oom_kill.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/swap.h>
  25. #include <linux/timex.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/cpuset.h>
  28. #include <linux/export.h>
  29. #include <linux/notifier.h>
  30. #include <linux/memcontrol.h>
  31. #include <linux/mempolicy.h>
  32. #include <linux/security.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/freezer.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/ratelimit.h>
  37. #include <linux/kthread.h>
  38. #include <linux/init.h>
  39. #include <linux/mmu_notifier.h>
  40. #include <asm/tlb.h>
  41. #include "internal.h"
  42. #define CREATE_TRACE_POINTS
  43. #include <trace/events/oom.h>
  44. int sysctl_panic_on_oom;
  45. int sysctl_oom_kill_allocating_task;
  46. int sysctl_oom_dump_tasks = 1;
  47. DEFINE_MUTEX(oom_lock);
  48. #ifdef CONFIG_NUMA
  49. /**
  50. * has_intersects_mems_allowed() - check task eligiblity for kill
  51. * @start: task struct of which task to consider
  52. * @mask: nodemask passed to page allocator for mempolicy ooms
  53. *
  54. * Task eligibility is determined by whether or not a candidate task, @tsk,
  55. * shares the same mempolicy nodes as current if it is bound by such a policy
  56. * and whether or not it has the same set of allowed cpuset nodes.
  57. */
  58. static bool has_intersects_mems_allowed(struct task_struct *start,
  59. const nodemask_t *mask)
  60. {
  61. struct task_struct *tsk;
  62. bool ret = false;
  63. rcu_read_lock();
  64. for_each_thread(start, tsk) {
  65. if (mask) {
  66. /*
  67. * If this is a mempolicy constrained oom, tsk's
  68. * cpuset is irrelevant. Only return true if its
  69. * mempolicy intersects current, otherwise it may be
  70. * needlessly killed.
  71. */
  72. ret = mempolicy_nodemask_intersects(tsk, mask);
  73. } else {
  74. /*
  75. * This is not a mempolicy constrained oom, so only
  76. * check the mems of tsk's cpuset.
  77. */
  78. ret = cpuset_mems_allowed_intersects(current, tsk);
  79. }
  80. if (ret)
  81. break;
  82. }
  83. rcu_read_unlock();
  84. return ret;
  85. }
  86. #else
  87. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  88. const nodemask_t *mask)
  89. {
  90. return true;
  91. }
  92. #endif /* CONFIG_NUMA */
  93. /*
  94. * The process p may have detached its own ->mm while exiting or through
  95. * use_mm(), but one or more of its subthreads may still have a valid
  96. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  97. * task_lock() held.
  98. */
  99. struct task_struct *find_lock_task_mm(struct task_struct *p)
  100. {
  101. struct task_struct *t;
  102. rcu_read_lock();
  103. for_each_thread(p, t) {
  104. task_lock(t);
  105. if (likely(t->mm))
  106. goto found;
  107. task_unlock(t);
  108. }
  109. t = NULL;
  110. found:
  111. rcu_read_unlock();
  112. return t;
  113. }
  114. /*
  115. * order == -1 means the oom kill is required by sysrq, otherwise only
  116. * for display purposes.
  117. */
  118. static inline bool is_sysrq_oom(struct oom_control *oc)
  119. {
  120. return oc->order == -1;
  121. }
  122. static inline bool is_memcg_oom(struct oom_control *oc)
  123. {
  124. return oc->memcg != NULL;
  125. }
  126. /* return true if the task is not adequate as candidate victim task. */
  127. static bool oom_unkillable_task(struct task_struct *p,
  128. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  129. {
  130. if (is_global_init(p))
  131. return true;
  132. if (p->flags & PF_KTHREAD)
  133. return true;
  134. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  135. if (memcg && !task_in_mem_cgroup(p, memcg))
  136. return true;
  137. /* p may not have freeable memory in nodemask */
  138. if (!has_intersects_mems_allowed(p, nodemask))
  139. return true;
  140. return false;
  141. }
  142. /**
  143. * oom_badness - heuristic function to determine which candidate task to kill
  144. * @p: task struct of which task we should calculate
  145. * @totalpages: total present RAM allowed for page allocation
  146. *
  147. * The heuristic for determining which task to kill is made to be as simple and
  148. * predictable as possible. The goal is to return the highest value for the
  149. * task consuming the most memory to avoid subsequent oom failures.
  150. */
  151. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  152. const nodemask_t *nodemask, unsigned long totalpages)
  153. {
  154. long points;
  155. long adj;
  156. if (oom_unkillable_task(p, memcg, nodemask))
  157. return 0;
  158. p = find_lock_task_mm(p);
  159. if (!p)
  160. return 0;
  161. /*
  162. * Do not even consider tasks which are explicitly marked oom
  163. * unkillable or have been already oom reaped or the are in
  164. * the middle of vfork
  165. */
  166. adj = (long)p->signal->oom_score_adj;
  167. if (adj == OOM_SCORE_ADJ_MIN ||
  168. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  169. in_vfork(p)) {
  170. task_unlock(p);
  171. return 0;
  172. }
  173. /*
  174. * The baseline for the badness score is the proportion of RAM that each
  175. * task's rss, pagetable and swap space use.
  176. */
  177. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  178. atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
  179. task_unlock(p);
  180. /*
  181. * Root processes get 3% bonus, just like the __vm_enough_memory()
  182. * implementation used by LSMs.
  183. */
  184. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  185. points -= (points * 3) / 100;
  186. /* Normalize to oom_score_adj units */
  187. adj *= totalpages / 1000;
  188. points += adj;
  189. /*
  190. * Never return 0 for an eligible task regardless of the root bonus and
  191. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  192. */
  193. return points > 0 ? points : 1;
  194. }
  195. enum oom_constraint {
  196. CONSTRAINT_NONE,
  197. CONSTRAINT_CPUSET,
  198. CONSTRAINT_MEMORY_POLICY,
  199. CONSTRAINT_MEMCG,
  200. };
  201. /*
  202. * Determine the type of allocation constraint.
  203. */
  204. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  205. {
  206. struct zone *zone;
  207. struct zoneref *z;
  208. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  209. bool cpuset_limited = false;
  210. int nid;
  211. if (is_memcg_oom(oc)) {
  212. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  213. return CONSTRAINT_MEMCG;
  214. }
  215. /* Default to all available memory */
  216. oc->totalpages = totalram_pages + total_swap_pages;
  217. if (!IS_ENABLED(CONFIG_NUMA))
  218. return CONSTRAINT_NONE;
  219. if (!oc->zonelist)
  220. return CONSTRAINT_NONE;
  221. /*
  222. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  223. * to kill current.We have to random task kill in this case.
  224. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  225. */
  226. if (oc->gfp_mask & __GFP_THISNODE)
  227. return CONSTRAINT_NONE;
  228. /*
  229. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  230. * the page allocator means a mempolicy is in effect. Cpuset policy
  231. * is enforced in get_page_from_freelist().
  232. */
  233. if (oc->nodemask &&
  234. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  235. oc->totalpages = total_swap_pages;
  236. for_each_node_mask(nid, *oc->nodemask)
  237. oc->totalpages += node_spanned_pages(nid);
  238. return CONSTRAINT_MEMORY_POLICY;
  239. }
  240. /* Check this allocation failure is caused by cpuset's wall function */
  241. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  242. high_zoneidx, oc->nodemask)
  243. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  244. cpuset_limited = true;
  245. if (cpuset_limited) {
  246. oc->totalpages = total_swap_pages;
  247. for_each_node_mask(nid, cpuset_current_mems_allowed)
  248. oc->totalpages += node_spanned_pages(nid);
  249. return CONSTRAINT_CPUSET;
  250. }
  251. return CONSTRAINT_NONE;
  252. }
  253. static int oom_evaluate_task(struct task_struct *task, void *arg)
  254. {
  255. struct oom_control *oc = arg;
  256. unsigned long points;
  257. if (oom_unkillable_task(task, NULL, oc->nodemask))
  258. goto next;
  259. /*
  260. * This task already has access to memory reserves and is being killed.
  261. * Don't allow any other task to have access to the reserves unless
  262. * the task has MMF_OOM_SKIP because chances that it would release
  263. * any memory is quite low.
  264. */
  265. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  266. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  267. goto next;
  268. goto abort;
  269. }
  270. /*
  271. * If task is allocating a lot of memory and has been marked to be
  272. * killed first if it triggers an oom, then select it.
  273. */
  274. if (oom_task_origin(task)) {
  275. points = ULONG_MAX;
  276. goto select;
  277. }
  278. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  279. if (!points || points < oc->chosen_points)
  280. goto next;
  281. /* Prefer thread group leaders for display purposes */
  282. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  283. goto next;
  284. select:
  285. if (oc->chosen)
  286. put_task_struct(oc->chosen);
  287. get_task_struct(task);
  288. oc->chosen = task;
  289. oc->chosen_points = points;
  290. next:
  291. return 0;
  292. abort:
  293. if (oc->chosen)
  294. put_task_struct(oc->chosen);
  295. oc->chosen = (void *)-1UL;
  296. return 1;
  297. }
  298. /*
  299. * Simple selection loop. We choose the process with the highest number of
  300. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  301. */
  302. static void select_bad_process(struct oom_control *oc)
  303. {
  304. if (is_memcg_oom(oc))
  305. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  306. else {
  307. struct task_struct *p;
  308. rcu_read_lock();
  309. for_each_process(p)
  310. if (oom_evaluate_task(p, oc))
  311. break;
  312. rcu_read_unlock();
  313. }
  314. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  315. }
  316. /**
  317. * dump_tasks - dump current memory state of all system tasks
  318. * @memcg: current's memory controller, if constrained
  319. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  320. *
  321. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  322. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  323. * are not shown.
  324. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  325. * swapents, oom_score_adj value, and name.
  326. */
  327. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  328. {
  329. struct task_struct *p;
  330. struct task_struct *task;
  331. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
  332. rcu_read_lock();
  333. for_each_process(p) {
  334. if (oom_unkillable_task(p, memcg, nodemask))
  335. continue;
  336. task = find_lock_task_mm(p);
  337. if (!task) {
  338. /*
  339. * This is a kthread or all of p's threads have already
  340. * detached their mm's. There's no need to report
  341. * them; they can't be oom killed anyway.
  342. */
  343. continue;
  344. }
  345. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
  346. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  347. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  348. atomic_long_read(&task->mm->nr_ptes),
  349. mm_nr_pmds(task->mm),
  350. get_mm_counter(task->mm, MM_SWAPENTS),
  351. task->signal->oom_score_adj, task->comm);
  352. task_unlock(task);
  353. }
  354. rcu_read_unlock();
  355. }
  356. static void dump_header(struct oom_control *oc, struct task_struct *p)
  357. {
  358. nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
  359. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
  360. current->comm, oc->gfp_mask, &oc->gfp_mask,
  361. nodemask_pr_args(nm), oc->order,
  362. current->signal->oom_score_adj);
  363. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  364. pr_warn("COMPACTION is disabled!!!\n");
  365. cpuset_print_current_mems_allowed();
  366. dump_stack();
  367. if (oc->memcg)
  368. mem_cgroup_print_oom_info(oc->memcg, p);
  369. else
  370. show_mem(SHOW_MEM_FILTER_NODES);
  371. if (sysctl_oom_dump_tasks)
  372. dump_tasks(oc->memcg, oc->nodemask);
  373. }
  374. /*
  375. * Number of OOM victims in flight
  376. */
  377. static atomic_t oom_victims = ATOMIC_INIT(0);
  378. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  379. static bool oom_killer_disabled __read_mostly;
  380. #define K(x) ((x) << (PAGE_SHIFT-10))
  381. /*
  382. * task->mm can be NULL if the task is the exited group leader. So to
  383. * determine whether the task is using a particular mm, we examine all the
  384. * task's threads: if one of those is using this mm then this task was also
  385. * using it.
  386. */
  387. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  388. {
  389. struct task_struct *t;
  390. for_each_thread(p, t) {
  391. struct mm_struct *t_mm = READ_ONCE(t->mm);
  392. if (t_mm)
  393. return t_mm == mm;
  394. }
  395. return false;
  396. }
  397. #ifdef CONFIG_MMU
  398. /*
  399. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  400. * victim (if that is possible) to help the OOM killer to move on.
  401. */
  402. static struct task_struct *oom_reaper_th;
  403. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  404. static struct task_struct *oom_reaper_list;
  405. static DEFINE_SPINLOCK(oom_reaper_lock);
  406. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  407. {
  408. struct mmu_gather tlb;
  409. struct vm_area_struct *vma;
  410. struct zap_details details = {.check_swap_entries = true,
  411. .ignore_dirty = true};
  412. bool ret = true;
  413. /*
  414. * We have to make sure to not race with the victim exit path
  415. * and cause premature new oom victim selection:
  416. * __oom_reap_task_mm exit_mm
  417. * mmget_not_zero
  418. * mmput
  419. * atomic_dec_and_test
  420. * exit_oom_victim
  421. * [...]
  422. * out_of_memory
  423. * select_bad_process
  424. * # no TIF_MEMDIE task selects new victim
  425. * unmap_page_range # frees some memory
  426. */
  427. mutex_lock(&oom_lock);
  428. if (!down_read_trylock(&mm->mmap_sem)) {
  429. ret = false;
  430. goto unlock_oom;
  431. }
  432. /*
  433. * If the mm has notifiers then we would need to invalidate them around
  434. * unmap_page_range and that is risky because notifiers can sleep and
  435. * what they do is basically undeterministic. So let's have a short
  436. * sleep to give the oom victim some more time.
  437. * TODO: we really want to get rid of this ugly hack and make sure that
  438. * notifiers cannot block for unbounded amount of time and add
  439. * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
  440. */
  441. if (mm_has_notifiers(mm)) {
  442. up_read(&mm->mmap_sem);
  443. schedule_timeout_idle(HZ);
  444. goto unlock_oom;
  445. }
  446. /*
  447. * increase mm_users only after we know we will reap something so
  448. * that the mmput_async is called only when we have reaped something
  449. * and delayed __mmput doesn't matter that much
  450. */
  451. if (!mmget_not_zero(mm)) {
  452. up_read(&mm->mmap_sem);
  453. goto unlock_oom;
  454. }
  455. /*
  456. * Tell all users of get_user/copy_from_user etc... that the content
  457. * is no longer stable. No barriers really needed because unmapping
  458. * should imply barriers already and the reader would hit a page fault
  459. * if it stumbled over a reaped memory.
  460. */
  461. set_bit(MMF_UNSTABLE, &mm->flags);
  462. tlb_gather_mmu(&tlb, mm, 0, -1);
  463. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  464. if (is_vm_hugetlb_page(vma))
  465. continue;
  466. /*
  467. * mlocked VMAs require explicit munlocking before unmap.
  468. * Let's keep it simple here and skip such VMAs.
  469. */
  470. if (vma->vm_flags & VM_LOCKED)
  471. continue;
  472. /*
  473. * Only anonymous pages have a good chance to be dropped
  474. * without additional steps which we cannot afford as we
  475. * are OOM already.
  476. *
  477. * We do not even care about fs backed pages because all
  478. * which are reclaimable have already been reclaimed and
  479. * we do not want to block exit_mmap by keeping mm ref
  480. * count elevated without a good reason.
  481. */
  482. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
  483. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  484. &details);
  485. }
  486. tlb_finish_mmu(&tlb, 0, -1);
  487. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  488. task_pid_nr(tsk), tsk->comm,
  489. K(get_mm_counter(mm, MM_ANONPAGES)),
  490. K(get_mm_counter(mm, MM_FILEPAGES)),
  491. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  492. up_read(&mm->mmap_sem);
  493. /*
  494. * Drop our reference but make sure the mmput slow path is called from a
  495. * different context because we shouldn't risk we get stuck there and
  496. * put the oom_reaper out of the way.
  497. */
  498. mmput_async(mm);
  499. unlock_oom:
  500. mutex_unlock(&oom_lock);
  501. return ret;
  502. }
  503. #define MAX_OOM_REAP_RETRIES 10
  504. static void oom_reap_task(struct task_struct *tsk)
  505. {
  506. int attempts = 0;
  507. struct mm_struct *mm = tsk->signal->oom_mm;
  508. /* Retry the down_read_trylock(mmap_sem) a few times */
  509. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  510. schedule_timeout_idle(HZ/10);
  511. if (attempts <= MAX_OOM_REAP_RETRIES)
  512. goto done;
  513. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  514. task_pid_nr(tsk), tsk->comm);
  515. debug_show_all_locks();
  516. done:
  517. tsk->oom_reaper_list = NULL;
  518. /*
  519. * Hide this mm from OOM killer because it has been either reaped or
  520. * somebody can't call up_write(mmap_sem).
  521. */
  522. set_bit(MMF_OOM_SKIP, &mm->flags);
  523. /* Drop a reference taken by wake_oom_reaper */
  524. put_task_struct(tsk);
  525. }
  526. static int oom_reaper(void *unused)
  527. {
  528. while (true) {
  529. struct task_struct *tsk = NULL;
  530. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  531. spin_lock(&oom_reaper_lock);
  532. if (oom_reaper_list != NULL) {
  533. tsk = oom_reaper_list;
  534. oom_reaper_list = tsk->oom_reaper_list;
  535. }
  536. spin_unlock(&oom_reaper_lock);
  537. if (tsk)
  538. oom_reap_task(tsk);
  539. }
  540. return 0;
  541. }
  542. static void wake_oom_reaper(struct task_struct *tsk)
  543. {
  544. if (!oom_reaper_th)
  545. return;
  546. /* tsk is already queued? */
  547. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  548. return;
  549. get_task_struct(tsk);
  550. spin_lock(&oom_reaper_lock);
  551. tsk->oom_reaper_list = oom_reaper_list;
  552. oom_reaper_list = tsk;
  553. spin_unlock(&oom_reaper_lock);
  554. wake_up(&oom_reaper_wait);
  555. }
  556. static int __init oom_init(void)
  557. {
  558. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  559. if (IS_ERR(oom_reaper_th)) {
  560. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  561. PTR_ERR(oom_reaper_th));
  562. oom_reaper_th = NULL;
  563. }
  564. return 0;
  565. }
  566. subsys_initcall(oom_init)
  567. #else
  568. static inline void wake_oom_reaper(struct task_struct *tsk)
  569. {
  570. }
  571. #endif /* CONFIG_MMU */
  572. /**
  573. * mark_oom_victim - mark the given task as OOM victim
  574. * @tsk: task to mark
  575. *
  576. * Has to be called with oom_lock held and never after
  577. * oom has been disabled already.
  578. *
  579. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  580. * under task_lock or operate on the current).
  581. */
  582. static void mark_oom_victim(struct task_struct *tsk)
  583. {
  584. struct mm_struct *mm = tsk->mm;
  585. WARN_ON(oom_killer_disabled);
  586. /* OOM killer might race with memcg OOM */
  587. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  588. return;
  589. /* oom_mm is bound to the signal struct life time. */
  590. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
  591. atomic_inc(&tsk->signal->oom_mm->mm_count);
  592. /*
  593. * Make sure that the task is woken up from uninterruptible sleep
  594. * if it is frozen because OOM killer wouldn't be able to free
  595. * any memory and livelock. freezing_slow_path will tell the freezer
  596. * that TIF_MEMDIE tasks should be ignored.
  597. */
  598. __thaw_task(tsk);
  599. atomic_inc(&oom_victims);
  600. }
  601. /**
  602. * exit_oom_victim - note the exit of an OOM victim
  603. */
  604. void exit_oom_victim(void)
  605. {
  606. clear_thread_flag(TIF_MEMDIE);
  607. if (!atomic_dec_return(&oom_victims))
  608. wake_up_all(&oom_victims_wait);
  609. }
  610. /**
  611. * oom_killer_enable - enable OOM killer
  612. */
  613. void oom_killer_enable(void)
  614. {
  615. oom_killer_disabled = false;
  616. }
  617. /**
  618. * oom_killer_disable - disable OOM killer
  619. * @timeout: maximum timeout to wait for oom victims in jiffies
  620. *
  621. * Forces all page allocations to fail rather than trigger OOM killer.
  622. * Will block and wait until all OOM victims are killed or the given
  623. * timeout expires.
  624. *
  625. * The function cannot be called when there are runnable user tasks because
  626. * the userspace would see unexpected allocation failures as a result. Any
  627. * new usage of this function should be consulted with MM people.
  628. *
  629. * Returns true if successful and false if the OOM killer cannot be
  630. * disabled.
  631. */
  632. bool oom_killer_disable(signed long timeout)
  633. {
  634. signed long ret;
  635. /*
  636. * Make sure to not race with an ongoing OOM killer. Check that the
  637. * current is not killed (possibly due to sharing the victim's memory).
  638. */
  639. if (mutex_lock_killable(&oom_lock))
  640. return false;
  641. oom_killer_disabled = true;
  642. mutex_unlock(&oom_lock);
  643. ret = wait_event_interruptible_timeout(oom_victims_wait,
  644. !atomic_read(&oom_victims), timeout);
  645. if (ret <= 0) {
  646. oom_killer_enable();
  647. return false;
  648. }
  649. return true;
  650. }
  651. static inline bool __task_will_free_mem(struct task_struct *task)
  652. {
  653. struct signal_struct *sig = task->signal;
  654. /*
  655. * A coredumping process may sleep for an extended period in exit_mm(),
  656. * so the oom killer cannot assume that the process will promptly exit
  657. * and release memory.
  658. */
  659. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  660. return false;
  661. if (sig->flags & SIGNAL_GROUP_EXIT)
  662. return true;
  663. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  664. return true;
  665. return false;
  666. }
  667. /*
  668. * Checks whether the given task is dying or exiting and likely to
  669. * release its address space. This means that all threads and processes
  670. * sharing the same mm have to be killed or exiting.
  671. * Caller has to make sure that task->mm is stable (hold task_lock or
  672. * it operates on the current).
  673. */
  674. static bool task_will_free_mem(struct task_struct *task)
  675. {
  676. struct mm_struct *mm = task->mm;
  677. struct task_struct *p;
  678. bool ret = true;
  679. /*
  680. * Skip tasks without mm because it might have passed its exit_mm and
  681. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  682. * on that for now. We can consider find_lock_task_mm in future.
  683. */
  684. if (!mm)
  685. return false;
  686. if (!__task_will_free_mem(task))
  687. return false;
  688. /*
  689. * This task has already been drained by the oom reaper so there are
  690. * only small chances it will free some more
  691. */
  692. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  693. return false;
  694. if (atomic_read(&mm->mm_users) <= 1)
  695. return true;
  696. /*
  697. * Make sure that all tasks which share the mm with the given tasks
  698. * are dying as well to make sure that a) nobody pins its mm and
  699. * b) the task is also reapable by the oom reaper.
  700. */
  701. rcu_read_lock();
  702. for_each_process(p) {
  703. if (!process_shares_mm(p, mm))
  704. continue;
  705. if (same_thread_group(task, p))
  706. continue;
  707. ret = __task_will_free_mem(p);
  708. if (!ret)
  709. break;
  710. }
  711. rcu_read_unlock();
  712. return ret;
  713. }
  714. static void oom_kill_process(struct oom_control *oc, const char *message)
  715. {
  716. struct task_struct *p = oc->chosen;
  717. unsigned int points = oc->chosen_points;
  718. struct task_struct *victim = p;
  719. struct task_struct *child;
  720. struct task_struct *t;
  721. struct mm_struct *mm;
  722. unsigned int victim_points = 0;
  723. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  724. DEFAULT_RATELIMIT_BURST);
  725. bool can_oom_reap = true;
  726. /*
  727. * If the task is already exiting, don't alarm the sysadmin or kill
  728. * its children or threads, just set TIF_MEMDIE so it can die quickly
  729. */
  730. task_lock(p);
  731. if (task_will_free_mem(p)) {
  732. mark_oom_victim(p);
  733. wake_oom_reaper(p);
  734. task_unlock(p);
  735. put_task_struct(p);
  736. return;
  737. }
  738. task_unlock(p);
  739. if (__ratelimit(&oom_rs))
  740. dump_header(oc, p);
  741. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  742. message, task_pid_nr(p), p->comm, points);
  743. /*
  744. * If any of p's children has a different mm and is eligible for kill,
  745. * the one with the highest oom_badness() score is sacrificed for its
  746. * parent. This attempts to lose the minimal amount of work done while
  747. * still freeing memory.
  748. */
  749. read_lock(&tasklist_lock);
  750. for_each_thread(p, t) {
  751. list_for_each_entry(child, &t->children, sibling) {
  752. unsigned int child_points;
  753. if (process_shares_mm(child, p->mm))
  754. continue;
  755. /*
  756. * oom_badness() returns 0 if the thread is unkillable
  757. */
  758. child_points = oom_badness(child,
  759. oc->memcg, oc->nodemask, oc->totalpages);
  760. if (child_points > victim_points) {
  761. put_task_struct(victim);
  762. victim = child;
  763. victim_points = child_points;
  764. get_task_struct(victim);
  765. }
  766. }
  767. }
  768. read_unlock(&tasklist_lock);
  769. p = find_lock_task_mm(victim);
  770. if (!p) {
  771. put_task_struct(victim);
  772. return;
  773. } else if (victim != p) {
  774. get_task_struct(p);
  775. put_task_struct(victim);
  776. victim = p;
  777. }
  778. /* Get a reference to safely compare mm after task_unlock(victim) */
  779. mm = victim->mm;
  780. atomic_inc(&mm->mm_count);
  781. /*
  782. * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
  783. * the OOM victim from depleting the memory reserves from the user
  784. * space under its control.
  785. */
  786. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  787. mark_oom_victim(victim);
  788. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  789. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  790. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  791. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  792. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  793. task_unlock(victim);
  794. /*
  795. * Kill all user processes sharing victim->mm in other thread groups, if
  796. * any. They don't get access to memory reserves, though, to avoid
  797. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  798. * oom killed thread cannot exit because it requires the semaphore and
  799. * its contended by another thread trying to allocate memory itself.
  800. * That thread will now get access to memory reserves since it has a
  801. * pending fatal signal.
  802. */
  803. rcu_read_lock();
  804. for_each_process(p) {
  805. if (!process_shares_mm(p, mm))
  806. continue;
  807. if (same_thread_group(p, victim))
  808. continue;
  809. if (is_global_init(p)) {
  810. can_oom_reap = false;
  811. set_bit(MMF_OOM_SKIP, &mm->flags);
  812. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  813. task_pid_nr(victim), victim->comm,
  814. task_pid_nr(p), p->comm);
  815. continue;
  816. }
  817. /*
  818. * No use_mm() user needs to read from the userspace so we are
  819. * ok to reap it.
  820. */
  821. if (unlikely(p->flags & PF_KTHREAD))
  822. continue;
  823. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  824. }
  825. rcu_read_unlock();
  826. if (can_oom_reap)
  827. wake_oom_reaper(victim);
  828. mmdrop(mm);
  829. put_task_struct(victim);
  830. }
  831. #undef K
  832. /*
  833. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  834. */
  835. static void check_panic_on_oom(struct oom_control *oc,
  836. enum oom_constraint constraint)
  837. {
  838. if (likely(!sysctl_panic_on_oom))
  839. return;
  840. if (sysctl_panic_on_oom != 2) {
  841. /*
  842. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  843. * does not panic for cpuset, mempolicy, or memcg allocation
  844. * failures.
  845. */
  846. if (constraint != CONSTRAINT_NONE)
  847. return;
  848. }
  849. /* Do not panic for oom kills triggered by sysrq */
  850. if (is_sysrq_oom(oc))
  851. return;
  852. dump_header(oc, NULL);
  853. panic("Out of memory: %s panic_on_oom is enabled\n",
  854. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  855. }
  856. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  857. int register_oom_notifier(struct notifier_block *nb)
  858. {
  859. return blocking_notifier_chain_register(&oom_notify_list, nb);
  860. }
  861. EXPORT_SYMBOL_GPL(register_oom_notifier);
  862. int unregister_oom_notifier(struct notifier_block *nb)
  863. {
  864. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  865. }
  866. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  867. /**
  868. * out_of_memory - kill the "best" process when we run out of memory
  869. * @oc: pointer to struct oom_control
  870. *
  871. * If we run out of memory, we have the choice between either
  872. * killing a random task (bad), letting the system crash (worse)
  873. * OR try to be smart about which process to kill. Note that we
  874. * don't have to be perfect here, we just have to be good.
  875. */
  876. bool out_of_memory(struct oom_control *oc)
  877. {
  878. unsigned long freed = 0;
  879. enum oom_constraint constraint = CONSTRAINT_NONE;
  880. if (oom_killer_disabled)
  881. return false;
  882. if (!is_memcg_oom(oc)) {
  883. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  884. if (freed > 0)
  885. /* Got some memory back in the last second. */
  886. return true;
  887. }
  888. /*
  889. * If current has a pending SIGKILL or is exiting, then automatically
  890. * select it. The goal is to allow it to allocate so that it may
  891. * quickly exit and free its memory.
  892. */
  893. if (task_will_free_mem(current)) {
  894. mark_oom_victim(current);
  895. wake_oom_reaper(current);
  896. return true;
  897. }
  898. /*
  899. * The OOM killer does not compensate for IO-less reclaim.
  900. * pagefault_out_of_memory lost its gfp context so we have to
  901. * make sure exclude 0 mask - all other users should have at least
  902. * ___GFP_DIRECT_RECLAIM to get here.
  903. */
  904. if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
  905. return true;
  906. /*
  907. * Check if there were limitations on the allocation (only relevant for
  908. * NUMA and memcg) that may require different handling.
  909. */
  910. constraint = constrained_alloc(oc);
  911. if (constraint != CONSTRAINT_MEMORY_POLICY)
  912. oc->nodemask = NULL;
  913. check_panic_on_oom(oc, constraint);
  914. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  915. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  916. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  917. get_task_struct(current);
  918. oc->chosen = current;
  919. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  920. return true;
  921. }
  922. select_bad_process(oc);
  923. /* Found nothing?!?! Either we hang forever, or we panic. */
  924. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  925. dump_header(oc, NULL);
  926. panic("Out of memory and no killable processes...\n");
  927. }
  928. if (oc->chosen && oc->chosen != (void *)-1UL) {
  929. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  930. "Memory cgroup out of memory");
  931. /*
  932. * Give the killed process a good chance to exit before trying
  933. * to allocate memory again.
  934. */
  935. schedule_timeout_killable(1);
  936. }
  937. return !!oc->chosen;
  938. }
  939. /*
  940. * The pagefault handler calls here because it is out of memory, so kill a
  941. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  942. * killing is already in progress so do nothing.
  943. */
  944. void pagefault_out_of_memory(void)
  945. {
  946. struct oom_control oc = {
  947. .zonelist = NULL,
  948. .nodemask = NULL,
  949. .memcg = NULL,
  950. .gfp_mask = 0,
  951. .order = 0,
  952. };
  953. if (mem_cgroup_oom_synchronize(true))
  954. return;
  955. if (!mutex_trylock(&oom_lock))
  956. return;
  957. out_of_memory(&oc);
  958. mutex_unlock(&oom_lock);
  959. }