clock_sun4i.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * sun4i, sun5i and sun7i specific clock code
  3. *
  4. * (C) Copyright 2007-2012
  5. * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
  6. * Tom Cubie <tangliang@allwinnertech.com>
  7. *
  8. * (C) Copyright 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  9. *
  10. * SPDX-License-Identifier: GPL-2.0+
  11. */
  12. #include <common.h>
  13. #include <asm/io.h>
  14. #include <asm/arch/clock.h>
  15. #include <asm/arch/gpio.h>
  16. #include <asm/arch/sys_proto.h>
  17. #ifdef CONFIG_SPL_BUILD
  18. void clock_init_safe(void)
  19. {
  20. struct sunxi_ccm_reg * const ccm =
  21. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  22. /* Set safe defaults until PMU is configured */
  23. writel(AXI_DIV_1 << AXI_DIV_SHIFT |
  24. AHB_DIV_2 << AHB_DIV_SHIFT |
  25. APB0_DIV_1 << APB0_DIV_SHIFT |
  26. CPU_CLK_SRC_OSC24M << CPU_CLK_SRC_SHIFT,
  27. &ccm->cpu_ahb_apb0_cfg);
  28. writel(PLL1_CFG_DEFAULT, &ccm->pll1_cfg);
  29. sdelay(200);
  30. writel(AXI_DIV_1 << AXI_DIV_SHIFT |
  31. AHB_DIV_2 << AHB_DIV_SHIFT |
  32. APB0_DIV_1 << APB0_DIV_SHIFT |
  33. CPU_CLK_SRC_PLL1 << CPU_CLK_SRC_SHIFT,
  34. &ccm->cpu_ahb_apb0_cfg);
  35. #ifdef CONFIG_MACH_SUN7I
  36. setbits_le32(&ccm->ahb_gate0, 0x1 << AHB_GATE_OFFSET_DMA);
  37. #endif
  38. writel(PLL6_CFG_DEFAULT, &ccm->pll6_cfg);
  39. #ifdef CONFIG_SUNXI_AHCI
  40. setbits_le32(&ccm->ahb_gate0, 0x1 << AHB_GATE_OFFSET_SATA);
  41. setbits_le32(&ccm->pll6_cfg, 0x1 << CCM_PLL6_CTRL_SATA_EN_SHIFT);
  42. #endif
  43. }
  44. #endif
  45. void clock_init_uart(void)
  46. {
  47. struct sunxi_ccm_reg *const ccm =
  48. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  49. /* uart clock source is apb1 */
  50. writel(APB1_CLK_SRC_OSC24M|
  51. APB1_CLK_RATE_N_1|
  52. APB1_CLK_RATE_M(1),
  53. &ccm->apb1_clk_div_cfg);
  54. /* open the clock for uart */
  55. setbits_le32(&ccm->apb1_gate,
  56. CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT+CONFIG_CONS_INDEX - 1));
  57. }
  58. int clock_twi_onoff(int port, int state)
  59. {
  60. struct sunxi_ccm_reg *const ccm =
  61. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  62. /* set the apb clock gate for twi */
  63. if (state)
  64. setbits_le32(&ccm->apb1_gate,
  65. CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
  66. else
  67. clrbits_le32(&ccm->apb1_gate,
  68. CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
  69. return 0;
  70. }
  71. #ifdef CONFIG_SPL_BUILD
  72. #define PLL1_CFG(N, K, M, P) ( 1 << CCM_PLL1_CFG_ENABLE_SHIFT | \
  73. 0 << CCM_PLL1_CFG_VCO_RST_SHIFT | \
  74. 8 << CCM_PLL1_CFG_VCO_BIAS_SHIFT | \
  75. 0 << CCM_PLL1_CFG_PLL4_EXCH_SHIFT | \
  76. 16 << CCM_PLL1_CFG_BIAS_CUR_SHIFT | \
  77. (P)<< CCM_PLL1_CFG_DIVP_SHIFT | \
  78. 2 << CCM_PLL1_CFG_LCK_TMR_SHIFT | \
  79. (N)<< CCM_PLL1_CFG_FACTOR_N_SHIFT | \
  80. (K)<< CCM_PLL1_CFG_FACTOR_K_SHIFT | \
  81. 0 << CCM_PLL1_CFG_SIG_DELT_PAT_IN_SHIFT | \
  82. 0 << CCM_PLL1_CFG_SIG_DELT_PAT_EN_SHIFT | \
  83. (M)<< CCM_PLL1_CFG_FACTOR_M_SHIFT)
  84. static struct {
  85. u32 pll1_cfg;
  86. unsigned int freq;
  87. } pll1_para[] = {
  88. /* This array must be ordered by frequency. */
  89. { PLL1_CFG(31, 1, 0, 0), 1488000000},
  90. { PLL1_CFG(30, 1, 0, 0), 1440000000},
  91. { PLL1_CFG(29, 1, 0, 0), 1392000000},
  92. { PLL1_CFG(28, 1, 0, 0), 1344000000},
  93. { PLL1_CFG(27, 1, 0, 0), 1296000000},
  94. { PLL1_CFG(26, 1, 0, 0), 1248000000},
  95. { PLL1_CFG(25, 1, 0, 0), 1200000000},
  96. { PLL1_CFG(24, 1, 0, 0), 1152000000},
  97. { PLL1_CFG(23, 1, 0, 0), 1104000000},
  98. { PLL1_CFG(22, 1, 0, 0), 1056000000},
  99. { PLL1_CFG(21, 1, 0, 0), 1008000000},
  100. { PLL1_CFG(20, 1, 0, 0), 960000000 },
  101. { PLL1_CFG(19, 1, 0, 0), 912000000 },
  102. { PLL1_CFG(16, 1, 0, 0), 768000000 },
  103. /* Final catchall entry 384MHz*/
  104. { PLL1_CFG(16, 0, 0, 0), 0 },
  105. };
  106. void clock_set_pll1(unsigned int hz)
  107. {
  108. int i = 0;
  109. int axi, ahb, apb0;
  110. struct sunxi_ccm_reg * const ccm =
  111. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  112. /* Find target frequency */
  113. while (pll1_para[i].freq > hz)
  114. i++;
  115. hz = pll1_para[i].freq;
  116. if (! hz)
  117. hz = 384000000;
  118. /* Calculate system clock divisors */
  119. axi = DIV_ROUND_UP(hz, 432000000); /* Max 450MHz */
  120. ahb = DIV_ROUND_UP(hz/axi, 204000000); /* Max 250MHz */
  121. apb0 = 2; /* Max 150MHz */
  122. printf("CPU: %uHz, AXI/AHB/APB: %d/%d/%d\n", hz, axi, ahb, apb0);
  123. /* Map divisors to register values */
  124. axi = axi - 1;
  125. if (ahb > 4)
  126. ahb = 3;
  127. else if (ahb > 2)
  128. ahb = 2;
  129. else if (ahb > 1)
  130. ahb = 1;
  131. else
  132. ahb = 0;
  133. apb0 = apb0 - 1;
  134. /* Switch to 24MHz clock while changing PLL1 */
  135. writel(AXI_DIV_1 << AXI_DIV_SHIFT |
  136. AHB_DIV_2 << AHB_DIV_SHIFT |
  137. APB0_DIV_1 << APB0_DIV_SHIFT |
  138. CPU_CLK_SRC_OSC24M << CPU_CLK_SRC_SHIFT,
  139. &ccm->cpu_ahb_apb0_cfg);
  140. sdelay(20);
  141. /* Configure sys clock divisors */
  142. writel(axi << AXI_DIV_SHIFT |
  143. ahb << AHB_DIV_SHIFT |
  144. apb0 << APB0_DIV_SHIFT |
  145. CPU_CLK_SRC_OSC24M << CPU_CLK_SRC_SHIFT,
  146. &ccm->cpu_ahb_apb0_cfg);
  147. /* Configure PLL1 at the desired frequency */
  148. writel(pll1_para[i].pll1_cfg, &ccm->pll1_cfg);
  149. sdelay(200);
  150. /* Switch CPU to PLL1 */
  151. writel(axi << AXI_DIV_SHIFT |
  152. ahb << AHB_DIV_SHIFT |
  153. apb0 << APB0_DIV_SHIFT |
  154. CPU_CLK_SRC_PLL1 << CPU_CLK_SRC_SHIFT,
  155. &ccm->cpu_ahb_apb0_cfg);
  156. sdelay(20);
  157. }
  158. #endif
  159. void clock_set_pll3(unsigned int clk)
  160. {
  161. struct sunxi_ccm_reg * const ccm =
  162. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  163. if (clk == 0) {
  164. clrbits_le32(&ccm->pll3_cfg, CCM_PLL3_CTRL_EN);
  165. return;
  166. }
  167. /* PLL3 rate = 3000000 * m */
  168. writel(CCM_PLL3_CTRL_EN | CCM_PLL3_CTRL_INTEGER_MODE |
  169. CCM_PLL3_CTRL_M(clk / 3000000), &ccm->pll3_cfg);
  170. }
  171. unsigned int clock_get_pll3(void)
  172. {
  173. struct sunxi_ccm_reg *const ccm =
  174. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  175. uint32_t rval = readl(&ccm->pll3_cfg);
  176. int m = ((rval & CCM_PLL3_CTRL_M_MASK) >> CCM_PLL3_CTRL_M_SHIFT);
  177. return 3000000 * m;
  178. }
  179. unsigned int clock_get_pll5p(void)
  180. {
  181. struct sunxi_ccm_reg *const ccm =
  182. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  183. uint32_t rval = readl(&ccm->pll5_cfg);
  184. int n = ((rval & CCM_PLL5_CTRL_N_MASK) >> CCM_PLL5_CTRL_N_SHIFT);
  185. int k = ((rval & CCM_PLL5_CTRL_K_MASK) >> CCM_PLL5_CTRL_K_SHIFT) + 1;
  186. int p = ((rval & CCM_PLL5_CTRL_P_MASK) >> CCM_PLL5_CTRL_P_SHIFT);
  187. return (24000000 * n * k) >> p;
  188. }
  189. unsigned int clock_get_pll6(void)
  190. {
  191. struct sunxi_ccm_reg *const ccm =
  192. (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
  193. uint32_t rval = readl(&ccm->pll6_cfg);
  194. int n = ((rval & CCM_PLL6_CTRL_N_MASK) >> CCM_PLL6_CTRL_N_SHIFT);
  195. int k = ((rval & CCM_PLL6_CTRL_K_MASK) >> CCM_PLL6_CTRL_K_SHIFT) + 1;
  196. return 24000000 * n * k / 2;
  197. }
  198. void clock_set_de_mod_clock(u32 *clk_cfg, unsigned int hz)
  199. {
  200. int pll = clock_get_pll5p();
  201. int div = 1;
  202. while ((pll / div) > hz)
  203. div++;
  204. writel(CCM_DE_CTRL_GATE | CCM_DE_CTRL_RST | CCM_DE_CTRL_PLL5P |
  205. CCM_DE_CTRL_M(div), clk_cfg);
  206. }