clock.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * (C) Copyright 2013-2015
  3. * NVIDIA Corporation <www.nvidia.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. /* Tegra124 Clock control functions */
  8. #include <common.h>
  9. #include <asm/io.h>
  10. #include <asm/arch/clock.h>
  11. #include <asm/arch/sysctr.h>
  12. #include <asm/arch/tegra.h>
  13. #include <asm/arch-tegra/clk_rst.h>
  14. #include <asm/arch-tegra/timer.h>
  15. #include <div64.h>
  16. #include <fdtdec.h>
  17. /*
  18. * Clock types that we can use as a source. The Tegra124 has muxes for the
  19. * peripheral clocks, and in most cases there are four options for the clock
  20. * source. This gives us a clock 'type' and exploits what commonality exists
  21. * in the device.
  22. *
  23. * Letters are obvious, except for T which means CLK_M, and S which means the
  24. * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
  25. * datasheet) and PLL_M are different things. The former is the basic
  26. * clock supplied to the SOC from an external oscillator. The latter is the
  27. * memory clock PLL.
  28. *
  29. * See definitions in clock_id in the header file.
  30. */
  31. enum clock_type_id {
  32. CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
  33. CLOCK_TYPE_MCPA, /* and so on */
  34. CLOCK_TYPE_MCPT,
  35. CLOCK_TYPE_PCM,
  36. CLOCK_TYPE_PCMT,
  37. CLOCK_TYPE_PDCT,
  38. CLOCK_TYPE_ACPT,
  39. CLOCK_TYPE_ASPTE,
  40. CLOCK_TYPE_PMDACD2T,
  41. CLOCK_TYPE_PCST,
  42. CLOCK_TYPE_DP,
  43. CLOCK_TYPE_PC2CC3M,
  44. CLOCK_TYPE_PC2CC3S_T,
  45. CLOCK_TYPE_PC2CC3M_T,
  46. CLOCK_TYPE_PC2CC3M_T16, /* PC2CC3M_T, but w/16-bit divisor (I2C) */
  47. CLOCK_TYPE_MC2CC3P_A,
  48. CLOCK_TYPE_M,
  49. CLOCK_TYPE_MCPTM2C2C3,
  50. CLOCK_TYPE_PC2CC3T_S,
  51. CLOCK_TYPE_AC2CC3P_TS2,
  52. CLOCK_TYPE_COUNT,
  53. CLOCK_TYPE_NONE = -1, /* invalid clock type */
  54. };
  55. enum {
  56. CLOCK_MAX_MUX = 8 /* number of source options for each clock */
  57. };
  58. /*
  59. * Clock source mux for each clock type. This just converts our enum into
  60. * a list of mux sources for use by the code.
  61. *
  62. * Note:
  63. * The extra column in each clock source array is used to store the mask
  64. * bits in its register for the source.
  65. */
  66. #define CLK(x) CLOCK_ID_ ## x
  67. static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
  68. { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC),
  69. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  70. MASK_BITS_31_30},
  71. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO),
  72. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  73. MASK_BITS_31_30},
  74. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  75. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  76. MASK_BITS_31_30},
  77. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE),
  78. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  79. MASK_BITS_31_30},
  80. { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC),
  81. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  82. MASK_BITS_31_30},
  83. { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC),
  84. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  85. MASK_BITS_31_30},
  86. { CLK(AUDIO), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  87. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  88. MASK_BITS_31_30},
  89. { CLK(AUDIO), CLK(SFROM32KHZ), CLK(PERIPH), CLK(OSC),
  90. CLK(EPCI), CLK(NONE), CLK(NONE), CLK(NONE),
  91. MASK_BITS_31_29},
  92. { CLK(PERIPH), CLK(MEMORY), CLK(DISPLAY), CLK(AUDIO),
  93. CLK(CGENERAL), CLK(DISPLAY2), CLK(OSC), CLK(NONE),
  94. MASK_BITS_31_29},
  95. { CLK(PERIPH), CLK(CGENERAL), CLK(SFROM32KHZ), CLK(OSC),
  96. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  97. MASK_BITS_31_28},
  98. /* CLOCK_TYPE_DP */
  99. { CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  100. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  101. MASK_BITS_31_28},
  102. /* Additional clock types on Tegra114+ */
  103. /* CLOCK_TYPE_PC2CC3M */
  104. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  105. CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
  106. MASK_BITS_31_29},
  107. /* CLOCK_TYPE_PC2CC3S_T */
  108. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  109. CLK(SFROM32KHZ), CLK(NONE), CLK(OSC), CLK(NONE),
  110. MASK_BITS_31_29},
  111. /* CLOCK_TYPE_PC2CC3M_T */
  112. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  113. CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
  114. MASK_BITS_31_29},
  115. /* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
  116. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  117. CLK(MEMORY), CLK(NONE), CLK(OSC), CLK(NONE),
  118. MASK_BITS_31_29},
  119. /* CLOCK_TYPE_MC2CC3P_A */
  120. { CLK(MEMORY), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  121. CLK(PERIPH), CLK(NONE), CLK(AUDIO), CLK(NONE),
  122. MASK_BITS_31_29},
  123. /* CLOCK_TYPE_M */
  124. { CLK(MEMORY), CLK(NONE), CLK(NONE), CLK(NONE),
  125. CLK(NONE), CLK(NONE), CLK(NONE), CLK(NONE),
  126. MASK_BITS_31_30},
  127. /* CLOCK_TYPE_MCPTM2C2C3 */
  128. { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC),
  129. CLK(MEMORY2), CLK(CGENERAL2), CLK(CGENERAL3), CLK(NONE),
  130. MASK_BITS_31_29},
  131. /* CLOCK_TYPE_PC2CC3T_S */
  132. { CLK(PERIPH), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  133. CLK(OSC), CLK(NONE), CLK(SFROM32KHZ), CLK(NONE),
  134. MASK_BITS_31_29},
  135. /* CLOCK_TYPE_AC2CC3P_TS2 */
  136. { CLK(AUDIO), CLK(CGENERAL2), CLK(CGENERAL), CLK(CGENERAL3),
  137. CLK(PERIPH), CLK(NONE), CLK(OSC), CLK(SRC2),
  138. MASK_BITS_31_29},
  139. };
  140. /*
  141. * Clock type for each peripheral clock source. We put the name in each
  142. * record just so it is easy to match things up
  143. */
  144. #define TYPE(name, type) type
  145. static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
  146. /* 0x00 */
  147. TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
  148. TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
  149. TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
  150. TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PC2CC3M),
  151. TYPE(PERIPHC_PWM, CLOCK_TYPE_PC2CC3S_T),
  152. TYPE(PERIPHC_05h, CLOCK_TYPE_NONE),
  153. TYPE(PERIPHC_SBC2, CLOCK_TYPE_PC2CC3M_T),
  154. TYPE(PERIPHC_SBC3, CLOCK_TYPE_PC2CC3M_T),
  155. /* 0x08 */
  156. TYPE(PERIPHC_08h, CLOCK_TYPE_NONE),
  157. TYPE(PERIPHC_I2C1, CLOCK_TYPE_PC2CC3M_T16),
  158. TYPE(PERIPHC_I2C5, CLOCK_TYPE_PC2CC3M_T16),
  159. TYPE(PERIPHC_0bh, CLOCK_TYPE_NONE),
  160. TYPE(PERIPHC_0ch, CLOCK_TYPE_NONE),
  161. TYPE(PERIPHC_SBC1, CLOCK_TYPE_PC2CC3M_T),
  162. TYPE(PERIPHC_DISP1, CLOCK_TYPE_PMDACD2T),
  163. TYPE(PERIPHC_DISP2, CLOCK_TYPE_PMDACD2T),
  164. /* 0x10 */
  165. TYPE(PERIPHC_10h, CLOCK_TYPE_NONE),
  166. TYPE(PERIPHC_11h, CLOCK_TYPE_NONE),
  167. TYPE(PERIPHC_VI, CLOCK_TYPE_MC2CC3P_A),
  168. TYPE(PERIPHC_13h, CLOCK_TYPE_NONE),
  169. TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PC2CC3M_T),
  170. TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PC2CC3M_T),
  171. TYPE(PERIPHC_16h, CLOCK_TYPE_NONE),
  172. TYPE(PERIPHC_17h, CLOCK_TYPE_NONE),
  173. /* 0x18 */
  174. TYPE(PERIPHC_18h, CLOCK_TYPE_NONE),
  175. TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PC2CC3M_T),
  176. TYPE(PERIPHC_VFIR, CLOCK_TYPE_PC2CC3M_T),
  177. TYPE(PERIPHC_1Bh, CLOCK_TYPE_NONE),
  178. TYPE(PERIPHC_1Ch, CLOCK_TYPE_NONE),
  179. TYPE(PERIPHC_HSI, CLOCK_TYPE_PC2CC3M_T),
  180. TYPE(PERIPHC_UART1, CLOCK_TYPE_PC2CC3M_T),
  181. TYPE(PERIPHC_UART2, CLOCK_TYPE_PC2CC3M_T),
  182. /* 0x20 */
  183. TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MC2CC3P_A),
  184. TYPE(PERIPHC_21h, CLOCK_TYPE_NONE),
  185. TYPE(PERIPHC_22h, CLOCK_TYPE_NONE),
  186. TYPE(PERIPHC_HDMI, CLOCK_TYPE_PMDACD2T),
  187. TYPE(PERIPHC_24h, CLOCK_TYPE_NONE),
  188. TYPE(PERIPHC_25h, CLOCK_TYPE_NONE),
  189. TYPE(PERIPHC_I2C2, CLOCK_TYPE_PC2CC3M_T16),
  190. TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPTM2C2C3),
  191. /* 0x28 */
  192. TYPE(PERIPHC_UART3, CLOCK_TYPE_PC2CC3M_T),
  193. TYPE(PERIPHC_29h, CLOCK_TYPE_NONE),
  194. TYPE(PERIPHC_VI_SENSOR, CLOCK_TYPE_MC2CC3P_A),
  195. TYPE(PERIPHC_2bh, CLOCK_TYPE_NONE),
  196. TYPE(PERIPHC_2ch, CLOCK_TYPE_NONE),
  197. TYPE(PERIPHC_SBC4, CLOCK_TYPE_PC2CC3M_T),
  198. TYPE(PERIPHC_I2C3, CLOCK_TYPE_PC2CC3M_T16),
  199. TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PC2CC3M_T),
  200. /* 0x30 */
  201. TYPE(PERIPHC_UART4, CLOCK_TYPE_PC2CC3M_T),
  202. TYPE(PERIPHC_UART5, CLOCK_TYPE_PC2CC3M_T),
  203. TYPE(PERIPHC_VDE, CLOCK_TYPE_PC2CC3M_T),
  204. TYPE(PERIPHC_OWR, CLOCK_TYPE_PC2CC3M_T),
  205. TYPE(PERIPHC_NOR, CLOCK_TYPE_PC2CC3M_T),
  206. TYPE(PERIPHC_CSITE, CLOCK_TYPE_PC2CC3M_T),
  207. TYPE(PERIPHC_I2S0, CLOCK_TYPE_AXPT),
  208. TYPE(PERIPHC_DTV, CLOCK_TYPE_NONE),
  209. /* 0x38 */
  210. TYPE(PERIPHC_38h, CLOCK_TYPE_NONE),
  211. TYPE(PERIPHC_39h, CLOCK_TYPE_NONE),
  212. TYPE(PERIPHC_3ah, CLOCK_TYPE_NONE),
  213. TYPE(PERIPHC_3bh, CLOCK_TYPE_NONE),
  214. TYPE(PERIPHC_MSENC, CLOCK_TYPE_MC2CC3P_A),
  215. TYPE(PERIPHC_TSEC, CLOCK_TYPE_PC2CC3M_T),
  216. TYPE(PERIPHC_3eh, CLOCK_TYPE_NONE),
  217. TYPE(PERIPHC_OSC, CLOCK_TYPE_NONE),
  218. /* 0x40 */
  219. TYPE(PERIPHC_40h, CLOCK_TYPE_NONE), /* start with 0x3b0 */
  220. TYPE(PERIPHC_MSELECT, CLOCK_TYPE_PC2CC3M_T),
  221. TYPE(PERIPHC_TSENSOR, CLOCK_TYPE_PC2CC3T_S),
  222. TYPE(PERIPHC_I2S3, CLOCK_TYPE_AXPT),
  223. TYPE(PERIPHC_I2S4, CLOCK_TYPE_AXPT),
  224. TYPE(PERIPHC_I2C4, CLOCK_TYPE_PC2CC3M_T16),
  225. TYPE(PERIPHC_SBC5, CLOCK_TYPE_PC2CC3M_T),
  226. TYPE(PERIPHC_SBC6, CLOCK_TYPE_PC2CC3M_T),
  227. /* 0x48 */
  228. TYPE(PERIPHC_AUDIO, CLOCK_TYPE_AC2CC3P_TS2),
  229. TYPE(PERIPHC_49h, CLOCK_TYPE_NONE),
  230. TYPE(PERIPHC_DAM0, CLOCK_TYPE_AC2CC3P_TS2),
  231. TYPE(PERIPHC_DAM1, CLOCK_TYPE_AC2CC3P_TS2),
  232. TYPE(PERIPHC_DAM2, CLOCK_TYPE_AC2CC3P_TS2),
  233. TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
  234. TYPE(PERIPHC_ACTMON, CLOCK_TYPE_PC2CC3S_T),
  235. TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
  236. /* 0x50 */
  237. TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
  238. TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
  239. TYPE(PERIPHC_52h, CLOCK_TYPE_NONE),
  240. TYPE(PERIPHC_I2CSLOW, CLOCK_TYPE_PC2CC3S_T),
  241. TYPE(PERIPHC_SYS, CLOCK_TYPE_NONE),
  242. TYPE(PERIPHC_55h, CLOCK_TYPE_NONE),
  243. TYPE(PERIPHC_56h, CLOCK_TYPE_NONE),
  244. TYPE(PERIPHC_57h, CLOCK_TYPE_NONE),
  245. /* 0x58 */
  246. TYPE(PERIPHC_58h, CLOCK_TYPE_NONE),
  247. TYPE(PERIPHC_SOR, CLOCK_TYPE_NONE),
  248. TYPE(PERIPHC_5ah, CLOCK_TYPE_NONE),
  249. TYPE(PERIPHC_5bh, CLOCK_TYPE_NONE),
  250. TYPE(PERIPHC_SATAOOB, CLOCK_TYPE_PCMT),
  251. TYPE(PERIPHC_SATA, CLOCK_TYPE_PCMT),
  252. TYPE(PERIPHC_HDA, CLOCK_TYPE_PC2CC3M_T),
  253. TYPE(PERIPHC_5fh, CLOCK_TYPE_NONE),
  254. /* 0x60 */
  255. TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
  256. TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
  257. TYPE(PERIPHC_XUSB_FS, CLOCK_TYPE_NONE),
  258. TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
  259. TYPE(PERIPHC_XUSB_SS, CLOCK_TYPE_NONE),
  260. TYPE(PERIPHC_CILAB, CLOCK_TYPE_NONE),
  261. TYPE(PERIPHC_CILCD, CLOCK_TYPE_NONE),
  262. TYPE(PERIPHC_CILE, CLOCK_TYPE_NONE),
  263. /* 0x68 */
  264. TYPE(PERIPHC_DSIA_LP, CLOCK_TYPE_NONE),
  265. TYPE(PERIPHC_DSIB_LP, CLOCK_TYPE_NONE),
  266. TYPE(PERIPHC_ENTROPY, CLOCK_TYPE_NONE),
  267. TYPE(PERIPHC_DVFS_REF, CLOCK_TYPE_NONE),
  268. TYPE(PERIPHC_DVFS_SOC, CLOCK_TYPE_NONE),
  269. TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
  270. TYPE(PERIPHC_ADX0, CLOCK_TYPE_NONE),
  271. TYPE(PERIPHC_AMX0, CLOCK_TYPE_NONE),
  272. /* 0x70 */
  273. TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
  274. TYPE(PERIPHC_SOC_THERM, CLOCK_TYPE_NONE),
  275. TYPE(PERIPHC_72h, CLOCK_TYPE_NONE),
  276. TYPE(PERIPHC_73h, CLOCK_TYPE_NONE),
  277. TYPE(PERIPHC_74h, CLOCK_TYPE_NONE),
  278. TYPE(PERIPHC_75h, CLOCK_TYPE_NONE),
  279. TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
  280. TYPE(PERIPHC_I2C6, CLOCK_TYPE_PC2CC3M_T16),
  281. /* 0x78 */
  282. TYPE(PERIPHC_78h, CLOCK_TYPE_NONE),
  283. TYPE(PERIPHC_EMC_DLL, CLOCK_TYPE_MCPTM2C2C3),
  284. TYPE(PERIPHC_HDMI_AUDIO, CLOCK_TYPE_NONE),
  285. TYPE(PERIPHC_CLK72MHZ, CLOCK_TYPE_NONE),
  286. TYPE(PERIPHC_ADX1, CLOCK_TYPE_AC2CC3P_TS2),
  287. TYPE(PERIPHC_AMX1, CLOCK_TYPE_AC2CC3P_TS2),
  288. TYPE(PERIPHC_VIC, CLOCK_TYPE_NONE),
  289. TYPE(PERIPHC_7Fh, CLOCK_TYPE_NONE),
  290. };
  291. /*
  292. * This array translates a periph_id to a periphc_internal_id
  293. *
  294. * Not present/matched up:
  295. * uint vi_sensor; _VI_SENSOR_0, 0x1A8
  296. * SPDIF - which is both 0x08 and 0x0c
  297. *
  298. */
  299. #define NONE(name) (-1)
  300. #define OFFSET(name, value) PERIPHC_ ## name
  301. static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
  302. /* Low word: 31:0 */
  303. NONE(CPU),
  304. NONE(COP),
  305. NONE(TRIGSYS),
  306. NONE(ISPB),
  307. NONE(RESERVED4),
  308. NONE(TMR),
  309. PERIPHC_UART1,
  310. PERIPHC_UART2, /* and vfir 0x68 */
  311. /* 8 */
  312. NONE(GPIO),
  313. PERIPHC_SDMMC2,
  314. PERIPHC_SPDIF_IN,
  315. PERIPHC_I2S1,
  316. PERIPHC_I2C1,
  317. NONE(RESERVED13),
  318. PERIPHC_SDMMC1,
  319. PERIPHC_SDMMC4,
  320. /* 16 */
  321. NONE(TCW),
  322. PERIPHC_PWM,
  323. PERIPHC_I2S2,
  324. NONE(RESERVED19),
  325. PERIPHC_VI,
  326. NONE(RESERVED21),
  327. NONE(USBD),
  328. NONE(ISP),
  329. /* 24 */
  330. NONE(RESERVED24),
  331. NONE(RESERVED25),
  332. PERIPHC_DISP2,
  333. PERIPHC_DISP1,
  334. PERIPHC_HOST1X,
  335. NONE(VCP),
  336. PERIPHC_I2S0,
  337. NONE(CACHE2),
  338. /* Middle word: 63:32 */
  339. NONE(MEM),
  340. NONE(AHBDMA),
  341. NONE(APBDMA),
  342. NONE(RESERVED35),
  343. NONE(RESERVED36),
  344. NONE(STAT_MON),
  345. NONE(RESERVED38),
  346. NONE(FUSE),
  347. /* 40 */
  348. NONE(KFUSE),
  349. PERIPHC_SBC1, /* SBCx = SPIx */
  350. PERIPHC_NOR,
  351. NONE(RESERVED43),
  352. PERIPHC_SBC2,
  353. NONE(XIO),
  354. PERIPHC_SBC3,
  355. PERIPHC_I2C5,
  356. /* 48 */
  357. NONE(DSI),
  358. NONE(RESERVED49),
  359. PERIPHC_HSI,
  360. PERIPHC_HDMI,
  361. NONE(CSI),
  362. NONE(RESERVED53),
  363. PERIPHC_I2C2,
  364. PERIPHC_UART3,
  365. /* 56 */
  366. NONE(MIPI_CAL),
  367. PERIPHC_EMC,
  368. NONE(USB2),
  369. NONE(USB3),
  370. NONE(RESERVED60),
  371. PERIPHC_VDE,
  372. NONE(BSEA),
  373. NONE(BSEV),
  374. /* Upper word 95:64 */
  375. NONE(RESERVED64),
  376. PERIPHC_UART4,
  377. PERIPHC_UART5,
  378. PERIPHC_I2C3,
  379. PERIPHC_SBC4,
  380. PERIPHC_SDMMC3,
  381. NONE(PCIE),
  382. PERIPHC_OWR,
  383. /* 72 */
  384. NONE(AFI),
  385. PERIPHC_CSITE,
  386. NONE(PCIEXCLK),
  387. NONE(AVPUCQ),
  388. NONE(LA),
  389. NONE(TRACECLKIN),
  390. NONE(SOC_THERM),
  391. NONE(DTV),
  392. /* 80 */
  393. NONE(RESERVED80),
  394. PERIPHC_I2CSLOW,
  395. NONE(DSIB),
  396. PERIPHC_TSEC,
  397. NONE(RESERVED84),
  398. NONE(RESERVED85),
  399. NONE(RESERVED86),
  400. NONE(EMUCIF),
  401. /* 88 */
  402. NONE(RESERVED88),
  403. NONE(XUSB_HOST),
  404. NONE(RESERVED90),
  405. PERIPHC_MSENC,
  406. NONE(RESERVED92),
  407. NONE(RESERVED93),
  408. NONE(RESERVED94),
  409. NONE(XUSB_DEV),
  410. /* V word: 31:0 */
  411. NONE(CPUG),
  412. NONE(CPULP),
  413. NONE(V_RESERVED2),
  414. PERIPHC_MSELECT,
  415. NONE(V_RESERVED4),
  416. PERIPHC_I2S3,
  417. PERIPHC_I2S4,
  418. PERIPHC_I2C4,
  419. /* 104 */
  420. PERIPHC_SBC5,
  421. PERIPHC_SBC6,
  422. PERIPHC_AUDIO,
  423. NONE(APBIF),
  424. PERIPHC_DAM0,
  425. PERIPHC_DAM1,
  426. PERIPHC_DAM2,
  427. PERIPHC_HDA2CODEC2X,
  428. /* 112 */
  429. NONE(ATOMICS),
  430. NONE(V_RESERVED17),
  431. NONE(V_RESERVED18),
  432. NONE(V_RESERVED19),
  433. NONE(V_RESERVED20),
  434. NONE(V_RESERVED21),
  435. NONE(V_RESERVED22),
  436. PERIPHC_ACTMON,
  437. /* 120 */
  438. PERIPHC_EXTPERIPH1,
  439. NONE(EXTPERIPH2),
  440. NONE(EXTPERIPH3),
  441. NONE(OOB),
  442. PERIPHC_SATA,
  443. PERIPHC_HDA,
  444. NONE(TZRAM),
  445. NONE(SE),
  446. /* W word: 31:0 */
  447. NONE(HDA2HDMICODEC),
  448. NONE(SATACOLD),
  449. NONE(W_RESERVED2),
  450. NONE(W_RESERVED3),
  451. NONE(W_RESERVED4),
  452. NONE(W_RESERVED5),
  453. NONE(W_RESERVED6),
  454. NONE(W_RESERVED7),
  455. /* 136 */
  456. NONE(CEC),
  457. NONE(W_RESERVED9),
  458. NONE(W_RESERVED10),
  459. NONE(W_RESERVED11),
  460. NONE(W_RESERVED12),
  461. NONE(W_RESERVED13),
  462. NONE(XUSB_PADCTL),
  463. NONE(W_RESERVED15),
  464. /* 144 */
  465. NONE(W_RESERVED16),
  466. NONE(W_RESERVED17),
  467. NONE(W_RESERVED18),
  468. NONE(W_RESERVED19),
  469. NONE(W_RESERVED20),
  470. NONE(ENTROPY),
  471. NONE(DDS),
  472. NONE(W_RESERVED23),
  473. /* 152 */
  474. NONE(DP2),
  475. NONE(AMX0),
  476. NONE(ADX0),
  477. NONE(DVFS),
  478. NONE(XUSB_SS),
  479. NONE(W_RESERVED29),
  480. NONE(W_RESERVED30),
  481. NONE(W_RESERVED31),
  482. /* X word: 31:0 */
  483. NONE(SPARE),
  484. NONE(X_RESERVED1),
  485. NONE(X_RESERVED2),
  486. NONE(X_RESERVED3),
  487. NONE(CAM_MCLK),
  488. NONE(CAM_MCLK2),
  489. PERIPHC_I2C6,
  490. NONE(X_RESERVED7),
  491. /* 168 */
  492. NONE(X_RESERVED8),
  493. NONE(X_RESERVED9),
  494. NONE(X_RESERVED10),
  495. NONE(VIM2_CLK),
  496. NONE(X_RESERVED12),
  497. NONE(X_RESERVED13),
  498. NONE(EMC_DLL),
  499. NONE(X_RESERVED15),
  500. /* 176 */
  501. NONE(HDMI_AUDIO),
  502. NONE(CLK72MHZ),
  503. NONE(VIC),
  504. NONE(X_RESERVED19),
  505. NONE(ADX1),
  506. NONE(DPAUX),
  507. PERIPHC_SOR,
  508. NONE(X_RESERVED23),
  509. /* 184 */
  510. NONE(GPU),
  511. NONE(AMX1),
  512. NONE(X_RESERVED26),
  513. NONE(X_RESERVED27),
  514. NONE(X_RESERVED28),
  515. NONE(X_RESERVED29),
  516. NONE(X_RESERVED30),
  517. NONE(X_RESERVED31),
  518. };
  519. /*
  520. * PLL divider shift/mask tables for all PLL IDs.
  521. */
  522. struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
  523. /*
  524. * T124: same as T114, some deviations from T2x/T30. Adds PLLDP.
  525. * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLX, etc.)
  526. * If lock_ena or lock_det are >31, they're not used in that PLL.
  527. */
  528. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
  529. .lock_ena = 24, .lock_det = 27, .kcp_shift = 28, .kcp_mask = 3, .kvco_shift = 27, .kvco_mask = 1 }, /* PLLC */
  530. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
  531. .lock_ena = 0, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLM */
  532. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  533. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLP */
  534. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  535. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLA */
  536. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x01,
  537. .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLU */
  538. { .m_shift = 0, .m_mask = 0x1F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  539. .lock_ena = 22, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLD */
  540. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x0F,
  541. .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 }, /* PLLX */
  542. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 0, .p_mask = 0,
  543. .lock_ena = 9, .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 }, /* PLLE */
  544. { .m_shift = 0, .m_mask = 0x0F, .n_shift = 8, .n_mask = 0x3FF, .p_shift = 20, .p_mask = 0x07,
  545. .lock_ena = 18, .lock_det = 27, .kcp_shift = 8, .kcp_mask = 0xF, .kvco_shift = 4, .kvco_mask = 0xF }, /* PLLS (RESERVED) */
  546. { .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0xF,
  547. .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 }, /* PLLDP */
  548. };
  549. /*
  550. * Get the oscillator frequency, from the corresponding hardware configuration
  551. * field. Note that Tegra30+ support 3 new higher freqs, but we map back
  552. * to the old T20 freqs. Support for the higher oscillators is TBD.
  553. */
  554. enum clock_osc_freq clock_get_osc_freq(void)
  555. {
  556. struct clk_rst_ctlr *clkrst =
  557. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  558. u32 reg;
  559. reg = readl(&clkrst->crc_osc_ctrl);
  560. reg = (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
  561. if (reg & 1) /* one of the newer freqs */
  562. printf("Warning: OSC_FREQ is unsupported! (%d)\n", reg);
  563. return reg >> 2; /* Map to most common (T20) freqs */
  564. }
  565. /* Returns a pointer to the clock source register for a peripheral */
  566. u32 *get_periph_source_reg(enum periph_id periph_id)
  567. {
  568. struct clk_rst_ctlr *clkrst =
  569. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  570. enum periphc_internal_id internal_id;
  571. /* Coresight is a special case */
  572. if (periph_id == PERIPH_ID_CSI)
  573. return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
  574. assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
  575. internal_id = periph_id_to_internal_id[periph_id];
  576. assert(internal_id != -1);
  577. if (internal_id >= PERIPHC_X_FIRST) {
  578. internal_id -= PERIPHC_X_FIRST;
  579. return &clkrst->crc_clk_src_x[internal_id];
  580. } else if (internal_id >= PERIPHC_VW_FIRST) {
  581. internal_id -= PERIPHC_VW_FIRST;
  582. return &clkrst->crc_clk_src_vw[internal_id];
  583. } else {
  584. return &clkrst->crc_clk_src[internal_id];
  585. }
  586. }
  587. int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
  588. int *divider_bits, int *type)
  589. {
  590. enum periphc_internal_id internal_id;
  591. if (!clock_periph_id_isvalid(periph_id))
  592. return -1;
  593. internal_id = periph_id_to_internal_id[periph_id];
  594. if (!periphc_internal_id_isvalid(internal_id))
  595. return -1;
  596. *type = clock_periph_type[internal_id];
  597. if (!clock_type_id_isvalid(*type))
  598. return -1;
  599. *mux_bits = clock_source[*type][CLOCK_MAX_MUX];
  600. if (*type == CLOCK_TYPE_PC2CC3M_T16)
  601. *divider_bits = 16;
  602. else
  603. *divider_bits = 8;
  604. return 0;
  605. }
  606. enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
  607. {
  608. enum periphc_internal_id internal_id;
  609. int type;
  610. if (!clock_periph_id_isvalid(periph_id))
  611. return CLOCK_ID_NONE;
  612. internal_id = periph_id_to_internal_id[periph_id];
  613. if (!periphc_internal_id_isvalid(internal_id))
  614. return CLOCK_ID_NONE;
  615. type = clock_periph_type[internal_id];
  616. if (!clock_type_id_isvalid(type))
  617. return CLOCK_ID_NONE;
  618. return clock_source[type][source];
  619. }
  620. /**
  621. * Given a peripheral ID and the required source clock, this returns which
  622. * value should be programmed into the source mux for that peripheral.
  623. *
  624. * There is special code here to handle the one source type with 5 sources.
  625. *
  626. * @param periph_id peripheral to start
  627. * @param source PLL id of required parent clock
  628. * @param mux_bits Set to number of bits in mux register: 2 or 4
  629. * @param divider_bits Set to number of divider bits (8 or 16)
  630. * @return mux value (0-4, or -1 if not found)
  631. */
  632. int get_periph_clock_source(enum periph_id periph_id,
  633. enum clock_id parent, int *mux_bits, int *divider_bits)
  634. {
  635. enum clock_type_id type;
  636. int mux, err;
  637. err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
  638. assert(!err);
  639. for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
  640. if (clock_source[type][mux] == parent)
  641. return mux;
  642. /* if we get here, either us or the caller has made a mistake */
  643. printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
  644. parent);
  645. return -1;
  646. }
  647. void clock_set_enable(enum periph_id periph_id, int enable)
  648. {
  649. struct clk_rst_ctlr *clkrst =
  650. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  651. u32 *clk;
  652. u32 reg;
  653. /* Enable/disable the clock to this peripheral */
  654. assert(clock_periph_id_isvalid(periph_id));
  655. if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
  656. clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
  657. else if ((int)periph_id < PERIPH_ID_X_FIRST)
  658. clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
  659. else
  660. clk = &clkrst->crc_clk_out_enb_x;
  661. reg = readl(clk);
  662. if (enable)
  663. reg |= PERIPH_MASK(periph_id);
  664. else
  665. reg &= ~PERIPH_MASK(periph_id);
  666. writel(reg, clk);
  667. }
  668. void reset_set_enable(enum periph_id periph_id, int enable)
  669. {
  670. struct clk_rst_ctlr *clkrst =
  671. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  672. u32 *reset;
  673. u32 reg;
  674. /* Enable/disable reset to the peripheral */
  675. assert(clock_periph_id_isvalid(periph_id));
  676. if (periph_id < PERIPH_ID_VW_FIRST)
  677. reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
  678. else if ((int)periph_id < PERIPH_ID_X_FIRST)
  679. reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
  680. else
  681. reset = &clkrst->crc_rst_devices_x;
  682. reg = readl(reset);
  683. if (enable)
  684. reg |= PERIPH_MASK(periph_id);
  685. else
  686. reg &= ~PERIPH_MASK(periph_id);
  687. writel(reg, reset);
  688. }
  689. #if CONFIG_IS_ENABLED(OF_CONTROL)
  690. /*
  691. * Convert a device tree clock ID to our peripheral ID. They are mostly
  692. * the same but we are very cautious so we check that a valid clock ID is
  693. * provided.
  694. *
  695. * @param clk_id Clock ID according to tegra124 device tree binding
  696. * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
  697. */
  698. enum periph_id clk_id_to_periph_id(int clk_id)
  699. {
  700. if (clk_id > PERIPH_ID_COUNT)
  701. return PERIPH_ID_NONE;
  702. switch (clk_id) {
  703. case PERIPH_ID_RESERVED4:
  704. case PERIPH_ID_RESERVED25:
  705. case PERIPH_ID_RESERVED35:
  706. case PERIPH_ID_RESERVED36:
  707. case PERIPH_ID_RESERVED38:
  708. case PERIPH_ID_RESERVED43:
  709. case PERIPH_ID_RESERVED49:
  710. case PERIPH_ID_RESERVED53:
  711. case PERIPH_ID_RESERVED64:
  712. case PERIPH_ID_RESERVED84:
  713. case PERIPH_ID_RESERVED85:
  714. case PERIPH_ID_RESERVED86:
  715. case PERIPH_ID_RESERVED88:
  716. case PERIPH_ID_RESERVED90:
  717. case PERIPH_ID_RESERVED92:
  718. case PERIPH_ID_RESERVED93:
  719. case PERIPH_ID_RESERVED94:
  720. case PERIPH_ID_V_RESERVED2:
  721. case PERIPH_ID_V_RESERVED4:
  722. case PERIPH_ID_V_RESERVED17:
  723. case PERIPH_ID_V_RESERVED18:
  724. case PERIPH_ID_V_RESERVED19:
  725. case PERIPH_ID_V_RESERVED20:
  726. case PERIPH_ID_V_RESERVED21:
  727. case PERIPH_ID_V_RESERVED22:
  728. case PERIPH_ID_W_RESERVED2:
  729. case PERIPH_ID_W_RESERVED3:
  730. case PERIPH_ID_W_RESERVED4:
  731. case PERIPH_ID_W_RESERVED5:
  732. case PERIPH_ID_W_RESERVED6:
  733. case PERIPH_ID_W_RESERVED7:
  734. case PERIPH_ID_W_RESERVED9:
  735. case PERIPH_ID_W_RESERVED10:
  736. case PERIPH_ID_W_RESERVED11:
  737. case PERIPH_ID_W_RESERVED12:
  738. case PERIPH_ID_W_RESERVED13:
  739. case PERIPH_ID_W_RESERVED15:
  740. case PERIPH_ID_W_RESERVED16:
  741. case PERIPH_ID_W_RESERVED17:
  742. case PERIPH_ID_W_RESERVED18:
  743. case PERIPH_ID_W_RESERVED19:
  744. case PERIPH_ID_W_RESERVED20:
  745. case PERIPH_ID_W_RESERVED23:
  746. case PERIPH_ID_W_RESERVED29:
  747. case PERIPH_ID_W_RESERVED30:
  748. case PERIPH_ID_W_RESERVED31:
  749. return PERIPH_ID_NONE;
  750. default:
  751. return clk_id;
  752. }
  753. }
  754. #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
  755. void clock_early_init(void)
  756. {
  757. struct clk_rst_ctlr *clkrst =
  758. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  759. struct clk_pll_info *pllinfo;
  760. u32 data;
  761. tegra30_set_up_pllp();
  762. /* clear IDDQ before accessing any other PLLC registers */
  763. pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
  764. clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, PLLC_IDDQ);
  765. udelay(2);
  766. /*
  767. * PLLC output frequency set to 600Mhz
  768. * PLLD output frequency set to 925Mhz
  769. */
  770. switch (clock_get_osc_freq()) {
  771. case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
  772. clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
  773. clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
  774. break;
  775. case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
  776. clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
  777. clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
  778. break;
  779. case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
  780. clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
  781. clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
  782. break;
  783. case CLOCK_OSC_FREQ_19_2:
  784. default:
  785. /*
  786. * These are not supported. It is too early to print a
  787. * message and the UART likely won't work anyway due to the
  788. * oscillator being wrong.
  789. */
  790. break;
  791. }
  792. /* PLLC_MISC2: Set dynramp_stepA/B. MISC2 maps to pll_out[1] */
  793. writel(0x00561600, &clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1]);
  794. /* PLLC_MISC: Set LOCK_ENABLE */
  795. pllinfo = &tegra_pll_info_table[CLOCK_ID_CGENERAL];
  796. setbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc, (1 << pllinfo->lock_ena));
  797. udelay(2);
  798. /* PLLD_MISC: Set CLKENABLE, CPCON 12, LFCON 1, and enable lock */
  799. pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
  800. data = (12 << pllinfo->kcp_shift) | (1 << pllinfo->kvco_shift);
  801. data |= (1 << PLLD_CLKENABLE) | (1 << pllinfo->lock_ena);
  802. writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
  803. udelay(2);
  804. }
  805. void arch_timer_init(void)
  806. {
  807. struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
  808. u32 freq, val;
  809. freq = clock_get_rate(CLOCK_ID_CLK_M);
  810. debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
  811. /* ARM CNTFRQ */
  812. asm("mcr p15, 0, %0, c14, c0, 0\n" : : "r" (freq));
  813. /* Only Tegra114+ has the System Counter regs */
  814. debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
  815. writel(freq, &sysctr->cntfid0);
  816. val = readl(&sysctr->cntcr);
  817. val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
  818. writel(val, &sysctr->cntcr);
  819. debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
  820. }
  821. #define PLLE_SS_CNTL 0x68
  822. #define PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
  823. #define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
  824. #define PLLE_SS_CNTL_SSCINVERT (1 << 15)
  825. #define PLLE_SS_CNTL_SSCCENTER (1 << 14)
  826. #define PLLE_SS_CNTL_SSCBYP (1 << 12)
  827. #define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
  828. #define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
  829. #define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
  830. #define PLLE_BASE 0x0e8
  831. #define PLLE_BASE_ENABLE (1 << 30)
  832. #define PLLE_BASE_LOCK_OVERRIDE (1 << 29)
  833. #define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
  834. #define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
  835. #define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
  836. #define PLLE_MISC 0x0ec
  837. #define PLLE_MISC_IDDQ_SWCTL (1 << 14)
  838. #define PLLE_MISC_IDDQ_OVERRIDE (1 << 13)
  839. #define PLLE_MISC_LOCK_ENABLE (1 << 9)
  840. #define PLLE_MISC_PTS (1 << 8)
  841. #define PLLE_MISC_VREG_BG_CTRL(x) (((x) & 0x3) << 4)
  842. #define PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
  843. #define PLLE_AUX 0x48c
  844. #define PLLE_AUX_SEQ_ENABLE (1 << 24)
  845. #define PLLE_AUX_ENABLE_SWCTL (1 << 4)
  846. int tegra_plle_enable(void)
  847. {
  848. unsigned int m = 1, n = 200, cpcon = 13;
  849. u32 value;
  850. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  851. value &= ~PLLE_BASE_LOCK_OVERRIDE;
  852. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  853. value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
  854. value |= PLLE_AUX_ENABLE_SWCTL;
  855. value &= ~PLLE_AUX_SEQ_ENABLE;
  856. writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
  857. udelay(1);
  858. value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
  859. value |= PLLE_MISC_IDDQ_SWCTL;
  860. value &= ~PLLE_MISC_IDDQ_OVERRIDE;
  861. value |= PLLE_MISC_LOCK_ENABLE;
  862. value |= PLLE_MISC_PTS;
  863. value |= PLLE_MISC_VREG_BG_CTRL(3);
  864. value |= PLLE_MISC_VREG_CTRL(2);
  865. writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
  866. udelay(5);
  867. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  868. value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
  869. PLLE_SS_CNTL_BYPASS_SS;
  870. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  871. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  872. value &= ~PLLE_BASE_PLDIV_CML(0xf);
  873. value &= ~PLLE_BASE_NDIV(0xff);
  874. value &= ~PLLE_BASE_MDIV(0xff);
  875. value |= PLLE_BASE_PLDIV_CML(cpcon);
  876. value |= PLLE_BASE_NDIV(n);
  877. value |= PLLE_BASE_MDIV(m);
  878. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  879. udelay(1);
  880. value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
  881. value |= PLLE_BASE_ENABLE;
  882. writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
  883. /* wait for lock */
  884. udelay(300);
  885. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  886. value &= ~PLLE_SS_CNTL_SSCINVERT;
  887. value &= ~PLLE_SS_CNTL_SSCCENTER;
  888. value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
  889. value &= ~PLLE_SS_CNTL_SSCINC(0xff);
  890. value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
  891. value |= PLLE_SS_CNTL_SSCINCINTR(0x20);
  892. value |= PLLE_SS_CNTL_SSCINC(0x01);
  893. value |= PLLE_SS_CNTL_SSCMAX(0x25);
  894. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  895. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  896. value &= ~PLLE_SS_CNTL_SSCBYP;
  897. value &= ~PLLE_SS_CNTL_BYPASS_SS;
  898. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  899. udelay(1);
  900. value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  901. value &= ~PLLE_SS_CNTL_INTERP_RESET;
  902. writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
  903. udelay(1);
  904. return 0;
  905. }
  906. void clock_sor_enable_edp_clock(void)
  907. {
  908. u32 *reg;
  909. /* uses PLLP, has a non-standard bit layout. */
  910. reg = get_periph_source_reg(PERIPH_ID_SOR0);
  911. setbits_le32(reg, SOR0_CLK_SEL0);
  912. }
  913. u32 clock_set_display_rate(u32 frequency)
  914. {
  915. /**
  916. * plld (fo) = vco >> p, where 500MHz < vco < 1000MHz
  917. * = (cf * n) >> p, where 1MHz < cf < 6MHz
  918. * = ((ref / m) * n) >> p
  919. *
  920. * Iterate the possible values of p (3 bits, 2^7) to find out a minimum
  921. * safe vco, then find best (m, n). since m has only 5 bits, we can
  922. * iterate all possible values. Note Tegra 124 supports 11 bits for n,
  923. * but our pll_fields has only 10 bits for n.
  924. *
  925. * Note values undershoot or overshoot target output frequency may not
  926. * work if the values are not in "safe" range by panel specification.
  927. */
  928. u32 ref = clock_get_rate(CLOCK_ID_OSC);
  929. u32 divm, divn, divp, cpcon;
  930. u32 cf, vco, rounded_rate = frequency;
  931. u32 diff, best_diff, best_m = 0, best_n = 0, best_p;
  932. const u32 max_m = 1 << 5, max_n = 1 << 10, max_p = 1 << 3,
  933. mhz = 1000 * 1000, min_vco = 500 * mhz, max_vco = 1000 * mhz,
  934. min_cf = 1 * mhz, max_cf = 6 * mhz;
  935. int mux_bits, divider_bits, source;
  936. for (divp = 0, vco = frequency; vco < min_vco && divp < max_p; divp++)
  937. vco <<= 1;
  938. if (vco < min_vco || vco > max_vco) {
  939. printf("%s: Cannot find out a supported VCO for Frequency (%u)\n",
  940. __func__, frequency);
  941. return 0;
  942. }
  943. best_p = divp;
  944. best_diff = vco;
  945. for (divm = 1; divm < max_m && best_diff; divm++) {
  946. cf = ref / divm;
  947. if (cf < min_cf)
  948. break;
  949. if (cf > max_cf)
  950. continue;
  951. divn = vco / cf;
  952. if (divn >= max_n)
  953. continue;
  954. diff = vco - divn * cf;
  955. if (divn + 1 < max_n && diff > cf / 2) {
  956. divn++;
  957. diff = cf - diff;
  958. }
  959. if (diff >= best_diff)
  960. continue;
  961. best_diff = diff;
  962. best_m = divm;
  963. best_n = divn;
  964. }
  965. if (best_n < 50)
  966. cpcon = 2;
  967. else if (best_n < 300)
  968. cpcon = 3;
  969. else if (best_n < 600)
  970. cpcon = 8;
  971. else
  972. cpcon = 12;
  973. if (best_diff) {
  974. printf("%s: Failed to match output frequency %u, best difference is %u\n",
  975. __func__, frequency, best_diff);
  976. rounded_rate = (ref / best_m * best_n) >> best_p;
  977. }
  978. debug("%s: PLLD=%u ref=%u, m/n/p/cpcon=%u/%u/%u/%u\n",
  979. __func__, rounded_rate, ref, best_m, best_n, best_p, cpcon);
  980. source = get_periph_clock_source(PERIPH_ID_DISP1, CLOCK_ID_DISPLAY,
  981. &mux_bits, &divider_bits);
  982. clock_ll_set_source_bits(PERIPH_ID_DISP1, mux_bits, source);
  983. clock_set_rate(CLOCK_ID_DISPLAY, best_n, best_m, best_p, cpcon);
  984. return rounded_rate;
  985. }
  986. void clock_set_up_plldp(void)
  987. {
  988. struct clk_rst_ctlr *clkrst =
  989. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  990. u32 value;
  991. value = PLLDP_SS_CFG_UNDOCUMENTED | PLLDP_SS_CFG_DITHER;
  992. writel(value | PLLDP_SS_CFG_CLAMP, &clkrst->crc_plldp_ss_cfg);
  993. clock_start_pll(CLOCK_ID_DP, 1, 90, 3, 0, 0);
  994. writel(value, &clkrst->crc_plldp_ss_cfg);
  995. }
  996. struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
  997. {
  998. struct clk_rst_ctlr *clkrst =
  999. (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  1000. if (clkid == CLOCK_ID_DP)
  1001. return &clkrst->plldp;
  1002. return NULL;
  1003. }
  1004. struct periph_clk_init periph_clk_init_table[] = {
  1005. { PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
  1006. { PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
  1007. { PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
  1008. { PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
  1009. { PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
  1010. { PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
  1011. { PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
  1012. { PERIPH_ID_DISP1, CLOCK_ID_CGENERAL },
  1013. { PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
  1014. { PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
  1015. { PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
  1016. { PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
  1017. { PERIPH_ID_PWM, CLOCK_ID_SFROM32KHZ },
  1018. { PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
  1019. { PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
  1020. { PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
  1021. { PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
  1022. { PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
  1023. { PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
  1024. { -1, },
  1025. };