vgic-mmio-v3.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. * VGICv3 MMIO handling functions
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/irqchip/arm-gic-v3.h>
  14. #include <linux/kvm.h>
  15. #include <linux/kvm_host.h>
  16. #include <kvm/iodev.h>
  17. #include <kvm/arm_vgic.h>
  18. #include <asm/kvm_emulate.h>
  19. #include "vgic.h"
  20. #include "vgic-mmio.h"
  21. /* extract @num bytes at @offset bytes offset in data */
  22. unsigned long extract_bytes(u64 data, unsigned int offset,
  23. unsigned int num)
  24. {
  25. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  26. }
  27. /* allows updates of any half of a 64-bit register (or the whole thing) */
  28. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  29. unsigned long val)
  30. {
  31. int lower = (offset & 4) * 8;
  32. int upper = lower + 8 * len - 1;
  33. reg &= ~GENMASK_ULL(upper, lower);
  34. val &= GENMASK_ULL(len * 8 - 1, 0);
  35. return reg | ((u64)val << lower);
  36. }
  37. #ifdef CONFIG_KVM_ARM_VGIC_V3_ITS
  38. bool vgic_has_its(struct kvm *kvm)
  39. {
  40. struct vgic_dist *dist = &kvm->arch.vgic;
  41. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  42. return false;
  43. return dist->has_its;
  44. }
  45. #endif
  46. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  47. gpa_t addr, unsigned int len)
  48. {
  49. u32 value = 0;
  50. switch (addr & 0x0c) {
  51. case GICD_CTLR:
  52. if (vcpu->kvm->arch.vgic.enabled)
  53. value |= GICD_CTLR_ENABLE_SS_G1;
  54. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  55. break;
  56. case GICD_TYPER:
  57. value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
  58. value = (value >> 5) - 1;
  59. if (vgic_has_its(vcpu->kvm)) {
  60. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  61. value |= GICD_TYPER_LPIS;
  62. } else {
  63. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  64. }
  65. break;
  66. case GICD_IIDR:
  67. value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  68. break;
  69. default:
  70. return 0;
  71. }
  72. return value;
  73. }
  74. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  75. gpa_t addr, unsigned int len,
  76. unsigned long val)
  77. {
  78. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  79. bool was_enabled = dist->enabled;
  80. switch (addr & 0x0c) {
  81. case GICD_CTLR:
  82. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  83. if (!was_enabled && dist->enabled)
  84. vgic_kick_vcpus(vcpu->kvm);
  85. break;
  86. case GICD_TYPER:
  87. case GICD_IIDR:
  88. return;
  89. }
  90. }
  91. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  92. gpa_t addr, unsigned int len)
  93. {
  94. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  95. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  96. unsigned long ret = 0;
  97. if (!irq)
  98. return 0;
  99. /* The upper word is RAZ for us. */
  100. if (!(addr & 4))
  101. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  102. vgic_put_irq(vcpu->kvm, irq);
  103. return ret;
  104. }
  105. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  106. gpa_t addr, unsigned int len,
  107. unsigned long val)
  108. {
  109. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  110. struct vgic_irq *irq;
  111. /* The upper word is WI for us since we don't implement Aff3. */
  112. if (addr & 4)
  113. return;
  114. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  115. if (!irq)
  116. return;
  117. spin_lock(&irq->irq_lock);
  118. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  119. irq->mpidr = val & GENMASK(23, 0);
  120. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  121. spin_unlock(&irq->irq_lock);
  122. vgic_put_irq(vcpu->kvm, irq);
  123. }
  124. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  125. gpa_t addr, unsigned int len)
  126. {
  127. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  128. return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
  129. }
  130. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  131. gpa_t addr, unsigned int len,
  132. unsigned long val)
  133. {
  134. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  135. bool was_enabled = vgic_cpu->lpis_enabled;
  136. if (!vgic_has_its(vcpu->kvm))
  137. return;
  138. vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
  139. if (!was_enabled && vgic_cpu->lpis_enabled)
  140. vgic_enable_lpis(vcpu);
  141. }
  142. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  143. gpa_t addr, unsigned int len)
  144. {
  145. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  146. int target_vcpu_id = vcpu->vcpu_id;
  147. u64 value;
  148. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  149. value |= ((target_vcpu_id & 0xffff) << 8);
  150. if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
  151. value |= GICR_TYPER_LAST;
  152. if (vgic_has_its(vcpu->kvm))
  153. value |= GICR_TYPER_PLPIS;
  154. return extract_bytes(value, addr & 7, len);
  155. }
  156. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  157. gpa_t addr, unsigned int len)
  158. {
  159. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  160. }
  161. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  162. gpa_t addr, unsigned int len)
  163. {
  164. switch (addr & 0xffff) {
  165. case GICD_PIDR2:
  166. /* report a GICv3 compliant implementation */
  167. return 0x3b;
  168. }
  169. return 0;
  170. }
  171. /* We want to avoid outer shareable. */
  172. u64 vgic_sanitise_shareability(u64 field)
  173. {
  174. switch (field) {
  175. case GIC_BASER_OuterShareable:
  176. return GIC_BASER_InnerShareable;
  177. default:
  178. return field;
  179. }
  180. }
  181. /* Avoid any inner non-cacheable mapping. */
  182. u64 vgic_sanitise_inner_cacheability(u64 field)
  183. {
  184. switch (field) {
  185. case GIC_BASER_CACHE_nCnB:
  186. case GIC_BASER_CACHE_nC:
  187. return GIC_BASER_CACHE_RaWb;
  188. default:
  189. return field;
  190. }
  191. }
  192. /* Non-cacheable or same-as-inner are OK. */
  193. u64 vgic_sanitise_outer_cacheability(u64 field)
  194. {
  195. switch (field) {
  196. case GIC_BASER_CACHE_SameAsInner:
  197. case GIC_BASER_CACHE_nC:
  198. return field;
  199. default:
  200. return GIC_BASER_CACHE_nC;
  201. }
  202. }
  203. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  204. u64 (*sanitise_fn)(u64))
  205. {
  206. u64 field = (reg & field_mask) >> field_shift;
  207. field = sanitise_fn(field) << field_shift;
  208. return (reg & ~field_mask) | field;
  209. }
  210. #define PROPBASER_RES0_MASK \
  211. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  212. #define PENDBASER_RES0_MASK \
  213. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  214. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  215. static u64 vgic_sanitise_pendbaser(u64 reg)
  216. {
  217. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  218. GICR_PENDBASER_SHAREABILITY_SHIFT,
  219. vgic_sanitise_shareability);
  220. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  221. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  222. vgic_sanitise_inner_cacheability);
  223. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  224. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  225. vgic_sanitise_outer_cacheability);
  226. reg &= ~PENDBASER_RES0_MASK;
  227. reg &= ~GENMASK_ULL(51, 48);
  228. return reg;
  229. }
  230. static u64 vgic_sanitise_propbaser(u64 reg)
  231. {
  232. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  233. GICR_PROPBASER_SHAREABILITY_SHIFT,
  234. vgic_sanitise_shareability);
  235. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  236. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  237. vgic_sanitise_inner_cacheability);
  238. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  239. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  240. vgic_sanitise_outer_cacheability);
  241. reg &= ~PROPBASER_RES0_MASK;
  242. reg &= ~GENMASK_ULL(51, 48);
  243. return reg;
  244. }
  245. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  246. gpa_t addr, unsigned int len)
  247. {
  248. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  249. return extract_bytes(dist->propbaser, addr & 7, len);
  250. }
  251. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  252. gpa_t addr, unsigned int len,
  253. unsigned long val)
  254. {
  255. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  256. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  257. u64 old_propbaser, propbaser;
  258. /* Storing a value with LPIs already enabled is undefined */
  259. if (vgic_cpu->lpis_enabled)
  260. return;
  261. do {
  262. old_propbaser = dist->propbaser;
  263. propbaser = old_propbaser;
  264. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  265. propbaser = vgic_sanitise_propbaser(propbaser);
  266. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  267. propbaser) != old_propbaser);
  268. }
  269. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  270. gpa_t addr, unsigned int len)
  271. {
  272. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  273. return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
  274. }
  275. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  276. gpa_t addr, unsigned int len,
  277. unsigned long val)
  278. {
  279. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  280. u64 old_pendbaser, pendbaser;
  281. /* Storing a value with LPIs already enabled is undefined */
  282. if (vgic_cpu->lpis_enabled)
  283. return;
  284. do {
  285. old_pendbaser = vgic_cpu->pendbaser;
  286. pendbaser = old_pendbaser;
  287. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  288. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  289. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  290. pendbaser) != old_pendbaser);
  291. }
  292. /*
  293. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  294. * redistributors, while SPIs are covered by registers in the distributor
  295. * block. Trying to set private IRQs in this block gets ignored.
  296. * We take some special care here to fix the calculation of the register
  297. * offset.
  298. */
  299. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc) \
  300. { \
  301. .reg_offset = off, \
  302. .bits_per_irq = bpi, \
  303. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  304. .access_flags = acc, \
  305. .read = vgic_mmio_read_raz, \
  306. .write = vgic_mmio_write_wi, \
  307. }, { \
  308. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  309. .bits_per_irq = bpi, \
  310. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  311. .access_flags = acc, \
  312. .read = rd, \
  313. .write = wr, \
  314. }
  315. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  316. REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
  317. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
  318. VGIC_ACCESS_32bit),
  319. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  320. vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
  321. VGIC_ACCESS_32bit),
  322. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  323. vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
  324. VGIC_ACCESS_32bit),
  325. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  326. vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
  327. VGIC_ACCESS_32bit),
  328. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  329. vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
  330. VGIC_ACCESS_32bit),
  331. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  332. vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
  333. VGIC_ACCESS_32bit),
  334. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  335. vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
  336. VGIC_ACCESS_32bit),
  337. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  338. vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
  339. VGIC_ACCESS_32bit),
  340. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  341. vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
  342. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  343. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  344. vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
  345. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  346. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  347. vgic_mmio_read_config, vgic_mmio_write_config, 2,
  348. VGIC_ACCESS_32bit),
  349. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  350. vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
  351. VGIC_ACCESS_32bit),
  352. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  353. vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
  354. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  355. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  356. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  357. VGIC_ACCESS_32bit),
  358. };
  359. static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
  360. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  361. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  362. VGIC_ACCESS_32bit),
  363. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  364. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  365. VGIC_ACCESS_32bit),
  366. REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
  367. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
  368. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  369. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  370. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  371. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  372. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  373. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  374. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  375. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  376. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  377. VGIC_ACCESS_32bit),
  378. };
  379. static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
  380. REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
  381. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  382. VGIC_ACCESS_32bit),
  383. REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
  384. vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
  385. VGIC_ACCESS_32bit),
  386. REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
  387. vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
  388. VGIC_ACCESS_32bit),
  389. REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
  390. vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
  391. VGIC_ACCESS_32bit),
  392. REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
  393. vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
  394. VGIC_ACCESS_32bit),
  395. REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
  396. vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
  397. VGIC_ACCESS_32bit),
  398. REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
  399. vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
  400. VGIC_ACCESS_32bit),
  401. REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
  402. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  403. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  404. REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
  405. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  406. VGIC_ACCESS_32bit),
  407. REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
  408. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  409. VGIC_ACCESS_32bit),
  410. REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
  411. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  412. VGIC_ACCESS_32bit),
  413. };
  414. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  415. {
  416. dev->regions = vgic_v3_dist_registers;
  417. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  418. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  419. return SZ_64K;
  420. }
  421. int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
  422. {
  423. struct kvm_vcpu *vcpu;
  424. int c, ret = 0;
  425. kvm_for_each_vcpu(c, vcpu, kvm) {
  426. gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
  427. gpa_t sgi_base = rd_base + SZ_64K;
  428. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  429. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  430. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  431. rd_dev->base_addr = rd_base;
  432. rd_dev->iodev_type = IODEV_REDIST;
  433. rd_dev->regions = vgic_v3_rdbase_registers;
  434. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  435. rd_dev->redist_vcpu = vcpu;
  436. mutex_lock(&kvm->slots_lock);
  437. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  438. SZ_64K, &rd_dev->dev);
  439. mutex_unlock(&kvm->slots_lock);
  440. if (ret)
  441. break;
  442. kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
  443. sgi_dev->base_addr = sgi_base;
  444. sgi_dev->iodev_type = IODEV_REDIST;
  445. sgi_dev->regions = vgic_v3_sgibase_registers;
  446. sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
  447. sgi_dev->redist_vcpu = vcpu;
  448. mutex_lock(&kvm->slots_lock);
  449. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
  450. SZ_64K, &sgi_dev->dev);
  451. mutex_unlock(&kvm->slots_lock);
  452. if (ret) {
  453. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  454. &rd_dev->dev);
  455. break;
  456. }
  457. }
  458. if (ret) {
  459. /* The current c failed, so we start with the previous one. */
  460. for (c--; c >= 0; c--) {
  461. struct vgic_cpu *vgic_cpu;
  462. vcpu = kvm_get_vcpu(kvm, c);
  463. vgic_cpu = &vcpu->arch.vgic_cpu;
  464. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  465. &vgic_cpu->rd_iodev.dev);
  466. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  467. &vgic_cpu->sgi_iodev.dev);
  468. }
  469. }
  470. return ret;
  471. }
  472. /*
  473. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  474. * generation register ICC_SGI1R_EL1) with a given VCPU.
  475. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  476. * return -1.
  477. */
  478. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  479. {
  480. unsigned long affinity;
  481. int level0;
  482. /*
  483. * Split the current VCPU's MPIDR into affinity level 0 and the
  484. * rest as this is what we have to compare against.
  485. */
  486. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  487. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  488. affinity &= ~MPIDR_LEVEL_MASK;
  489. /* bail out if the upper three levels don't match */
  490. if (sgi_aff != affinity)
  491. return -1;
  492. /* Is this VCPU's bit set in the mask ? */
  493. if (!(sgi_cpu_mask & BIT(level0)))
  494. return -1;
  495. return level0;
  496. }
  497. /*
  498. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  499. * so provide a wrapper to use the existing defines to isolate a certain
  500. * affinity level.
  501. */
  502. #define SGI_AFFINITY_LEVEL(reg, level) \
  503. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  504. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  505. /**
  506. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  507. * @vcpu: The VCPU requesting a SGI
  508. * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
  509. *
  510. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  511. * This will trap in sys_regs.c and call this function.
  512. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  513. * target processors as well as a bitmask of 16 Aff0 CPUs.
  514. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  515. * check for matching ones. If this bit is set, we signal all, but not the
  516. * calling VCPU.
  517. */
  518. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
  519. {
  520. struct kvm *kvm = vcpu->kvm;
  521. struct kvm_vcpu *c_vcpu;
  522. u16 target_cpus;
  523. u64 mpidr;
  524. int sgi, c;
  525. int vcpu_id = vcpu->vcpu_id;
  526. bool broadcast;
  527. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  528. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  529. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  530. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  531. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  532. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  533. /*
  534. * We iterate over all VCPUs to find the MPIDRs matching the request.
  535. * If we have handled one CPU, we clear its bit to detect early
  536. * if we are already finished. This avoids iterating through all
  537. * VCPUs when most of the times we just signal a single VCPU.
  538. */
  539. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  540. struct vgic_irq *irq;
  541. /* Exit early if we have dealt with all requested CPUs */
  542. if (!broadcast && target_cpus == 0)
  543. break;
  544. /* Don't signal the calling VCPU */
  545. if (broadcast && c == vcpu_id)
  546. continue;
  547. if (!broadcast) {
  548. int level0;
  549. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  550. if (level0 == -1)
  551. continue;
  552. /* remove this matching VCPU from the mask */
  553. target_cpus &= ~BIT(level0);
  554. }
  555. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  556. spin_lock(&irq->irq_lock);
  557. irq->pending = true;
  558. vgic_queue_irq_unlock(vcpu->kvm, irq);
  559. vgic_put_irq(vcpu->kvm, irq);
  560. }
  561. }