
  13. #include <asm/arch/tegra.h>
  14. #include <asm/arch-tegra/clk_rst.h>
  15. #include <asm/arch-tegra/timer.h>
  16. #include <div64.h>
  17. #include <fdtdec.h>
  18. /*
  19. * Clock types that we can use as a source. The Tegra20 has muxes for the
  20. * peripheral clocks, and in most cases there are four options for the clock
  21. * source. This gives us a clock 'type' and exploits what commonality exists
  22. * in the device.
  23. *
  24. * Letters are obvious, except for T which means CLK_M, and S which means the
  25. * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  26. * datasheet) and PLL_M are different things. The former is the basic
  27. * clock supplied to the SOC from an external oscillator. The latter is the
  28. * memory clock PLL.
  29. *
  30. * See definitions in clock_id in the header file.
  31. */
  32. enum clock_type_id {
  33. CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
  34. CLOCK_TYPE_MCPA, /* and so on */
  35. CLOCK_TYPE_MCPT,
  36. CLOCK_TYPE_PCM,
  37. CLOCK_TYPE_PCMT,
  38. CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
  39. CLOCK_TYPE_PCXTS,
  40. CLOCK_TYPE_PDCT,
  41. CLOCK_TYPE_COUNT,
  42. CLOCK_TYPE_NONE = -1, /* invalid clock type */
  43. };
  44. enum {
  45. CLOCK_MAX_MUX = 4 /* number of source options for each clock */
  46. };
  47. /*
  48. * Clock source mux for each clock type. This just converts our enum into
  49. * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
  50. * is special as it has 5 sources. Since it also has a different number of
  51. * bits in its register for the source, we just handle it with a special
  52. * case in the code.
  53. */
  54. #define CLK(x) CLOCK_ID_ ## x
  55. static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
  56. { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
  57. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
  58. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
  59. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
  60. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
  61. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
  62. { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
  63. { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
  64. };
  65. /*
  66. * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
  67. * not in the header file since it is for purely internal use - we want
  68. * callers to use the PERIPH_ID for all access to peripheral clocks to avoid
  69. * confusion bewteen PERIPH_ID_... and PERIPHC_...
  70. *
  71. * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
  72. * confusing.
  73. *
  74. * Note to SOC vendors: perhaps define a unified numbering for peripherals and
  75. * use it for reset, clock enable, clock source/divider and even pinmuxing
  76. * if you can.
  77. */
  78. enum periphc_internal_id {
  79. /* 0x00 */
  80. PERIPHC_I2S1,
  81. PERIPHC_I2S2,
  82. PERIPHC_SPDIF_OUT,
  83. PERIPHC_SPDIF_IN,
  84. PERIPHC_PWM,
  85. PERIPHC_SPI1,
  86. PERIPHC_SPI2,
  87. PERIPHC_SPI3,
  88. /* 0x08 */
  89. PERIPHC_XIO,
  90. PERIPHC_I2C1,
  91. PERIPHC_DVC_I2C,
  92. PERIPHC_TWC,
  93. PERIPHC_0c,
  94. PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
  95. PERIPHC_DISP1,
  96. PERIPHC_DISP2,
  97. /* 0x10 */
  98. PERIPHC_CVE,
  99. PERIPHC_IDE0,
  100. PERIPHC_VI,
  101. PERIPHC_1c,
  102. PERIPHC_SDMMC1,
  103. PERIPHC_SDMMC2,
  104. PERIPHC_G3D,
  105. PERIPHC_G2D,
  106. /* 0x18 */
  107. PERIPHC_NDFLASH,
  108. PERIPHC_SDMMC4,
  109. PERIPHC_VFIR,
  110. PERIPHC_EPP,
  111. PERIPHC_MPE,
  112. PERIPHC_MIPI,
  113. PERIPHC_UART1,
  114. PERIPHC_UART2,
  115. /* 0x20 */
  116. PERIPHC_HOST1X,
  117. PERIPHC_21,
  118. PERIPHC_TVO,
  119. PERIPHC_HDMI,
  120. PERIPHC_24,
  121. PERIPHC_TVDAC,
  122. PERIPHC_I2C2,
  123. PERIPHC_EMC,
  124. /* 0x28 */
  125. PERIPHC_UART3,
  126. PERIPHC_29,
  127. PERIPHC_VI_SENSOR,
  128. PERIPHC_2b,
  129. PERIPHC_2c,
  130. PERIPHC_SPI4,
  131. PERIPHC_I2C3,
  132. PERIPHC_SDMMC3,
  133. /* 0x30 */
  134. PERIPHC_UART4,
  135. PERIPHC_UART5,
  136. PERIPHC_VDE,
  137. PERIPHC_OWR,
  138. PERIPHC_NOR,
  139. PERIPHC_CSITE,
  140. PERIPHC_COUNT,
  141. PERIPHC_NONE = -1,
  142. };
  143. /*
  144. * Clock type for each peripheral clock source. We put the name in each
  145. * record just so it is easy to match things up
  146. */
  147. #define TYPE(name, type) type
  148. static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
  149. /* 0x00 */
  150. TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
  151. TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
  152. TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
  153. TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
  154. TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
  155. TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
  156. TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
  157. TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
  158. /* 0x08 */
  159. TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
  160. TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
  161. TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
  162. TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
  163. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  164. TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
  165. TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
  166. TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
  167. /* 0x10 */
  168. TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
  169. TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
  170. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  171. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  172. TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
  173. TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
  174. TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
  175. TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
  176. /* 0x18 */
  177. TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
  178. TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
  179. TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
  180. TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
  181. TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
  182. TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
  183. TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
  184. TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
  185. /* 0x20 */
  186. TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
  187. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  188. TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
  189. TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
  190. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  191. TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
  192. TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
  193. TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
  194. /* 0x28 */
  195. TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
  196. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  197. TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
  198. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  199. TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
  200. TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
  201. TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
  202. TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
  203. /* 0x30 */
  204. TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
  205. TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
  206. TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
  207. TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
  208. TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
  209. TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
  210. };
  211. /*
  212. * This array translates a periph_id to a periphc_internal_id
  213. *
  214. * Not present/matched up:
  215. * uint vi_sensor; _VI_SENSOR_0, 0x1A8
  216. * SPDIF - which is both 0x08 and 0x0c
  217. *
  218. */
  219. #define NONE(name) (-1)
  220. #define OFFSET(name, value) PERIPHC_ ## name
  221. static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
  222. /* Low word: 31:0 */
  223. NONE(CPU),
  224. NONE(RESERVED1),
  225. NONE(RESERVED2),
  226. NONE(AC97),
  227. NONE(RTC),
  228. NONE(TMR),
  229. PERIPHC_UART1,
  230. PERIPHC_UART2, /* and vfir 0x68 */
  231. /* 0x08 */
  232. NONE(GPIO),
  233. PERIPHC_SDMMC2,
  234. NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
  235. PERIPHC_I2S1,
  236. PERIPHC_I2C1,
  237. PERIPHC_NDFLASH,
  238. PERIPHC_SDMMC1,
  239. PERIPHC_SDMMC4,
  240. /* 0x10 */
  241. PERIPHC_TWC,
  242. PERIPHC_PWM,
  243. PERIPHC_I2S2,
  244. PERIPHC_EPP,
  245. PERIPHC_VI,
  246. PERIPHC_G2D,
  247. NONE(USBD),
  248. NONE(ISP),
  249. /* 0x18 */
  250. PERIPHC_G3D,
  251. PERIPHC_IDE0,
  252. PERIPHC_DISP2,
  253. PERIPHC_DISP1,
  254. PERIPHC_HOST1X,
  255. NONE(VCP),
  256. NONE(RESERVED30),
  257. NONE(CACHE2),
  258. /* Middle word: 63:32 */
  259. NONE(MEM),
  260. NONE(AHBDMA),
  261. NONE(APBDMA),
  262. NONE(RESERVED35),
  263. NONE(KBC),
  264. NONE(STAT_MON),
  265. NONE(PMC),
  266. NONE(FUSE),
  267. /* 0x28 */
  268. NONE(KFUSE),
  269. NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
  270. PERIPHC_NOR,
  271. PERIPHC_SPI1,
  272. PERIPHC_SPI2,
  273. PERIPHC_XIO,
  274. PERIPHC_SPI3,
  275. PERIPHC_DVC_I2C,
  276. /* 0x30 */
  277. NONE(DSI),
  278. PERIPHC_TVO, /* also CVE 0x40 */
  279. PERIPHC_MIPI,
  280. PERIPHC_HDMI,
  281. PERIPHC_CSITE,
  282. PERIPHC_TVDAC,
  283. PERIPHC_I2C2,
  284. PERIPHC_UART3,
  285. /* 0x38 */
  286. NONE(RESERVED56),
  287. PERIPHC_EMC,
  288. NONE(USB2),
  289. NONE(USB3),
  290. PERIPHC_MPE,
  291. PERIPHC_VDE,
  292. NONE(BSEA),
  293. NONE(BSEV),
  294. /* Upper word 95:64 */
  295. NONE(SPEEDO),
  296. PERIPHC_UART4,
  297. PERIPHC_UART5,
  298. PERIPHC_I2C3,
  299. PERIPHC_SPI4,
  300. PERIPHC_SDMMC3,
  301. NONE(PCIE),
  302. PERIPHC_OWR,
  303. /* 0x48 */
  304. NONE(AFI),
  305. NONE(CORESIGHT),
  306. NONE(PCIEXCLK),
  307. NONE(AVPUCQ),
  308. NONE(RESERVED76),
  309. NONE(RESERVED77),
  310. NONE(RESERVED78),
  311. NONE(RESERVED79),
  312. /* 0x50 */
  313. NONE(RESERVED80),
  314. NONE(RESERVED81),
  315. NONE(RESERVED82),
  316. NONE(RESERVED83),
  317. NONE(IRAMA),
  318. NONE(IRAMB),
  319. NONE(IRAMC),
  320. NONE(IRAMD),
  321. /* 0x58 */
  322. NONE(CRAM2),
  323. };
  324. /*
  325. * PLL divider shift/mask tables for all PLL IDs.
  326. */
  327. struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
  328. /*
  329. * T20 and T25
  330. * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
  331. * If lock_ena or lock_det are >31, they're not used in that PLL.
  332. */
  333. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
  334. .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
  335. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 0, .p_mask = 0,
  336. .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
  337. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  338. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
  339. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  340. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
  341. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
  342. .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
  343. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  344. .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
  345. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x0F,
  346. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
  347. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
  348. .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
  349. { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  350. .lock_ena = 18, .lock_det = 0, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS */
  351. };
  352. /*
  353. * Get the oscillator frequency, from the corresponding hardware configuration
  354. * field. T20 has 4 frequencies that it supports.
  355. */
  356. enum clock_osc_freq clock_get_osc_freq(void)
  357. {
  358. struct clk_rst_ctlr *clkrst =
  359. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  360. u32 reg;
  361. reg = readl(&clkrst->crc_osc_ctrl);
  362. return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
  363. }
  364. /* Returns a pointer to the clock source register for a peripheral */
  365. u32 *get_periph_source_reg(enum periph_id periph_id)
  366. {
  367. struct clk_rst_ctlr *clkrst =
  368. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  369. enum periphc_internal_id internal_id;
  370. assert(clock_periph_id_isvalid(periph_id));
  371. internal_id = periph_id_to_internal_id[periph_id];
  372. assert(internal_id != -1);
  373. return &clkrst->crc_clk_src[internal_id];
  374. }
  375. int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
  376. int *divider_bits, int *type)
  377. {
  378. enum periphc_internal_id internal_id;
  379. if (!clock_periph_id_isvalid(periph_id))
  380. return -1;
  381. internal_id = periph_id_to_internal_id[periph_id];
  382. if (!periphc_internal_id_isvalid(internal_id))
  383. return -1;
  384. *type = clock_periph_type[internal_id];
  385. if (!clock_type_id_isvalid(*type))
  386. return -1;
  387. /*
  388. * Special cases here for the clock with a 4-bit source mux and I2C
  389. * with its 16-bit divisor
  390. */
  391. if (*type == CLOCK_TYPE_PCXTS)
  392. *mux_bits = MASK_BITS_31_28;
  393. else
  394. *mux_bits = MASK_BITS_31_30;
  395. if (*type == CLOCK_TYPE_PCMT16)
  396. *divider_bits = 16;
  397. else
  398. *divider_bits = 8;
  399. return 0;
  400. }
  401. enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
  402. {
  403. enum periphc_internal_id internal_id;
  404. int type;
  405. if (!clock_periph_id_isvalid(periph_id))
  406. return CLOCK_ID_NONE;
  407. internal_id = periph_id_to_internal_id[periph_id];
  408. if (!periphc_internal_id_isvalid(internal_id))
  409. return CLOCK_ID_NONE;
  410. type = clock_periph_type[internal_id];
  411. if (!clock_type_id_isvalid(type))
  412. return CLOCK_ID_NONE;
  413. return clock_source[type][source];
  414. }
  415. /**
  416. * Given a peripheral ID and the required source clock, this returns which
  417. * value should be programmed into the source mux for that peripheral.
  418. *
  419. * There is special code here to handle the one source type with 5 sources.
  420. *
  421. * @param periph_id peripheral to start
  422. * @param source PLL id of required parent clock
  423. * @param mux_bits Set to number of bits in mux register: 2 or 4
  424. * @param divider_bits Set to number of divider bits (8 or 16)
  425. * @return mux value (0-4, or -1 if not found)
  426. */
  427. int get_periph_clock_source(enum periph_id periph_id,
  428. enum clock_id parent, int *mux_bits, int *divider_bits)
  429. {
  430. enum clock_type_id type;
  431. int mux, err;
  432. err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
  433. assert(!err);
  434. for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
  435. if (clock_source[type][mux] == parent)
  436. return mux;
  437. /*
  438. * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
  439. * which is not in our table. If not, then they are asking for a
  440. * source which this peripheral can't access through its mux.
  441. */
  442. assert(type == CLOCK_TYPE_PCXTS);
  443. assert(parent == CLOCK_ID_SFROM32KHZ);
  444. if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
  445. return 4; /* mux value for this clock */
  446. /* if we get here, either us or the caller has made a mistake */
  447. printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
  448. parent);
  449. return -1;
  450. }
  451. void clock_set_enable(enum periph_id periph_id, int enable)
  452. {
  453. struct clk_rst_ctlr *clkrst =
  454. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  455. u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
  456. u32 reg;
  457. /* Enable/disable the clock to this peripheral */
  458. assert(clock_periph_id_isvalid(periph_id));
  459. reg = readl(clk);
  460. if (enable)
  461. reg |= PERIPH_MASK(periph_id);
  462. else
  463. reg &= ~PERIPH_MASK(periph_id);
  464. writel(reg, clk);
  465. }
  466. void reset_set_enable(enum periph_id periph_id, int enable)
  467. {
  468. struct clk_rst_ctlr *clkrst =
  469. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  470. u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
  471. u32 reg;
  472. /* Enable/disable reset to the peripheral */
  473. assert(clock_periph_id_isvalid(periph_id));
  474. reg = readl(reset);
  475. if (enable)
  476. reg |= PERIPH_MASK(periph_id);
  477. else
  478. reg &= ~PERIPH_MASK(periph_id);
  479. writel(reg, reset);
  480. }
  481. #if CONFIG_IS_ENABLED(OF_CONTROL)
  482. /*
  483. * Convert a device tree clock ID to our peripheral ID. They are mostly
  484. * the same but we are very cautious so we check that a valid clock ID is
  485. * provided.
  486. *
  487. * @param clk_id Clock ID according to tegra20 device tree binding
  488. * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
  489. */
  490. enum periph_id clk_id_to_periph_id(int clk_id)
  491. {
  492. if (clk_id > PERIPH_ID_COUNT)
  493. return PERIPH_ID_NONE;
  494. switch (clk_id) {
  495. case PERIPH_ID_RESERVED1:
  496. case PERIPH_ID_RESERVED2:
  497. case PERIPH_ID_RESERVED30:
  498. case PERIPH_ID_RESERVED35:
  499. case PERIPH_ID_RESERVED56:
  500. case PERIPH_ID_PCIEXCLK:
  501. case PERIPH_ID_RESERVED76:
  502. case PERIPH_ID_RESERVED77:
  503. case PERIPH_ID_RESERVED78:
  504. case PERIPH_ID_RESERVED79:
  505. case PERIPH_ID_RESERVED80:
  506. case PERIPH_ID_RESERVED81:
  507. case PERIPH_ID_RESERVED82:
  508. case PERIPH_ID_RESERVED83:
  509. case PERIPH_ID_RESERVED91:
  510. return PERIPH_ID_NONE;
  511. default:
  512. return clk_id;
  513. }
  514. }
  515. #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
  516. void clock_early_init(void)
  517. {
  518. /*
  519. * PLLP output frequency set to 216MHz
  520. * PLLC output frequency set to 600Mhz
  521. *
  522. * TODO: Can we calculate these values instead of hard-coding?
  523. */
  524. switch (clock_get_osc_freq()) {
  525. case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
  526. clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
  527. clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
  528. break;
  529. case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
  530. clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
  531. clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
  532. break;
  533. case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
  534. clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
  535. clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
  536. break;
  537. case CLOCK_OSC_FREQ_19_2:
  538. default:
  539. /*
  540. * These are not supported. It is too early to print a
  541. * message and the UART likely won't work anyway due to the
  542. * oscillator being wrong.
  543. */
  544. break;
  545. }
  546. }
  547. void arch_timer_init(void)
  548. {
  549. }
  550. #define PMC_SATA_PWRGT 0x1ac
  551. #define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
  552. #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
  553. #define PLLE_SS_CNTL 0x68
  554. #define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
  555. #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
  556. #define PLLE_SS_CNTL_SSCBYP (1 << 12)
  557. #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
  558. #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
  559. #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
  560. #define PLLE_BASE 0x0e8
  561. #define PLLE_BASE_ENABLE_CML (1 << 31)
  562. #define PLLE_BASE_ENABLE (1 << 30)
  563. #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
  564. #define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
  565. #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
  566. #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
  567. #define PLLE_MISC 0x0ec
  568. #define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
  569. #define PLLE_MISC_PLL_READY (1 << 15)
  570. #define PLLE_MISC_LOCK (1 << 11)
  571. #define PLLE_MISC_LOCK_ENABLE (1 << 9)
  572. #define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
  573. static int tegra_plle_train(void)
  574. {
  575. unsigned int timeout = 2000;
  576. unsigned long value;
  577. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  578. value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  579. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  580. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  581. value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
  582. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  583. value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  584. value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
  585. writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
  586. do {
  587. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  588. if (value & PLLE_MISC_PLL_READY)
  589. break;
  590. udelay(100);
  591. } while (--timeout);
  592. if (timeout == 0) {
  593. error("timeout waiting for PLLE to become ready");
  594. return -ETIMEDOUT;
  595. }
  596. return 0;
  597. }
  598. int tegra_plle_enable(void)
  599. {
  600. unsigned int timeout = 1000;
  601. u32 value;
  602. int err;
  603. /* disable PLLE clock */
  604. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  605. value &= ~PLLE_BASE_ENABLE_CML;
  606. value &= ~PLLE_BASE_ENABLE;
  607. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  608. /* clear lock enable and setup field */
  609. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  610. value &= ~PLLE_MISC_LOCK_ENABLE;
  611. value &= ~PLLE_MISC_SETUP_BASE(0xffff);
  612. value &= ~PLLE_MISC_SETUP_EXT(0x3);
  613. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  614. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  615. if ((value & PLLE_MISC_PLL_READY) == 0) {
  616. err = tegra_plle_train();
  617. if (err < 0) {
  618. error("failed to train PLLE: %d", err);
  619. return err;
  620. }
  621. }
  622. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  623. value |= PLLE_MISC_SETUP_BASE(0x7);
  624. value |= PLLE_MISC_LOCK_ENABLE;
  625. value |= PLLE_MISC_SETUP_EXT(0);
  626. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  627. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  628. value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
  629. PLLE_SS_CNTL_BYPASS_SS;
  630. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  631. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  632. value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
  633. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  634. do {
  635. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  636. if (value & PLLE_MISC_LOCK)
  637. break;
  638. udelay(2);
  639. } while (--timeout);
  640. if (timeout == 0) {
  641. error("timeout waiting for PLLE to lock");
  642. return -ETIMEDOUT;
  643. }
  644. udelay(50);
  645. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  646. value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
  647. value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
  648. value &= ~PLLE_SS_CNTL_SSCINC(0xff);
  649. value |= PLLE_SS_CNTL_SSCINC(0x01);
  650. value &= ~PLLE_SS_CNTL_SSCBYP;
  651. value &= ~PLLE_SS_CNTL_INTERP_RESET;
  652. value &= ~PLLE_SS_CNTL_BYPASS_SS;
  653. value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
  654. value |= PLLE_SS_CNTL_SSCMAX(0x24);
  655. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  656. return 0;
  657. }
  658. struct periph_clk_init periph_clk_init_table[] = {
  659. { PERIPH_ID_SPI1, CLOCK_ID_PERIPH },
  660. { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
  661. { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
  662. { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
  663. { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
  664. { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
  665. { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
  666. { PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH },
  667. { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
  668. { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
  669. { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
  670. { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
  671. { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
  672. { PERIPH_ID_DVC_I2C, CLOCK_ID_PERIPH },
  673. { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
  674. { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
  675. { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
  676. { -1, },
  677. };