futex.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <linux/fault-inject.h>
  68. #include <asm/futex.h>
  69. #include "locking/rtmutex_common.h"
  70. /*
  71. * READ this before attempting to hack on futexes!
  72. *
  73. * Basic futex operation and ordering guarantees
  74. * =============================================
  75. *
  76. * The waiter reads the futex value in user space and calls
  77. * futex_wait(). This function computes the hash bucket and acquires
  78. * the hash bucket lock. After that it reads the futex user space value
  79. * again and verifies that the data has not changed. If it has not changed
  80. * it enqueues itself into the hash bucket, releases the hash bucket lock
  81. * and schedules.
  82. *
  83. * The waker side modifies the user space value of the futex and calls
  84. * futex_wake(). This function computes the hash bucket and acquires the
  85. * hash bucket lock. Then it looks for waiters on that futex in the hash
  86. * bucket and wakes them.
  87. *
  88. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  89. * the hb spinlock can be avoided and simply return. In order for this
  90. * optimization to work, ordering guarantees must exist so that the waiter
  91. * being added to the list is acknowledged when the list is concurrently being
  92. * checked by the waker, avoiding scenarios like the following:
  93. *
  94. * CPU 0 CPU 1
  95. * val = *futex;
  96. * sys_futex(WAIT, futex, val);
  97. * futex_wait(futex, val);
  98. * uval = *futex;
  99. * *futex = newval;
  100. * sys_futex(WAKE, futex);
  101. * futex_wake(futex);
  102. * if (queue_empty())
  103. * return;
  104. * if (uval == val)
  105. * lock(hash_bucket(futex));
  106. * queue();
  107. * unlock(hash_bucket(futex));
  108. * schedule();
  109. *
  110. * This would cause the waiter on CPU 0 to wait forever because it
  111. * missed the transition of the user space value from val to newval
  112. * and the waker did not find the waiter in the hash bucket queue.
  113. *
  114. * The correct serialization ensures that a waiter either observes
  115. * the changed user space value before blocking or is woken by a
  116. * concurrent waker:
  117. *
  118. * CPU 0 CPU 1
  119. * val = *futex;
  120. * sys_futex(WAIT, futex, val);
  121. * futex_wait(futex, val);
  122. *
  123. * waiters++; (a)
  124. * smp_mb(); (A) <-- paired with -.
  125. * |
  126. * lock(hash_bucket(futex)); |
  127. * |
  128. * uval = *futex; |
  129. * | *futex = newval;
  130. * | sys_futex(WAKE, futex);
  131. * | futex_wake(futex);
  132. * |
  133. * `--------> smp_mb(); (B)
  134. * if (uval == val)
  135. * queue();
  136. * unlock(hash_bucket(futex));
  137. * schedule(); if (waiters)
  138. * lock(hash_bucket(futex));
  139. * else wake_waiters(futex);
  140. * waiters--; (b) unlock(hash_bucket(futex));
  141. *
  142. * Where (A) orders the waiters increment and the futex value read through
  143. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  144. * to futex and the waiters read -- this is done by the barriers for both
  145. * shared and private futexes in get_futex_key_refs().
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #ifdef CONFIG_MMU
  178. # define FLAGS_SHARED 0x01
  179. #else
  180. /*
  181. * NOMMU does not have per process address space. Let the compiler optimize
  182. * code away.
  183. */
  184. # define FLAGS_SHARED 0x00
  185. #endif
  186. #define FLAGS_CLOCKRT 0x02
  187. #define FLAGS_HAS_TIMEOUT 0x04
  188. /*
  189. * Priority Inheritance state:
  190. */
  191. struct futex_pi_state {
  192. /*
  193. * list of 'owned' pi_state instances - these have to be
  194. * cleaned up in do_exit() if the task exits prematurely:
  195. */
  196. struct list_head list;
  197. /*
  198. * The PI object:
  199. */
  200. struct rt_mutex pi_mutex;
  201. struct task_struct *owner;
  202. atomic_t refcount;
  203. union futex_key key;
  204. };
  205. /**
  206. * struct futex_q - The hashed futex queue entry, one per waiting task
  207. * @list: priority-sorted list of tasks waiting on this futex
  208. * @task: the task waiting on the futex
  209. * @lock_ptr: the hash bucket lock
  210. * @key: the key the futex is hashed on
  211. * @pi_state: optional priority inheritance state
  212. * @rt_waiter: rt_waiter storage for use with requeue_pi
  213. * @requeue_pi_key: the requeue_pi target futex key
  214. * @bitset: bitset for the optional bitmasked wakeup
  215. *
  216. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  217. * we can wake only the relevant ones (hashed queues may be shared).
  218. *
  219. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  220. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  221. * The order of wakeup is always to make the first condition true, then
  222. * the second.
  223. *
  224. * PI futexes are typically woken before they are removed from the hash list via
  225. * the rt_mutex code. See unqueue_me_pi().
  226. */
  227. struct futex_q {
  228. struct plist_node list;
  229. struct task_struct *task;
  230. spinlock_t *lock_ptr;
  231. union futex_key key;
  232. struct futex_pi_state *pi_state;
  233. struct rt_mutex_waiter *rt_waiter;
  234. union futex_key *requeue_pi_key;
  235. u32 bitset;
  236. };
  237. static const struct futex_q futex_q_init = {
  238. /* list gets initialized in queue_me()*/
  239. .key = FUTEX_KEY_INIT,
  240. .bitset = FUTEX_BITSET_MATCH_ANY
  241. };
  242. /*
  243. * Hash buckets are shared by all the futex_keys that hash to the same
  244. * location. Each key may have multiple futex_q structures, one for each task
  245. * waiting on a futex.
  246. */
  247. struct futex_hash_bucket {
  248. atomic_t waiters;
  249. spinlock_t lock;
  250. struct plist_head chain;
  251. } ____cacheline_aligned_in_smp;
  252. /*
  253. * The base of the bucket array and its size are always used together
  254. * (after initialization only in hash_futex()), so ensure that they
  255. * reside in the same cacheline.
  256. */
  257. static struct {
  258. struct futex_hash_bucket *queues;
  259. unsigned long hashsize;
  260. } __futex_data __read_mostly __aligned(2*sizeof(long));
  261. #define futex_queues (__futex_data.queues)
  262. #define futex_hashsize (__futex_data.hashsize)
  263. /*
  264. * Fault injections for futexes.
  265. */
  266. #ifdef CONFIG_FAIL_FUTEX
  267. static struct {
  268. struct fault_attr attr;
  269. bool ignore_private;
  270. } fail_futex = {
  271. .attr = FAULT_ATTR_INITIALIZER,
  272. .ignore_private = false,
  273. };
  274. static int __init setup_fail_futex(char *str)
  275. {
  276. return setup_fault_attr(&fail_futex.attr, str);
  277. }
  278. __setup("fail_futex=", setup_fail_futex);
  279. static bool should_fail_futex(bool fshared)
  280. {
  281. if (fail_futex.ignore_private && !fshared)
  282. return false;
  283. return should_fail(&fail_futex.attr, 1);
  284. }
  285. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  286. static int __init fail_futex_debugfs(void)
  287. {
  288. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  289. struct dentry *dir;
  290. dir = fault_create_debugfs_attr("fail_futex", NULL,
  291. &fail_futex.attr);
  292. if (IS_ERR(dir))
  293. return PTR_ERR(dir);
  294. if (!debugfs_create_bool("ignore-private", mode, dir,
  295. &fail_futex.ignore_private)) {
  296. debugfs_remove_recursive(dir);
  297. return -ENOMEM;
  298. }
  299. return 0;
  300. }
  301. late_initcall(fail_futex_debugfs);
  302. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  303. #else
  304. static inline bool should_fail_futex(bool fshared)
  305. {
  306. return false;
  307. }
  308. #endif /* CONFIG_FAIL_FUTEX */
  309. static inline void futex_get_mm(union futex_key *key)
  310. {
  311. atomic_inc(&key->private.mm->mm_count);
  312. /*
  313. * Ensure futex_get_mm() implies a full barrier such that
  314. * get_futex_key() implies a full barrier. This is relied upon
  315. * as smp_mb(); (B), see the ordering comment above.
  316. */
  317. smp_mb__after_atomic();
  318. }
  319. /*
  320. * Reflects a new waiter being added to the waitqueue.
  321. */
  322. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  323. {
  324. #ifdef CONFIG_SMP
  325. atomic_inc(&hb->waiters);
  326. /*
  327. * Full barrier (A), see the ordering comment above.
  328. */
  329. smp_mb__after_atomic();
  330. #endif
  331. }
  332. /*
  333. * Reflects a waiter being removed from the waitqueue by wakeup
  334. * paths.
  335. */
  336. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  337. {
  338. #ifdef CONFIG_SMP
  339. atomic_dec(&hb->waiters);
  340. #endif
  341. }
  342. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  343. {
  344. #ifdef CONFIG_SMP
  345. return atomic_read(&hb->waiters);
  346. #else
  347. return 1;
  348. #endif
  349. }
  350. /**
  351. * hash_futex - Return the hash bucket in the global hash
  352. * @key: Pointer to the futex key for which the hash is calculated
  353. *
  354. * We hash on the keys returned from get_futex_key (see below) and return the
  355. * corresponding hash bucket in the global hash.
  356. */
  357. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  358. {
  359. u32 hash = jhash2((u32*)&key->both.word,
  360. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  361. key->both.offset);
  362. return &futex_queues[hash & (futex_hashsize - 1)];
  363. }
  364. /**
  365. * match_futex - Check whether two futex keys are equal
  366. * @key1: Pointer to key1
  367. * @key2: Pointer to key2
  368. *
  369. * Return 1 if two futex_keys are equal, 0 otherwise.
  370. */
  371. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  372. {
  373. return (key1 && key2
  374. && key1->both.word == key2->both.word
  375. && key1->both.ptr == key2->both.ptr
  376. && key1->both.offset == key2->both.offset);
  377. }
  378. /*
  379. * Take a reference to the resource addressed by a key.
  380. * Can be called while holding spinlocks.
  381. *
  382. */
  383. static void get_futex_key_refs(union futex_key *key)
  384. {
  385. if (!key->both.ptr)
  386. return;
  387. /*
  388. * On MMU less systems futexes are always "private" as there is no per
  389. * process address space. We need the smp wmb nevertheless - yes,
  390. * arch/blackfin has MMU less SMP ...
  391. */
  392. if (!IS_ENABLED(CONFIG_MMU)) {
  393. smp_mb(); /* explicit smp_mb(); (B) */
  394. return;
  395. }
  396. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  397. case FUT_OFF_INODE:
  398. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  399. break;
  400. case FUT_OFF_MMSHARED:
  401. futex_get_mm(key); /* implies smp_mb(); (B) */
  402. break;
  403. default:
  404. /*
  405. * Private futexes do not hold reference on an inode or
  406. * mm, therefore the only purpose of calling get_futex_key_refs
  407. * is because we need the barrier for the lockless waiter check.
  408. */
  409. smp_mb(); /* explicit smp_mb(); (B) */
  410. }
  411. }
  412. /*
  413. * Drop a reference to the resource addressed by a key.
  414. * The hash bucket spinlock must not be held. This is
  415. * a no-op for private futexes, see comment in the get
  416. * counterpart.
  417. */
  418. static void drop_futex_key_refs(union futex_key *key)
  419. {
  420. if (!key->both.ptr) {
  421. /* If we're here then we tried to put a key we failed to get */
  422. WARN_ON_ONCE(1);
  423. return;
  424. }
  425. if (!IS_ENABLED(CONFIG_MMU))
  426. return;
  427. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  428. case FUT_OFF_INODE:
  429. iput(key->shared.inode);
  430. break;
  431. case FUT_OFF_MMSHARED:
  432. mmdrop(key->private.mm);
  433. break;
  434. }
  435. }
  436. /**
  437. * get_futex_key() - Get parameters which are the keys for a futex
  438. * @uaddr: virtual address of the futex
  439. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  440. * @key: address where result is stored.
  441. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  442. * VERIFY_WRITE)
  443. *
  444. * Return: a negative error code or 0
  445. *
  446. * The key words are stored in *key on success.
  447. *
  448. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  449. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  450. * We can usually work out the index without swapping in the page.
  451. *
  452. * lock_page() might sleep, the caller should not hold a spinlock.
  453. */
  454. static int
  455. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  456. {
  457. unsigned long address = (unsigned long)uaddr;
  458. struct mm_struct *mm = current->mm;
  459. struct page *page, *tail;
  460. struct address_space *mapping;
  461. int err, ro = 0;
  462. /*
  463. * The futex address must be "naturally" aligned.
  464. */
  465. key->both.offset = address % PAGE_SIZE;
  466. if (unlikely((address % sizeof(u32)) != 0))
  467. return -EINVAL;
  468. address -= key->both.offset;
  469. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  470. return -EFAULT;
  471. if (unlikely(should_fail_futex(fshared)))
  472. return -EFAULT;
  473. /*
  474. * PROCESS_PRIVATE futexes are fast.
  475. * As the mm cannot disappear under us and the 'key' only needs
  476. * virtual address, we dont even have to find the underlying vma.
  477. * Note : We do have to check 'uaddr' is a valid user address,
  478. * but access_ok() should be faster than find_vma()
  479. */
  480. if (!fshared) {
  481. key->private.mm = mm;
  482. key->private.address = address;
  483. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  484. return 0;
  485. }
  486. again:
  487. /* Ignore any VERIFY_READ mapping (futex common case) */
  488. if (unlikely(should_fail_futex(fshared)))
  489. return -EFAULT;
  490. err = get_user_pages_fast(address, 1, 1, &page);
  491. /*
  492. * If write access is not required (eg. FUTEX_WAIT), try
  493. * and get read-only access.
  494. */
  495. if (err == -EFAULT && rw == VERIFY_READ) {
  496. err = get_user_pages_fast(address, 1, 0, &page);
  497. ro = 1;
  498. }
  499. if (err < 0)
  500. return err;
  501. else
  502. err = 0;
  503. /*
  504. * The treatment of mapping from this point on is critical. The page
  505. * lock protects many things but in this context the page lock
  506. * stabilizes mapping, prevents inode freeing in the shared
  507. * file-backed region case and guards against movement to swap cache.
  508. *
  509. * Strictly speaking the page lock is not needed in all cases being
  510. * considered here and page lock forces unnecessarily serialization
  511. * From this point on, mapping will be re-verified if necessary and
  512. * page lock will be acquired only if it is unavoidable
  513. *
  514. * Mapping checks require the head page for any compound page so the
  515. * head page and mapping is looked up now. For anonymous pages, it
  516. * does not matter if the page splits in the future as the key is
  517. * based on the address. For filesystem-backed pages, the tail is
  518. * required as the index of the page determines the key. For
  519. * base pages, there is no tail page and tail == page.
  520. */
  521. tail = page;
  522. page = compound_head(page);
  523. mapping = READ_ONCE(page->mapping);
  524. /*
  525. * If page->mapping is NULL, then it cannot be a PageAnon
  526. * page; but it might be the ZERO_PAGE or in the gate area or
  527. * in a special mapping (all cases which we are happy to fail);
  528. * or it may have been a good file page when get_user_pages_fast
  529. * found it, but truncated or holepunched or subjected to
  530. * invalidate_complete_page2 before we got the page lock (also
  531. * cases which we are happy to fail). And we hold a reference,
  532. * so refcount care in invalidate_complete_page's remove_mapping
  533. * prevents drop_caches from setting mapping to NULL beneath us.
  534. *
  535. * The case we do have to guard against is when memory pressure made
  536. * shmem_writepage move it from filecache to swapcache beneath us:
  537. * an unlikely race, but we do need to retry for page->mapping.
  538. */
  539. if (unlikely(!mapping)) {
  540. int shmem_swizzled;
  541. /*
  542. * Page lock is required to identify which special case above
  543. * applies. If this is really a shmem page then the page lock
  544. * will prevent unexpected transitions.
  545. */
  546. lock_page(page);
  547. shmem_swizzled = PageSwapCache(page) || page->mapping;
  548. unlock_page(page);
  549. put_page(page);
  550. if (shmem_swizzled)
  551. goto again;
  552. return -EFAULT;
  553. }
  554. /*
  555. * Private mappings are handled in a simple way.
  556. *
  557. * If the futex key is stored on an anonymous page, then the associated
  558. * object is the mm which is implicitly pinned by the calling process.
  559. *
  560. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  561. * it's a read-only handle, it's expected that futexes attach to
  562. * the object not the particular process.
  563. */
  564. if (PageAnon(page)) {
  565. /*
  566. * A RO anonymous page will never change and thus doesn't make
  567. * sense for futex operations.
  568. */
  569. if (unlikely(should_fail_futex(fshared)) || ro) {
  570. err = -EFAULT;
  571. goto out;
  572. }
  573. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  574. key->private.mm = mm;
  575. key->private.address = address;
  576. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  577. } else {
  578. struct inode *inode;
  579. /*
  580. * The associated futex object in this case is the inode and
  581. * the page->mapping must be traversed. Ordinarily this should
  582. * be stabilised under page lock but it's not strictly
  583. * necessary in this case as we just want to pin the inode, not
  584. * update the radix tree or anything like that.
  585. *
  586. * The RCU read lock is taken as the inode is finally freed
  587. * under RCU. If the mapping still matches expectations then the
  588. * mapping->host can be safely accessed as being a valid inode.
  589. */
  590. rcu_read_lock();
  591. if (READ_ONCE(page->mapping) != mapping) {
  592. rcu_read_unlock();
  593. put_page(page);
  594. goto again;
  595. }
  596. inode = READ_ONCE(mapping->host);
  597. if (!inode) {
  598. rcu_read_unlock();
  599. put_page(page);
  600. goto again;
  601. }
  602. /*
  603. * Take a reference unless it is about to be freed. Previously
  604. * this reference was taken by ihold under the page lock
  605. * pinning the inode in place so i_lock was unnecessary. The
  606. * only way for this check to fail is if the inode was
  607. * truncated in parallel which is almost certainly an
  608. * application bug. In such a case, just retry.
  609. *
  610. * We are not calling into get_futex_key_refs() in file-backed
  611. * cases, therefore a successful atomic_inc return below will
  612. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  613. */
  614. if (!atomic_inc_not_zero(&inode->i_count)) {
  615. rcu_read_unlock();
  616. put_page(page);
  617. goto again;
  618. }
  619. /* Should be impossible but lets be paranoid for now */
  620. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  621. err = -EFAULT;
  622. rcu_read_unlock();
  623. iput(inode);
  624. goto out;
  625. }
  626. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  627. key->shared.inode = inode;
  628. key->shared.pgoff = basepage_index(tail);
  629. rcu_read_unlock();
  630. }
  631. out:
  632. put_page(page);
  633. return err;
  634. }
  635. static inline void put_futex_key(union futex_key *key)
  636. {
  637. drop_futex_key_refs(key);
  638. }
  639. /**
  640. * fault_in_user_writeable() - Fault in user address and verify RW access
  641. * @uaddr: pointer to faulting user space address
  642. *
  643. * Slow path to fixup the fault we just took in the atomic write
  644. * access to @uaddr.
  645. *
  646. * We have no generic implementation of a non-destructive write to the
  647. * user address. We know that we faulted in the atomic pagefault
  648. * disabled section so we can as well avoid the #PF overhead by
  649. * calling get_user_pages() right away.
  650. */
  651. static int fault_in_user_writeable(u32 __user *uaddr)
  652. {
  653. struct mm_struct *mm = current->mm;
  654. int ret;
  655. down_read(&mm->mmap_sem);
  656. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  657. FAULT_FLAG_WRITE, NULL);
  658. up_read(&mm->mmap_sem);
  659. return ret < 0 ? ret : 0;
  660. }
  661. /**
  662. * futex_top_waiter() - Return the highest priority waiter on a futex
  663. * @hb: the hash bucket the futex_q's reside in
  664. * @key: the futex key (to distinguish it from other futex futex_q's)
  665. *
  666. * Must be called with the hb lock held.
  667. */
  668. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  669. union futex_key *key)
  670. {
  671. struct futex_q *this;
  672. plist_for_each_entry(this, &hb->chain, list) {
  673. if (match_futex(&this->key, key))
  674. return this;
  675. }
  676. return NULL;
  677. }
  678. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  679. u32 uval, u32 newval)
  680. {
  681. int ret;
  682. pagefault_disable();
  683. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  684. pagefault_enable();
  685. return ret;
  686. }
  687. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  688. {
  689. int ret;
  690. pagefault_disable();
  691. ret = __get_user(*dest, from);
  692. pagefault_enable();
  693. return ret ? -EFAULT : 0;
  694. }
  695. /*
  696. * PI code:
  697. */
  698. static int refill_pi_state_cache(void)
  699. {
  700. struct futex_pi_state *pi_state;
  701. if (likely(current->pi_state_cache))
  702. return 0;
  703. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  704. if (!pi_state)
  705. return -ENOMEM;
  706. INIT_LIST_HEAD(&pi_state->list);
  707. /* pi_mutex gets initialized later */
  708. pi_state->owner = NULL;
  709. atomic_set(&pi_state->refcount, 1);
  710. pi_state->key = FUTEX_KEY_INIT;
  711. current->pi_state_cache = pi_state;
  712. return 0;
  713. }
  714. static struct futex_pi_state * alloc_pi_state(void)
  715. {
  716. struct futex_pi_state *pi_state = current->pi_state_cache;
  717. WARN_ON(!pi_state);
  718. current->pi_state_cache = NULL;
  719. return pi_state;
  720. }
  721. /*
  722. * Drops a reference to the pi_state object and frees or caches it
  723. * when the last reference is gone.
  724. *
  725. * Must be called with the hb lock held.
  726. */
  727. static void put_pi_state(struct futex_pi_state *pi_state)
  728. {
  729. if (!pi_state)
  730. return;
  731. if (!atomic_dec_and_test(&pi_state->refcount))
  732. return;
  733. /*
  734. * If pi_state->owner is NULL, the owner is most probably dying
  735. * and has cleaned up the pi_state already
  736. */
  737. if (pi_state->owner) {
  738. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  739. list_del_init(&pi_state->list);
  740. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  741. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  742. }
  743. if (current->pi_state_cache)
  744. kfree(pi_state);
  745. else {
  746. /*
  747. * pi_state->list is already empty.
  748. * clear pi_state->owner.
  749. * refcount is at 0 - put it back to 1.
  750. */
  751. pi_state->owner = NULL;
  752. atomic_set(&pi_state->refcount, 1);
  753. current->pi_state_cache = pi_state;
  754. }
  755. }
  756. /*
  757. * Look up the task based on what TID userspace gave us.
  758. * We dont trust it.
  759. */
  760. static struct task_struct * futex_find_get_task(pid_t pid)
  761. {
  762. struct task_struct *p;
  763. rcu_read_lock();
  764. p = find_task_by_vpid(pid);
  765. if (p)
  766. get_task_struct(p);
  767. rcu_read_unlock();
  768. return p;
  769. }
  770. /*
  771. * This task is holding PI mutexes at exit time => bad.
  772. * Kernel cleans up PI-state, but userspace is likely hosed.
  773. * (Robust-futex cleanup is separate and might save the day for userspace.)
  774. */
  775. void exit_pi_state_list(struct task_struct *curr)
  776. {
  777. struct list_head *next, *head = &curr->pi_state_list;
  778. struct futex_pi_state *pi_state;
  779. struct futex_hash_bucket *hb;
  780. union futex_key key = FUTEX_KEY_INIT;
  781. if (!futex_cmpxchg_enabled)
  782. return;
  783. /*
  784. * We are a ZOMBIE and nobody can enqueue itself on
  785. * pi_state_list anymore, but we have to be careful
  786. * versus waiters unqueueing themselves:
  787. */
  788. raw_spin_lock_irq(&curr->pi_lock);
  789. while (!list_empty(head)) {
  790. next = head->next;
  791. pi_state = list_entry(next, struct futex_pi_state, list);
  792. key = pi_state->key;
  793. hb = hash_futex(&key);
  794. raw_spin_unlock_irq(&curr->pi_lock);
  795. spin_lock(&hb->lock);
  796. raw_spin_lock_irq(&curr->pi_lock);
  797. /*
  798. * We dropped the pi-lock, so re-check whether this
  799. * task still owns the PI-state:
  800. */
  801. if (head->next != next) {
  802. spin_unlock(&hb->lock);
  803. continue;
  804. }
  805. WARN_ON(pi_state->owner != curr);
  806. WARN_ON(list_empty(&pi_state->list));
  807. list_del_init(&pi_state->list);
  808. pi_state->owner = NULL;
  809. raw_spin_unlock_irq(&curr->pi_lock);
  810. rt_mutex_unlock(&pi_state->pi_mutex);
  811. spin_unlock(&hb->lock);
  812. raw_spin_lock_irq(&curr->pi_lock);
  813. }
  814. raw_spin_unlock_irq(&curr->pi_lock);
  815. }
  816. /*
  817. * We need to check the following states:
  818. *
  819. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  820. *
  821. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  822. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  823. *
  824. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  825. *
  826. * [4] Found | Found | NULL | 0 | 1 | Valid
  827. * [5] Found | Found | NULL | >0 | 1 | Invalid
  828. *
  829. * [6] Found | Found | task | 0 | 1 | Valid
  830. *
  831. * [7] Found | Found | NULL | Any | 0 | Invalid
  832. *
  833. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  834. * [9] Found | Found | task | 0 | 0 | Invalid
  835. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  836. *
  837. * [1] Indicates that the kernel can acquire the futex atomically. We
  838. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  839. *
  840. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  841. * thread is found then it indicates that the owner TID has died.
  842. *
  843. * [3] Invalid. The waiter is queued on a non PI futex
  844. *
  845. * [4] Valid state after exit_robust_list(), which sets the user space
  846. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  847. *
  848. * [5] The user space value got manipulated between exit_robust_list()
  849. * and exit_pi_state_list()
  850. *
  851. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  852. * the pi_state but cannot access the user space value.
  853. *
  854. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  855. *
  856. * [8] Owner and user space value match
  857. *
  858. * [9] There is no transient state which sets the user space TID to 0
  859. * except exit_robust_list(), but this is indicated by the
  860. * FUTEX_OWNER_DIED bit. See [4]
  861. *
  862. * [10] There is no transient state which leaves owner and user space
  863. * TID out of sync.
  864. */
  865. /*
  866. * Validate that the existing waiter has a pi_state and sanity check
  867. * the pi_state against the user space value. If correct, attach to
  868. * it.
  869. */
  870. static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
  871. struct futex_pi_state **ps)
  872. {
  873. pid_t pid = uval & FUTEX_TID_MASK;
  874. /*
  875. * Userspace might have messed up non-PI and PI futexes [3]
  876. */
  877. if (unlikely(!pi_state))
  878. return -EINVAL;
  879. WARN_ON(!atomic_read(&pi_state->refcount));
  880. /*
  881. * Handle the owner died case:
  882. */
  883. if (uval & FUTEX_OWNER_DIED) {
  884. /*
  885. * exit_pi_state_list sets owner to NULL and wakes the
  886. * topmost waiter. The task which acquires the
  887. * pi_state->rt_mutex will fixup owner.
  888. */
  889. if (!pi_state->owner) {
  890. /*
  891. * No pi state owner, but the user space TID
  892. * is not 0. Inconsistent state. [5]
  893. */
  894. if (pid)
  895. return -EINVAL;
  896. /*
  897. * Take a ref on the state and return success. [4]
  898. */
  899. goto out_state;
  900. }
  901. /*
  902. * If TID is 0, then either the dying owner has not
  903. * yet executed exit_pi_state_list() or some waiter
  904. * acquired the rtmutex in the pi state, but did not
  905. * yet fixup the TID in user space.
  906. *
  907. * Take a ref on the state and return success. [6]
  908. */
  909. if (!pid)
  910. goto out_state;
  911. } else {
  912. /*
  913. * If the owner died bit is not set, then the pi_state
  914. * must have an owner. [7]
  915. */
  916. if (!pi_state->owner)
  917. return -EINVAL;
  918. }
  919. /*
  920. * Bail out if user space manipulated the futex value. If pi
  921. * state exists then the owner TID must be the same as the
  922. * user space TID. [9/10]
  923. */
  924. if (pid != task_pid_vnr(pi_state->owner))
  925. return -EINVAL;
  926. out_state:
  927. atomic_inc(&pi_state->refcount);
  928. *ps = pi_state;
  929. return 0;
  930. }
  931. /*
  932. * Lookup the task for the TID provided from user space and attach to
  933. * it after doing proper sanity checks.
  934. */
  935. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  936. struct futex_pi_state **ps)
  937. {
  938. pid_t pid = uval & FUTEX_TID_MASK;
  939. struct futex_pi_state *pi_state;
  940. struct task_struct *p;
  941. /*
  942. * We are the first waiter - try to look up the real owner and attach
  943. * the new pi_state to it, but bail out when TID = 0 [1]
  944. */
  945. if (!pid)
  946. return -ESRCH;
  947. p = futex_find_get_task(pid);
  948. if (!p)
  949. return -ESRCH;
  950. if (unlikely(p->flags & PF_KTHREAD)) {
  951. put_task_struct(p);
  952. return -EPERM;
  953. }
  954. /*
  955. * We need to look at the task state flags to figure out,
  956. * whether the task is exiting. To protect against the do_exit
  957. * change of the task flags, we do this protected by
  958. * p->pi_lock:
  959. */
  960. raw_spin_lock_irq(&p->pi_lock);
  961. if (unlikely(p->flags & PF_EXITING)) {
  962. /*
  963. * The task is on the way out. When PF_EXITPIDONE is
  964. * set, we know that the task has finished the
  965. * cleanup:
  966. */
  967. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  968. raw_spin_unlock_irq(&p->pi_lock);
  969. put_task_struct(p);
  970. return ret;
  971. }
  972. /*
  973. * No existing pi state. First waiter. [2]
  974. */
  975. pi_state = alloc_pi_state();
  976. /*
  977. * Initialize the pi_mutex in locked state and make @p
  978. * the owner of it:
  979. */
  980. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  981. /* Store the key for possible exit cleanups: */
  982. pi_state->key = *key;
  983. WARN_ON(!list_empty(&pi_state->list));
  984. list_add(&pi_state->list, &p->pi_state_list);
  985. pi_state->owner = p;
  986. raw_spin_unlock_irq(&p->pi_lock);
  987. put_task_struct(p);
  988. *ps = pi_state;
  989. return 0;
  990. }
  991. static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  992. union futex_key *key, struct futex_pi_state **ps)
  993. {
  994. struct futex_q *match = futex_top_waiter(hb, key);
  995. /*
  996. * If there is a waiter on that futex, validate it and
  997. * attach to the pi_state when the validation succeeds.
  998. */
  999. if (match)
  1000. return attach_to_pi_state(uval, match->pi_state, ps);
  1001. /*
  1002. * We are the first waiter - try to look up the owner based on
  1003. * @uval and attach to it.
  1004. */
  1005. return attach_to_pi_owner(uval, key, ps);
  1006. }
  1007. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1008. {
  1009. u32 uninitialized_var(curval);
  1010. if (unlikely(should_fail_futex(true)))
  1011. return -EFAULT;
  1012. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1013. return -EFAULT;
  1014. /*If user space value changed, let the caller retry */
  1015. return curval != uval ? -EAGAIN : 0;
  1016. }
  1017. /**
  1018. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1019. * @uaddr: the pi futex user address
  1020. * @hb: the pi futex hash bucket
  1021. * @key: the futex key associated with uaddr and hb
  1022. * @ps: the pi_state pointer where we store the result of the
  1023. * lookup
  1024. * @task: the task to perform the atomic lock work for. This will
  1025. * be "current" except in the case of requeue pi.
  1026. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1027. *
  1028. * Return:
  1029. * 0 - ready to wait;
  1030. * 1 - acquired the lock;
  1031. * <0 - error
  1032. *
  1033. * The hb->lock and futex_key refs shall be held by the caller.
  1034. */
  1035. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1036. union futex_key *key,
  1037. struct futex_pi_state **ps,
  1038. struct task_struct *task, int set_waiters)
  1039. {
  1040. u32 uval, newval, vpid = task_pid_vnr(task);
  1041. struct futex_q *match;
  1042. int ret;
  1043. /*
  1044. * Read the user space value first so we can validate a few
  1045. * things before proceeding further.
  1046. */
  1047. if (get_futex_value_locked(&uval, uaddr))
  1048. return -EFAULT;
  1049. if (unlikely(should_fail_futex(true)))
  1050. return -EFAULT;
  1051. /*
  1052. * Detect deadlocks.
  1053. */
  1054. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1055. return -EDEADLK;
  1056. if ((unlikely(should_fail_futex(true))))
  1057. return -EDEADLK;
  1058. /*
  1059. * Lookup existing state first. If it exists, try to attach to
  1060. * its pi_state.
  1061. */
  1062. match = futex_top_waiter(hb, key);
  1063. if (match)
  1064. return attach_to_pi_state(uval, match->pi_state, ps);
  1065. /*
  1066. * No waiter and user TID is 0. We are here because the
  1067. * waiters or the owner died bit is set or called from
  1068. * requeue_cmp_pi or for whatever reason something took the
  1069. * syscall.
  1070. */
  1071. if (!(uval & FUTEX_TID_MASK)) {
  1072. /*
  1073. * We take over the futex. No other waiters and the user space
  1074. * TID is 0. We preserve the owner died bit.
  1075. */
  1076. newval = uval & FUTEX_OWNER_DIED;
  1077. newval |= vpid;
  1078. /* The futex requeue_pi code can enforce the waiters bit */
  1079. if (set_waiters)
  1080. newval |= FUTEX_WAITERS;
  1081. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1082. /* If the take over worked, return 1 */
  1083. return ret < 0 ? ret : 1;
  1084. }
  1085. /*
  1086. * First waiter. Set the waiters bit before attaching ourself to
  1087. * the owner. If owner tries to unlock, it will be forced into
  1088. * the kernel and blocked on hb->lock.
  1089. */
  1090. newval = uval | FUTEX_WAITERS;
  1091. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1092. if (ret)
  1093. return ret;
  1094. /*
  1095. * If the update of the user space value succeeded, we try to
  1096. * attach to the owner. If that fails, no harm done, we only
  1097. * set the FUTEX_WAITERS bit in the user space variable.
  1098. */
  1099. return attach_to_pi_owner(uval, key, ps);
  1100. }
  1101. /**
  1102. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1103. * @q: The futex_q to unqueue
  1104. *
  1105. * The q->lock_ptr must not be NULL and must be held by the caller.
  1106. */
  1107. static void __unqueue_futex(struct futex_q *q)
  1108. {
  1109. struct futex_hash_bucket *hb;
  1110. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1111. || WARN_ON(plist_node_empty(&q->list)))
  1112. return;
  1113. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1114. plist_del(&q->list, &hb->chain);
  1115. hb_waiters_dec(hb);
  1116. }
  1117. /*
  1118. * The hash bucket lock must be held when this is called.
  1119. * Afterwards, the futex_q must not be accessed. Callers
  1120. * must ensure to later call wake_up_q() for the actual
  1121. * wakeups to occur.
  1122. */
  1123. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1124. {
  1125. struct task_struct *p = q->task;
  1126. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1127. return;
  1128. /*
  1129. * Queue the task for later wakeup for after we've released
  1130. * the hb->lock. wake_q_add() grabs reference to p.
  1131. */
  1132. wake_q_add(wake_q, p);
  1133. __unqueue_futex(q);
  1134. /*
  1135. * The waiting task can free the futex_q as soon as
  1136. * q->lock_ptr = NULL is written, without taking any locks. A
  1137. * memory barrier is required here to prevent the following
  1138. * store to lock_ptr from getting ahead of the plist_del.
  1139. */
  1140. smp_wmb();
  1141. q->lock_ptr = NULL;
  1142. }
  1143. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
  1144. struct futex_hash_bucket *hb)
  1145. {
  1146. struct task_struct *new_owner;
  1147. struct futex_pi_state *pi_state = this->pi_state;
  1148. u32 uninitialized_var(curval), newval;
  1149. WAKE_Q(wake_q);
  1150. bool deboost;
  1151. int ret = 0;
  1152. if (!pi_state)
  1153. return -EINVAL;
  1154. /*
  1155. * If current does not own the pi_state then the futex is
  1156. * inconsistent and user space fiddled with the futex value.
  1157. */
  1158. if (pi_state->owner != current)
  1159. return -EINVAL;
  1160. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  1161. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1162. /*
  1163. * It is possible that the next waiter (the one that brought
  1164. * this owner to the kernel) timed out and is no longer
  1165. * waiting on the lock.
  1166. */
  1167. if (!new_owner)
  1168. new_owner = this->task;
  1169. /*
  1170. * We pass it to the next owner. The WAITERS bit is always
  1171. * kept enabled while there is PI state around. We cleanup the
  1172. * owner died bit, because we are the owner.
  1173. */
  1174. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1175. if (unlikely(should_fail_futex(true)))
  1176. ret = -EFAULT;
  1177. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1178. ret = -EFAULT;
  1179. } else if (curval != uval) {
  1180. /*
  1181. * If a unconditional UNLOCK_PI operation (user space did not
  1182. * try the TID->0 transition) raced with a waiter setting the
  1183. * FUTEX_WAITERS flag between get_user() and locking the hash
  1184. * bucket lock, retry the operation.
  1185. */
  1186. if ((FUTEX_TID_MASK & curval) == uval)
  1187. ret = -EAGAIN;
  1188. else
  1189. ret = -EINVAL;
  1190. }
  1191. if (ret) {
  1192. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1193. return ret;
  1194. }
  1195. raw_spin_lock(&pi_state->owner->pi_lock);
  1196. WARN_ON(list_empty(&pi_state->list));
  1197. list_del_init(&pi_state->list);
  1198. raw_spin_unlock(&pi_state->owner->pi_lock);
  1199. raw_spin_lock(&new_owner->pi_lock);
  1200. WARN_ON(!list_empty(&pi_state->list));
  1201. list_add(&pi_state->list, &new_owner->pi_state_list);
  1202. pi_state->owner = new_owner;
  1203. raw_spin_unlock(&new_owner->pi_lock);
  1204. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1205. deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1206. /*
  1207. * First unlock HB so the waiter does not spin on it once he got woken
  1208. * up. Second wake up the waiter before the priority is adjusted. If we
  1209. * deboost first (and lose our higher priority), then the task might get
  1210. * scheduled away before the wake up can take place.
  1211. */
  1212. spin_unlock(&hb->lock);
  1213. wake_up_q(&wake_q);
  1214. if (deboost)
  1215. rt_mutex_adjust_prio(current);
  1216. return 0;
  1217. }
  1218. /*
  1219. * Express the locking dependencies for lockdep:
  1220. */
  1221. static inline void
  1222. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1223. {
  1224. if (hb1 <= hb2) {
  1225. spin_lock(&hb1->lock);
  1226. if (hb1 < hb2)
  1227. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1228. } else { /* hb1 > hb2 */
  1229. spin_lock(&hb2->lock);
  1230. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1231. }
  1232. }
  1233. static inline void
  1234. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1235. {
  1236. spin_unlock(&hb1->lock);
  1237. if (hb1 != hb2)
  1238. spin_unlock(&hb2->lock);
  1239. }
  1240. /*
  1241. * Wake up waiters matching bitset queued on this futex (uaddr).
  1242. */
  1243. static int
  1244. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1245. {
  1246. struct futex_hash_bucket *hb;
  1247. struct futex_q *this, *next;
  1248. union futex_key key = FUTEX_KEY_INIT;
  1249. int ret;
  1250. WAKE_Q(wake_q);
  1251. if (!bitset)
  1252. return -EINVAL;
  1253. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1254. if (unlikely(ret != 0))
  1255. goto out;
  1256. hb = hash_futex(&key);
  1257. /* Make sure we really have tasks to wakeup */
  1258. if (!hb_waiters_pending(hb))
  1259. goto out_put_key;
  1260. spin_lock(&hb->lock);
  1261. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1262. if (match_futex (&this->key, &key)) {
  1263. if (this->pi_state || this->rt_waiter) {
  1264. ret = -EINVAL;
  1265. break;
  1266. }
  1267. /* Check if one of the bits is set in both bitsets */
  1268. if (!(this->bitset & bitset))
  1269. continue;
  1270. mark_wake_futex(&wake_q, this);
  1271. if (++ret >= nr_wake)
  1272. break;
  1273. }
  1274. }
  1275. spin_unlock(&hb->lock);
  1276. wake_up_q(&wake_q);
  1277. out_put_key:
  1278. put_futex_key(&key);
  1279. out:
  1280. return ret;
  1281. }
  1282. /*
  1283. * Wake up all waiters hashed on the physical page that is mapped
  1284. * to this virtual address:
  1285. */
  1286. static int
  1287. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1288. int nr_wake, int nr_wake2, int op)
  1289. {
  1290. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1291. struct futex_hash_bucket *hb1, *hb2;
  1292. struct futex_q *this, *next;
  1293. int ret, op_ret;
  1294. WAKE_Q(wake_q);
  1295. retry:
  1296. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1297. if (unlikely(ret != 0))
  1298. goto out;
  1299. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1300. if (unlikely(ret != 0))
  1301. goto out_put_key1;
  1302. hb1 = hash_futex(&key1);
  1303. hb2 = hash_futex(&key2);
  1304. retry_private:
  1305. double_lock_hb(hb1, hb2);
  1306. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1307. if (unlikely(op_ret < 0)) {
  1308. double_unlock_hb(hb1, hb2);
  1309. #ifndef CONFIG_MMU
  1310. /*
  1311. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1312. * but we might get them from range checking
  1313. */
  1314. ret = op_ret;
  1315. goto out_put_keys;
  1316. #endif
  1317. if (unlikely(op_ret != -EFAULT)) {
  1318. ret = op_ret;
  1319. goto out_put_keys;
  1320. }
  1321. ret = fault_in_user_writeable(uaddr2);
  1322. if (ret)
  1323. goto out_put_keys;
  1324. if (!(flags & FLAGS_SHARED))
  1325. goto retry_private;
  1326. put_futex_key(&key2);
  1327. put_futex_key(&key1);
  1328. goto retry;
  1329. }
  1330. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1331. if (match_futex (&this->key, &key1)) {
  1332. if (this->pi_state || this->rt_waiter) {
  1333. ret = -EINVAL;
  1334. goto out_unlock;
  1335. }
  1336. mark_wake_futex(&wake_q, this);
  1337. if (++ret >= nr_wake)
  1338. break;
  1339. }
  1340. }
  1341. if (op_ret > 0) {
  1342. op_ret = 0;
  1343. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1344. if (match_futex (&this->key, &key2)) {
  1345. if (this->pi_state || this->rt_waiter) {
  1346. ret = -EINVAL;
  1347. goto out_unlock;
  1348. }
  1349. mark_wake_futex(&wake_q, this);
  1350. if (++op_ret >= nr_wake2)
  1351. break;
  1352. }
  1353. }
  1354. ret += op_ret;
  1355. }
  1356. out_unlock:
  1357. double_unlock_hb(hb1, hb2);
  1358. wake_up_q(&wake_q);
  1359. out_put_keys:
  1360. put_futex_key(&key2);
  1361. out_put_key1:
  1362. put_futex_key(&key1);
  1363. out:
  1364. return ret;
  1365. }
  1366. /**
  1367. * requeue_futex() - Requeue a futex_q from one hb to another
  1368. * @q: the futex_q to requeue
  1369. * @hb1: the source hash_bucket
  1370. * @hb2: the target hash_bucket
  1371. * @key2: the new key for the requeued futex_q
  1372. */
  1373. static inline
  1374. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1375. struct futex_hash_bucket *hb2, union futex_key *key2)
  1376. {
  1377. /*
  1378. * If key1 and key2 hash to the same bucket, no need to
  1379. * requeue.
  1380. */
  1381. if (likely(&hb1->chain != &hb2->chain)) {
  1382. plist_del(&q->list, &hb1->chain);
  1383. hb_waiters_dec(hb1);
  1384. hb_waiters_inc(hb2);
  1385. plist_add(&q->list, &hb2->chain);
  1386. q->lock_ptr = &hb2->lock;
  1387. }
  1388. get_futex_key_refs(key2);
  1389. q->key = *key2;
  1390. }
  1391. /**
  1392. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1393. * @q: the futex_q
  1394. * @key: the key of the requeue target futex
  1395. * @hb: the hash_bucket of the requeue target futex
  1396. *
  1397. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1398. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1399. * to the requeue target futex so the waiter can detect the wakeup on the right
  1400. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1401. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1402. * to protect access to the pi_state to fixup the owner later. Must be called
  1403. * with both q->lock_ptr and hb->lock held.
  1404. */
  1405. static inline
  1406. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1407. struct futex_hash_bucket *hb)
  1408. {
  1409. get_futex_key_refs(key);
  1410. q->key = *key;
  1411. __unqueue_futex(q);
  1412. WARN_ON(!q->rt_waiter);
  1413. q->rt_waiter = NULL;
  1414. q->lock_ptr = &hb->lock;
  1415. wake_up_state(q->task, TASK_NORMAL);
  1416. }
  1417. /**
  1418. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1419. * @pifutex: the user address of the to futex
  1420. * @hb1: the from futex hash bucket, must be locked by the caller
  1421. * @hb2: the to futex hash bucket, must be locked by the caller
  1422. * @key1: the from futex key
  1423. * @key2: the to futex key
  1424. * @ps: address to store the pi_state pointer
  1425. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1426. *
  1427. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1428. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1429. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1430. * hb1 and hb2 must be held by the caller.
  1431. *
  1432. * Return:
  1433. * 0 - failed to acquire the lock atomically;
  1434. * >0 - acquired the lock, return value is vpid of the top_waiter
  1435. * <0 - error
  1436. */
  1437. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1438. struct futex_hash_bucket *hb1,
  1439. struct futex_hash_bucket *hb2,
  1440. union futex_key *key1, union futex_key *key2,
  1441. struct futex_pi_state **ps, int set_waiters)
  1442. {
  1443. struct futex_q *top_waiter = NULL;
  1444. u32 curval;
  1445. int ret, vpid;
  1446. if (get_futex_value_locked(&curval, pifutex))
  1447. return -EFAULT;
  1448. if (unlikely(should_fail_futex(true)))
  1449. return -EFAULT;
  1450. /*
  1451. * Find the top_waiter and determine if there are additional waiters.
  1452. * If the caller intends to requeue more than 1 waiter to pifutex,
  1453. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1454. * as we have means to handle the possible fault. If not, don't set
  1455. * the bit unecessarily as it will force the subsequent unlock to enter
  1456. * the kernel.
  1457. */
  1458. top_waiter = futex_top_waiter(hb1, key1);
  1459. /* There are no waiters, nothing for us to do. */
  1460. if (!top_waiter)
  1461. return 0;
  1462. /* Ensure we requeue to the expected futex. */
  1463. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1464. return -EINVAL;
  1465. /*
  1466. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1467. * the contended case or if set_waiters is 1. The pi_state is returned
  1468. * in ps in contended cases.
  1469. */
  1470. vpid = task_pid_vnr(top_waiter->task);
  1471. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1472. set_waiters);
  1473. if (ret == 1) {
  1474. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1475. return vpid;
  1476. }
  1477. return ret;
  1478. }
  1479. /**
  1480. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1481. * @uaddr1: source futex user address
  1482. * @flags: futex flags (FLAGS_SHARED, etc.)
  1483. * @uaddr2: target futex user address
  1484. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1485. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1486. * @cmpval: @uaddr1 expected value (or %NULL)
  1487. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1488. * pi futex (pi to pi requeue is not supported)
  1489. *
  1490. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1491. * uaddr2 atomically on behalf of the top waiter.
  1492. *
  1493. * Return:
  1494. * >=0 - on success, the number of tasks requeued or woken;
  1495. * <0 - on error
  1496. */
  1497. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1498. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1499. u32 *cmpval, int requeue_pi)
  1500. {
  1501. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1502. int drop_count = 0, task_count = 0, ret;
  1503. struct futex_pi_state *pi_state = NULL;
  1504. struct futex_hash_bucket *hb1, *hb2;
  1505. struct futex_q *this, *next;
  1506. WAKE_Q(wake_q);
  1507. if (requeue_pi) {
  1508. /*
  1509. * Requeue PI only works on two distinct uaddrs. This
  1510. * check is only valid for private futexes. See below.
  1511. */
  1512. if (uaddr1 == uaddr2)
  1513. return -EINVAL;
  1514. /*
  1515. * requeue_pi requires a pi_state, try to allocate it now
  1516. * without any locks in case it fails.
  1517. */
  1518. if (refill_pi_state_cache())
  1519. return -ENOMEM;
  1520. /*
  1521. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1522. * + nr_requeue, since it acquires the rt_mutex prior to
  1523. * returning to userspace, so as to not leave the rt_mutex with
  1524. * waiters and no owner. However, second and third wake-ups
  1525. * cannot be predicted as they involve race conditions with the
  1526. * first wake and a fault while looking up the pi_state. Both
  1527. * pthread_cond_signal() and pthread_cond_broadcast() should
  1528. * use nr_wake=1.
  1529. */
  1530. if (nr_wake != 1)
  1531. return -EINVAL;
  1532. }
  1533. retry:
  1534. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1535. if (unlikely(ret != 0))
  1536. goto out;
  1537. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1538. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1539. if (unlikely(ret != 0))
  1540. goto out_put_key1;
  1541. /*
  1542. * The check above which compares uaddrs is not sufficient for
  1543. * shared futexes. We need to compare the keys:
  1544. */
  1545. if (requeue_pi && match_futex(&key1, &key2)) {
  1546. ret = -EINVAL;
  1547. goto out_put_keys;
  1548. }
  1549. hb1 = hash_futex(&key1);
  1550. hb2 = hash_futex(&key2);
  1551. retry_private:
  1552. hb_waiters_inc(hb2);
  1553. double_lock_hb(hb1, hb2);
  1554. if (likely(cmpval != NULL)) {
  1555. u32 curval;
  1556. ret = get_futex_value_locked(&curval, uaddr1);
  1557. if (unlikely(ret)) {
  1558. double_unlock_hb(hb1, hb2);
  1559. hb_waiters_dec(hb2);
  1560. ret = get_user(curval, uaddr1);
  1561. if (ret)
  1562. goto out_put_keys;
  1563. if (!(flags & FLAGS_SHARED))
  1564. goto retry_private;
  1565. put_futex_key(&key2);
  1566. put_futex_key(&key1);
  1567. goto retry;
  1568. }
  1569. if (curval != *cmpval) {
  1570. ret = -EAGAIN;
  1571. goto out_unlock;
  1572. }
  1573. }
  1574. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1575. /*
  1576. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1577. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1578. * bit. We force this here where we are able to easily handle
  1579. * faults rather in the requeue loop below.
  1580. */
  1581. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1582. &key2, &pi_state, nr_requeue);
  1583. /*
  1584. * At this point the top_waiter has either taken uaddr2 or is
  1585. * waiting on it. If the former, then the pi_state will not
  1586. * exist yet, look it up one more time to ensure we have a
  1587. * reference to it. If the lock was taken, ret contains the
  1588. * vpid of the top waiter task.
  1589. * If the lock was not taken, we have pi_state and an initial
  1590. * refcount on it. In case of an error we have nothing.
  1591. */
  1592. if (ret > 0) {
  1593. WARN_ON(pi_state);
  1594. drop_count++;
  1595. task_count++;
  1596. /*
  1597. * If we acquired the lock, then the user space value
  1598. * of uaddr2 should be vpid. It cannot be changed by
  1599. * the top waiter as it is blocked on hb2 lock if it
  1600. * tries to do so. If something fiddled with it behind
  1601. * our back the pi state lookup might unearth it. So
  1602. * we rather use the known value than rereading and
  1603. * handing potential crap to lookup_pi_state.
  1604. *
  1605. * If that call succeeds then we have pi_state and an
  1606. * initial refcount on it.
  1607. */
  1608. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1609. }
  1610. switch (ret) {
  1611. case 0:
  1612. /* We hold a reference on the pi state. */
  1613. break;
  1614. /* If the above failed, then pi_state is NULL */
  1615. case -EFAULT:
  1616. double_unlock_hb(hb1, hb2);
  1617. hb_waiters_dec(hb2);
  1618. put_futex_key(&key2);
  1619. put_futex_key(&key1);
  1620. ret = fault_in_user_writeable(uaddr2);
  1621. if (!ret)
  1622. goto retry;
  1623. goto out;
  1624. case -EAGAIN:
  1625. /*
  1626. * Two reasons for this:
  1627. * - Owner is exiting and we just wait for the
  1628. * exit to complete.
  1629. * - The user space value changed.
  1630. */
  1631. double_unlock_hb(hb1, hb2);
  1632. hb_waiters_dec(hb2);
  1633. put_futex_key(&key2);
  1634. put_futex_key(&key1);
  1635. cond_resched();
  1636. goto retry;
  1637. default:
  1638. goto out_unlock;
  1639. }
  1640. }
  1641. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1642. if (task_count - nr_wake >= nr_requeue)
  1643. break;
  1644. if (!match_futex(&this->key, &key1))
  1645. continue;
  1646. /*
  1647. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1648. * be paired with each other and no other futex ops.
  1649. *
  1650. * We should never be requeueing a futex_q with a pi_state,
  1651. * which is awaiting a futex_unlock_pi().
  1652. */
  1653. if ((requeue_pi && !this->rt_waiter) ||
  1654. (!requeue_pi && this->rt_waiter) ||
  1655. this->pi_state) {
  1656. ret = -EINVAL;
  1657. break;
  1658. }
  1659. /*
  1660. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1661. * lock, we already woke the top_waiter. If not, it will be
  1662. * woken by futex_unlock_pi().
  1663. */
  1664. if (++task_count <= nr_wake && !requeue_pi) {
  1665. mark_wake_futex(&wake_q, this);
  1666. continue;
  1667. }
  1668. /* Ensure we requeue to the expected futex for requeue_pi. */
  1669. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1670. ret = -EINVAL;
  1671. break;
  1672. }
  1673. /*
  1674. * Requeue nr_requeue waiters and possibly one more in the case
  1675. * of requeue_pi if we couldn't acquire the lock atomically.
  1676. */
  1677. if (requeue_pi) {
  1678. /*
  1679. * Prepare the waiter to take the rt_mutex. Take a
  1680. * refcount on the pi_state and store the pointer in
  1681. * the futex_q object of the waiter.
  1682. */
  1683. atomic_inc(&pi_state->refcount);
  1684. this->pi_state = pi_state;
  1685. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1686. this->rt_waiter,
  1687. this->task);
  1688. if (ret == 1) {
  1689. /*
  1690. * We got the lock. We do neither drop the
  1691. * refcount on pi_state nor clear
  1692. * this->pi_state because the waiter needs the
  1693. * pi_state for cleaning up the user space
  1694. * value. It will drop the refcount after
  1695. * doing so.
  1696. */
  1697. requeue_pi_wake_futex(this, &key2, hb2);
  1698. drop_count++;
  1699. continue;
  1700. } else if (ret) {
  1701. /*
  1702. * rt_mutex_start_proxy_lock() detected a
  1703. * potential deadlock when we tried to queue
  1704. * that waiter. Drop the pi_state reference
  1705. * which we took above and remove the pointer
  1706. * to the state from the waiters futex_q
  1707. * object.
  1708. */
  1709. this->pi_state = NULL;
  1710. put_pi_state(pi_state);
  1711. /*
  1712. * We stop queueing more waiters and let user
  1713. * space deal with the mess.
  1714. */
  1715. break;
  1716. }
  1717. }
  1718. requeue_futex(this, hb1, hb2, &key2);
  1719. drop_count++;
  1720. }
  1721. /*
  1722. * We took an extra initial reference to the pi_state either
  1723. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1724. * need to drop it here again.
  1725. */
  1726. put_pi_state(pi_state);
  1727. out_unlock:
  1728. double_unlock_hb(hb1, hb2);
  1729. wake_up_q(&wake_q);
  1730. hb_waiters_dec(hb2);
  1731. /*
  1732. * drop_futex_key_refs() must be called outside the spinlocks. During
  1733. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1734. * one at key2 and updated their key pointer. We no longer need to
  1735. * hold the references to key1.
  1736. */
  1737. while (--drop_count >= 0)
  1738. drop_futex_key_refs(&key1);
  1739. out_put_keys:
  1740. put_futex_key(&key2);
  1741. out_put_key1:
  1742. put_futex_key(&key1);
  1743. out:
  1744. return ret ? ret : task_count;
  1745. }
  1746. /* The key must be already stored in q->key. */
  1747. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1748. __acquires(&hb->lock)
  1749. {
  1750. struct futex_hash_bucket *hb;
  1751. hb = hash_futex(&q->key);
  1752. /*
  1753. * Increment the counter before taking the lock so that
  1754. * a potential waker won't miss a to-be-slept task that is
  1755. * waiting for the spinlock. This is safe as all queue_lock()
  1756. * users end up calling queue_me(). Similarly, for housekeeping,
  1757. * decrement the counter at queue_unlock() when some error has
  1758. * occurred and we don't end up adding the task to the list.
  1759. */
  1760. hb_waiters_inc(hb);
  1761. q->lock_ptr = &hb->lock;
  1762. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1763. return hb;
  1764. }
  1765. static inline void
  1766. queue_unlock(struct futex_hash_bucket *hb)
  1767. __releases(&hb->lock)
  1768. {
  1769. spin_unlock(&hb->lock);
  1770. hb_waiters_dec(hb);
  1771. }
  1772. /**
  1773. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1774. * @q: The futex_q to enqueue
  1775. * @hb: The destination hash bucket
  1776. *
  1777. * The hb->lock must be held by the caller, and is released here. A call to
  1778. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1779. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1780. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1781. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1782. * an example).
  1783. */
  1784. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1785. __releases(&hb->lock)
  1786. {
  1787. int prio;
  1788. /*
  1789. * The priority used to register this element is
  1790. * - either the real thread-priority for the real-time threads
  1791. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1792. * - or MAX_RT_PRIO for non-RT threads.
  1793. * Thus, all RT-threads are woken first in priority order, and
  1794. * the others are woken last, in FIFO order.
  1795. */
  1796. prio = min(current->normal_prio, MAX_RT_PRIO);
  1797. plist_node_init(&q->list, prio);
  1798. plist_add(&q->list, &hb->chain);
  1799. q->task = current;
  1800. spin_unlock(&hb->lock);
  1801. }
  1802. /**
  1803. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1804. * @q: The futex_q to unqueue
  1805. *
  1806. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1807. * be paired with exactly one earlier call to queue_me().
  1808. *
  1809. * Return:
  1810. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1811. * 0 - if the futex_q was already removed by the waking thread
  1812. */
  1813. static int unqueue_me(struct futex_q *q)
  1814. {
  1815. spinlock_t *lock_ptr;
  1816. int ret = 0;
  1817. /* In the common case we don't take the spinlock, which is nice. */
  1818. retry:
  1819. /*
  1820. * q->lock_ptr can change between this read and the following spin_lock.
  1821. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1822. * optimizing lock_ptr out of the logic below.
  1823. */
  1824. lock_ptr = READ_ONCE(q->lock_ptr);
  1825. if (lock_ptr != NULL) {
  1826. spin_lock(lock_ptr);
  1827. /*
  1828. * q->lock_ptr can change between reading it and
  1829. * spin_lock(), causing us to take the wrong lock. This
  1830. * corrects the race condition.
  1831. *
  1832. * Reasoning goes like this: if we have the wrong lock,
  1833. * q->lock_ptr must have changed (maybe several times)
  1834. * between reading it and the spin_lock(). It can
  1835. * change again after the spin_lock() but only if it was
  1836. * already changed before the spin_lock(). It cannot,
  1837. * however, change back to the original value. Therefore
  1838. * we can detect whether we acquired the correct lock.
  1839. */
  1840. if (unlikely(lock_ptr != q->lock_ptr)) {
  1841. spin_unlock(lock_ptr);
  1842. goto retry;
  1843. }
  1844. __unqueue_futex(q);
  1845. BUG_ON(q->pi_state);
  1846. spin_unlock(lock_ptr);
  1847. ret = 1;
  1848. }
  1849. drop_futex_key_refs(&q->key);
  1850. return ret;
  1851. }
  1852. /*
  1853. * PI futexes can not be requeued and must remove themself from the
  1854. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1855. * and dropped here.
  1856. */
  1857. static void unqueue_me_pi(struct futex_q *q)
  1858. __releases(q->lock_ptr)
  1859. {
  1860. __unqueue_futex(q);
  1861. BUG_ON(!q->pi_state);
  1862. put_pi_state(q->pi_state);
  1863. q->pi_state = NULL;
  1864. spin_unlock(q->lock_ptr);
  1865. }
  1866. /*
  1867. * Fixup the pi_state owner with the new owner.
  1868. *
  1869. * Must be called with hash bucket lock held and mm->sem held for non
  1870. * private futexes.
  1871. */
  1872. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1873. struct task_struct *newowner)
  1874. {
  1875. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1876. struct futex_pi_state *pi_state = q->pi_state;
  1877. struct task_struct *oldowner = pi_state->owner;
  1878. u32 uval, uninitialized_var(curval), newval;
  1879. int ret;
  1880. /* Owner died? */
  1881. if (!pi_state->owner)
  1882. newtid |= FUTEX_OWNER_DIED;
  1883. /*
  1884. * We are here either because we stole the rtmutex from the
  1885. * previous highest priority waiter or we are the highest priority
  1886. * waiter but failed to get the rtmutex the first time.
  1887. * We have to replace the newowner TID in the user space variable.
  1888. * This must be atomic as we have to preserve the owner died bit here.
  1889. *
  1890. * Note: We write the user space value _before_ changing the pi_state
  1891. * because we can fault here. Imagine swapped out pages or a fork
  1892. * that marked all the anonymous memory readonly for cow.
  1893. *
  1894. * Modifying pi_state _before_ the user space value would
  1895. * leave the pi_state in an inconsistent state when we fault
  1896. * here, because we need to drop the hash bucket lock to
  1897. * handle the fault. This might be observed in the PID check
  1898. * in lookup_pi_state.
  1899. */
  1900. retry:
  1901. if (get_futex_value_locked(&uval, uaddr))
  1902. goto handle_fault;
  1903. while (1) {
  1904. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1905. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1906. goto handle_fault;
  1907. if (curval == uval)
  1908. break;
  1909. uval = curval;
  1910. }
  1911. /*
  1912. * We fixed up user space. Now we need to fix the pi_state
  1913. * itself.
  1914. */
  1915. if (pi_state->owner != NULL) {
  1916. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1917. WARN_ON(list_empty(&pi_state->list));
  1918. list_del_init(&pi_state->list);
  1919. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1920. }
  1921. pi_state->owner = newowner;
  1922. raw_spin_lock_irq(&newowner->pi_lock);
  1923. WARN_ON(!list_empty(&pi_state->list));
  1924. list_add(&pi_state->list, &newowner->pi_state_list);
  1925. raw_spin_unlock_irq(&newowner->pi_lock);
  1926. return 0;
  1927. /*
  1928. * To handle the page fault we need to drop the hash bucket
  1929. * lock here. That gives the other task (either the highest priority
  1930. * waiter itself or the task which stole the rtmutex) the
  1931. * chance to try the fixup of the pi_state. So once we are
  1932. * back from handling the fault we need to check the pi_state
  1933. * after reacquiring the hash bucket lock and before trying to
  1934. * do another fixup. When the fixup has been done already we
  1935. * simply return.
  1936. */
  1937. handle_fault:
  1938. spin_unlock(q->lock_ptr);
  1939. ret = fault_in_user_writeable(uaddr);
  1940. spin_lock(q->lock_ptr);
  1941. /*
  1942. * Check if someone else fixed it for us:
  1943. */
  1944. if (pi_state->owner != oldowner)
  1945. return 0;
  1946. if (ret)
  1947. return ret;
  1948. goto retry;
  1949. }
  1950. static long futex_wait_restart(struct restart_block *restart);
  1951. /**
  1952. * fixup_owner() - Post lock pi_state and corner case management
  1953. * @uaddr: user address of the futex
  1954. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1955. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1956. *
  1957. * After attempting to lock an rt_mutex, this function is called to cleanup
  1958. * the pi_state owner as well as handle race conditions that may allow us to
  1959. * acquire the lock. Must be called with the hb lock held.
  1960. *
  1961. * Return:
  1962. * 1 - success, lock taken;
  1963. * 0 - success, lock not taken;
  1964. * <0 - on error (-EFAULT)
  1965. */
  1966. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1967. {
  1968. struct task_struct *owner;
  1969. int ret = 0;
  1970. if (locked) {
  1971. /*
  1972. * Got the lock. We might not be the anticipated owner if we
  1973. * did a lock-steal - fix up the PI-state in that case:
  1974. */
  1975. if (q->pi_state->owner != current)
  1976. ret = fixup_pi_state_owner(uaddr, q, current);
  1977. goto out;
  1978. }
  1979. /*
  1980. * Catch the rare case, where the lock was released when we were on the
  1981. * way back before we locked the hash bucket.
  1982. */
  1983. if (q->pi_state->owner == current) {
  1984. /*
  1985. * Try to get the rt_mutex now. This might fail as some other
  1986. * task acquired the rt_mutex after we removed ourself from the
  1987. * rt_mutex waiters list.
  1988. */
  1989. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1990. locked = 1;
  1991. goto out;
  1992. }
  1993. /*
  1994. * pi_state is incorrect, some other task did a lock steal and
  1995. * we returned due to timeout or signal without taking the
  1996. * rt_mutex. Too late.
  1997. */
  1998. raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
  1999. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  2000. if (!owner)
  2001. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  2002. raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
  2003. ret = fixup_pi_state_owner(uaddr, q, owner);
  2004. goto out;
  2005. }
  2006. /*
  2007. * Paranoia check. If we did not take the lock, then we should not be
  2008. * the owner of the rt_mutex.
  2009. */
  2010. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  2011. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2012. "pi-state %p\n", ret,
  2013. q->pi_state->pi_mutex.owner,
  2014. q->pi_state->owner);
  2015. out:
  2016. return ret ? ret : locked;
  2017. }
  2018. /**
  2019. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2020. * @hb: the futex hash bucket, must be locked by the caller
  2021. * @q: the futex_q to queue up on
  2022. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2023. */
  2024. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2025. struct hrtimer_sleeper *timeout)
  2026. {
  2027. /*
  2028. * The task state is guaranteed to be set before another task can
  2029. * wake it. set_current_state() is implemented using smp_store_mb() and
  2030. * queue_me() calls spin_unlock() upon completion, both serializing
  2031. * access to the hash list and forcing another memory barrier.
  2032. */
  2033. set_current_state(TASK_INTERRUPTIBLE);
  2034. queue_me(q, hb);
  2035. /* Arm the timer */
  2036. if (timeout)
  2037. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2038. /*
  2039. * If we have been removed from the hash list, then another task
  2040. * has tried to wake us, and we can skip the call to schedule().
  2041. */
  2042. if (likely(!plist_node_empty(&q->list))) {
  2043. /*
  2044. * If the timer has already expired, current will already be
  2045. * flagged for rescheduling. Only call schedule if there
  2046. * is no timeout, or if it has yet to expire.
  2047. */
  2048. if (!timeout || timeout->task)
  2049. freezable_schedule();
  2050. }
  2051. __set_current_state(TASK_RUNNING);
  2052. }
  2053. /**
  2054. * futex_wait_setup() - Prepare to wait on a futex
  2055. * @uaddr: the futex userspace address
  2056. * @val: the expected value
  2057. * @flags: futex flags (FLAGS_SHARED, etc.)
  2058. * @q: the associated futex_q
  2059. * @hb: storage for hash_bucket pointer to be returned to caller
  2060. *
  2061. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2062. * compare it with the expected value. Handle atomic faults internally.
  2063. * Return with the hb lock held and a q.key reference on success, and unlocked
  2064. * with no q.key reference on failure.
  2065. *
  2066. * Return:
  2067. * 0 - uaddr contains val and hb has been locked;
  2068. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2069. */
  2070. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2071. struct futex_q *q, struct futex_hash_bucket **hb)
  2072. {
  2073. u32 uval;
  2074. int ret;
  2075. /*
  2076. * Access the page AFTER the hash-bucket is locked.
  2077. * Order is important:
  2078. *
  2079. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2080. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2081. *
  2082. * The basic logical guarantee of a futex is that it blocks ONLY
  2083. * if cond(var) is known to be true at the time of blocking, for
  2084. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2085. * would open a race condition where we could block indefinitely with
  2086. * cond(var) false, which would violate the guarantee.
  2087. *
  2088. * On the other hand, we insert q and release the hash-bucket only
  2089. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2090. * absorb a wakeup if *uaddr does not match the desired values
  2091. * while the syscall executes.
  2092. */
  2093. retry:
  2094. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2095. if (unlikely(ret != 0))
  2096. return ret;
  2097. retry_private:
  2098. *hb = queue_lock(q);
  2099. ret = get_futex_value_locked(&uval, uaddr);
  2100. if (ret) {
  2101. queue_unlock(*hb);
  2102. ret = get_user(uval, uaddr);
  2103. if (ret)
  2104. goto out;
  2105. if (!(flags & FLAGS_SHARED))
  2106. goto retry_private;
  2107. put_futex_key(&q->key);
  2108. goto retry;
  2109. }
  2110. if (uval != val) {
  2111. queue_unlock(*hb);
  2112. ret = -EWOULDBLOCK;
  2113. }
  2114. out:
  2115. if (ret)
  2116. put_futex_key(&q->key);
  2117. return ret;
  2118. }
  2119. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2120. ktime_t *abs_time, u32 bitset)
  2121. {
  2122. struct hrtimer_sleeper timeout, *to = NULL;
  2123. struct restart_block *restart;
  2124. struct futex_hash_bucket *hb;
  2125. struct futex_q q = futex_q_init;
  2126. int ret;
  2127. if (!bitset)
  2128. return -EINVAL;
  2129. q.bitset = bitset;
  2130. if (abs_time) {
  2131. to = &timeout;
  2132. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2133. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2134. HRTIMER_MODE_ABS);
  2135. hrtimer_init_sleeper(to, current);
  2136. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2137. current->timer_slack_ns);
  2138. }
  2139. retry:
  2140. /*
  2141. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2142. * q.key refs.
  2143. */
  2144. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2145. if (ret)
  2146. goto out;
  2147. /* queue_me and wait for wakeup, timeout, or a signal. */
  2148. futex_wait_queue_me(hb, &q, to);
  2149. /* If we were woken (and unqueued), we succeeded, whatever. */
  2150. ret = 0;
  2151. /* unqueue_me() drops q.key ref */
  2152. if (!unqueue_me(&q))
  2153. goto out;
  2154. ret = -ETIMEDOUT;
  2155. if (to && !to->task)
  2156. goto out;
  2157. /*
  2158. * We expect signal_pending(current), but we might be the
  2159. * victim of a spurious wakeup as well.
  2160. */
  2161. if (!signal_pending(current))
  2162. goto retry;
  2163. ret = -ERESTARTSYS;
  2164. if (!abs_time)
  2165. goto out;
  2166. restart = &current->restart_block;
  2167. restart->fn = futex_wait_restart;
  2168. restart->futex.uaddr = uaddr;
  2169. restart->futex.val = val;
  2170. restart->futex.time = abs_time->tv64;
  2171. restart->futex.bitset = bitset;
  2172. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2173. ret = -ERESTART_RESTARTBLOCK;
  2174. out:
  2175. if (to) {
  2176. hrtimer_cancel(&to->timer);
  2177. destroy_hrtimer_on_stack(&to->timer);
  2178. }
  2179. return ret;
  2180. }
  2181. static long futex_wait_restart(struct restart_block *restart)
  2182. {
  2183. u32 __user *uaddr = restart->futex.uaddr;
  2184. ktime_t t, *tp = NULL;
  2185. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2186. t.tv64 = restart->futex.time;
  2187. tp = &t;
  2188. }
  2189. restart->fn = do_no_restart_syscall;
  2190. return (long)futex_wait(uaddr, restart->futex.flags,
  2191. restart->futex.val, tp, restart->futex.bitset);
  2192. }
  2193. /*
  2194. * Userspace tried a 0 -> TID atomic transition of the futex value
  2195. * and failed. The kernel side here does the whole locking operation:
  2196. * if there are waiters then it will block as a consequence of relying
  2197. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2198. * a 0 value of the futex too.).
  2199. *
  2200. * Also serves as futex trylock_pi()'ing, and due semantics.
  2201. */
  2202. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2203. ktime_t *time, int trylock)
  2204. {
  2205. struct hrtimer_sleeper timeout, *to = NULL;
  2206. struct futex_hash_bucket *hb;
  2207. struct futex_q q = futex_q_init;
  2208. int res, ret;
  2209. if (refill_pi_state_cache())
  2210. return -ENOMEM;
  2211. if (time) {
  2212. to = &timeout;
  2213. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2214. HRTIMER_MODE_ABS);
  2215. hrtimer_init_sleeper(to, current);
  2216. hrtimer_set_expires(&to->timer, *time);
  2217. }
  2218. retry:
  2219. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2220. if (unlikely(ret != 0))
  2221. goto out;
  2222. retry_private:
  2223. hb = queue_lock(&q);
  2224. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2225. if (unlikely(ret)) {
  2226. /*
  2227. * Atomic work succeeded and we got the lock,
  2228. * or failed. Either way, we do _not_ block.
  2229. */
  2230. switch (ret) {
  2231. case 1:
  2232. /* We got the lock. */
  2233. ret = 0;
  2234. goto out_unlock_put_key;
  2235. case -EFAULT:
  2236. goto uaddr_faulted;
  2237. case -EAGAIN:
  2238. /*
  2239. * Two reasons for this:
  2240. * - Task is exiting and we just wait for the
  2241. * exit to complete.
  2242. * - The user space value changed.
  2243. */
  2244. queue_unlock(hb);
  2245. put_futex_key(&q.key);
  2246. cond_resched();
  2247. goto retry;
  2248. default:
  2249. goto out_unlock_put_key;
  2250. }
  2251. }
  2252. /*
  2253. * Only actually queue now that the atomic ops are done:
  2254. */
  2255. queue_me(&q, hb);
  2256. WARN_ON(!q.pi_state);
  2257. /*
  2258. * Block on the PI mutex:
  2259. */
  2260. if (!trylock) {
  2261. ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
  2262. } else {
  2263. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2264. /* Fixup the trylock return value: */
  2265. ret = ret ? 0 : -EWOULDBLOCK;
  2266. }
  2267. spin_lock(q.lock_ptr);
  2268. /*
  2269. * Fixup the pi_state owner and possibly acquire the lock if we
  2270. * haven't already.
  2271. */
  2272. res = fixup_owner(uaddr, &q, !ret);
  2273. /*
  2274. * If fixup_owner() returned an error, proprogate that. If it acquired
  2275. * the lock, clear our -ETIMEDOUT or -EINTR.
  2276. */
  2277. if (res)
  2278. ret = (res < 0) ? res : 0;
  2279. /*
  2280. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2281. * it and return the fault to userspace.
  2282. */
  2283. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2284. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2285. /* Unqueue and drop the lock */
  2286. unqueue_me_pi(&q);
  2287. goto out_put_key;
  2288. out_unlock_put_key:
  2289. queue_unlock(hb);
  2290. out_put_key:
  2291. put_futex_key(&q.key);
  2292. out:
  2293. if (to)
  2294. destroy_hrtimer_on_stack(&to->timer);
  2295. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2296. uaddr_faulted:
  2297. queue_unlock(hb);
  2298. ret = fault_in_user_writeable(uaddr);
  2299. if (ret)
  2300. goto out_put_key;
  2301. if (!(flags & FLAGS_SHARED))
  2302. goto retry_private;
  2303. put_futex_key(&q.key);
  2304. goto retry;
  2305. }
  2306. /*
  2307. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2308. * This is the in-kernel slowpath: we look up the PI state (if any),
  2309. * and do the rt-mutex unlock.
  2310. */
  2311. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2312. {
  2313. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2314. union futex_key key = FUTEX_KEY_INIT;
  2315. struct futex_hash_bucket *hb;
  2316. struct futex_q *match;
  2317. int ret;
  2318. retry:
  2319. if (get_user(uval, uaddr))
  2320. return -EFAULT;
  2321. /*
  2322. * We release only a lock we actually own:
  2323. */
  2324. if ((uval & FUTEX_TID_MASK) != vpid)
  2325. return -EPERM;
  2326. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2327. if (ret)
  2328. return ret;
  2329. hb = hash_futex(&key);
  2330. spin_lock(&hb->lock);
  2331. /*
  2332. * Check waiters first. We do not trust user space values at
  2333. * all and we at least want to know if user space fiddled
  2334. * with the futex value instead of blindly unlocking.
  2335. */
  2336. match = futex_top_waiter(hb, &key);
  2337. if (match) {
  2338. ret = wake_futex_pi(uaddr, uval, match, hb);
  2339. /*
  2340. * In case of success wake_futex_pi dropped the hash
  2341. * bucket lock.
  2342. */
  2343. if (!ret)
  2344. goto out_putkey;
  2345. /*
  2346. * The atomic access to the futex value generated a
  2347. * pagefault, so retry the user-access and the wakeup:
  2348. */
  2349. if (ret == -EFAULT)
  2350. goto pi_faulted;
  2351. /*
  2352. * A unconditional UNLOCK_PI op raced against a waiter
  2353. * setting the FUTEX_WAITERS bit. Try again.
  2354. */
  2355. if (ret == -EAGAIN) {
  2356. spin_unlock(&hb->lock);
  2357. put_futex_key(&key);
  2358. goto retry;
  2359. }
  2360. /*
  2361. * wake_futex_pi has detected invalid state. Tell user
  2362. * space.
  2363. */
  2364. goto out_unlock;
  2365. }
  2366. /*
  2367. * We have no kernel internal state, i.e. no waiters in the
  2368. * kernel. Waiters which are about to queue themselves are stuck
  2369. * on hb->lock. So we can safely ignore them. We do neither
  2370. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2371. * owner.
  2372. */
  2373. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
  2374. goto pi_faulted;
  2375. /*
  2376. * If uval has changed, let user space handle it.
  2377. */
  2378. ret = (curval == uval) ? 0 : -EAGAIN;
  2379. out_unlock:
  2380. spin_unlock(&hb->lock);
  2381. out_putkey:
  2382. put_futex_key(&key);
  2383. return ret;
  2384. pi_faulted:
  2385. spin_unlock(&hb->lock);
  2386. put_futex_key(&key);
  2387. ret = fault_in_user_writeable(uaddr);
  2388. if (!ret)
  2389. goto retry;
  2390. return ret;
  2391. }
  2392. /**
  2393. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2394. * @hb: the hash_bucket futex_q was original enqueued on
  2395. * @q: the futex_q woken while waiting to be requeued
  2396. * @key2: the futex_key of the requeue target futex
  2397. * @timeout: the timeout associated with the wait (NULL if none)
  2398. *
  2399. * Detect if the task was woken on the initial futex as opposed to the requeue
  2400. * target futex. If so, determine if it was a timeout or a signal that caused
  2401. * the wakeup and return the appropriate error code to the caller. Must be
  2402. * called with the hb lock held.
  2403. *
  2404. * Return:
  2405. * 0 = no early wakeup detected;
  2406. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2407. */
  2408. static inline
  2409. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2410. struct futex_q *q, union futex_key *key2,
  2411. struct hrtimer_sleeper *timeout)
  2412. {
  2413. int ret = 0;
  2414. /*
  2415. * With the hb lock held, we avoid races while we process the wakeup.
  2416. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2417. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2418. * It can't be requeued from uaddr2 to something else since we don't
  2419. * support a PI aware source futex for requeue.
  2420. */
  2421. if (!match_futex(&q->key, key2)) {
  2422. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2423. /*
  2424. * We were woken prior to requeue by a timeout or a signal.
  2425. * Unqueue the futex_q and determine which it was.
  2426. */
  2427. plist_del(&q->list, &hb->chain);
  2428. hb_waiters_dec(hb);
  2429. /* Handle spurious wakeups gracefully */
  2430. ret = -EWOULDBLOCK;
  2431. if (timeout && !timeout->task)
  2432. ret = -ETIMEDOUT;
  2433. else if (signal_pending(current))
  2434. ret = -ERESTARTNOINTR;
  2435. }
  2436. return ret;
  2437. }
  2438. /**
  2439. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2440. * @uaddr: the futex we initially wait on (non-pi)
  2441. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2442. * the same type, no requeueing from private to shared, etc.
  2443. * @val: the expected value of uaddr
  2444. * @abs_time: absolute timeout
  2445. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2446. * @uaddr2: the pi futex we will take prior to returning to user-space
  2447. *
  2448. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2449. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2450. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2451. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2452. * without one, the pi logic would not know which task to boost/deboost, if
  2453. * there was a need to.
  2454. *
  2455. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2456. * via the following--
  2457. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2458. * 2) wakeup on uaddr2 after a requeue
  2459. * 3) signal
  2460. * 4) timeout
  2461. *
  2462. * If 3, cleanup and return -ERESTARTNOINTR.
  2463. *
  2464. * If 2, we may then block on trying to take the rt_mutex and return via:
  2465. * 5) successful lock
  2466. * 6) signal
  2467. * 7) timeout
  2468. * 8) other lock acquisition failure
  2469. *
  2470. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2471. *
  2472. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2473. *
  2474. * Return:
  2475. * 0 - On success;
  2476. * <0 - On error
  2477. */
  2478. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2479. u32 val, ktime_t *abs_time, u32 bitset,
  2480. u32 __user *uaddr2)
  2481. {
  2482. struct hrtimer_sleeper timeout, *to = NULL;
  2483. struct rt_mutex_waiter rt_waiter;
  2484. struct futex_hash_bucket *hb;
  2485. union futex_key key2 = FUTEX_KEY_INIT;
  2486. struct futex_q q = futex_q_init;
  2487. int res, ret;
  2488. if (uaddr == uaddr2)
  2489. return -EINVAL;
  2490. if (!bitset)
  2491. return -EINVAL;
  2492. if (abs_time) {
  2493. to = &timeout;
  2494. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2495. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2496. HRTIMER_MODE_ABS);
  2497. hrtimer_init_sleeper(to, current);
  2498. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2499. current->timer_slack_ns);
  2500. }
  2501. /*
  2502. * The waiter is allocated on our stack, manipulated by the requeue
  2503. * code while we sleep on uaddr.
  2504. */
  2505. debug_rt_mutex_init_waiter(&rt_waiter);
  2506. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2507. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2508. rt_waiter.task = NULL;
  2509. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2510. if (unlikely(ret != 0))
  2511. goto out;
  2512. q.bitset = bitset;
  2513. q.rt_waiter = &rt_waiter;
  2514. q.requeue_pi_key = &key2;
  2515. /*
  2516. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2517. * count.
  2518. */
  2519. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2520. if (ret)
  2521. goto out_key2;
  2522. /*
  2523. * The check above which compares uaddrs is not sufficient for
  2524. * shared futexes. We need to compare the keys:
  2525. */
  2526. if (match_futex(&q.key, &key2)) {
  2527. queue_unlock(hb);
  2528. ret = -EINVAL;
  2529. goto out_put_keys;
  2530. }
  2531. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2532. futex_wait_queue_me(hb, &q, to);
  2533. spin_lock(&hb->lock);
  2534. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2535. spin_unlock(&hb->lock);
  2536. if (ret)
  2537. goto out_put_keys;
  2538. /*
  2539. * In order for us to be here, we know our q.key == key2, and since
  2540. * we took the hb->lock above, we also know that futex_requeue() has
  2541. * completed and we no longer have to concern ourselves with a wakeup
  2542. * race with the atomic proxy lock acquisition by the requeue code. The
  2543. * futex_requeue dropped our key1 reference and incremented our key2
  2544. * reference count.
  2545. */
  2546. /* Check if the requeue code acquired the second futex for us. */
  2547. if (!q.rt_waiter) {
  2548. /*
  2549. * Got the lock. We might not be the anticipated owner if we
  2550. * did a lock-steal - fix up the PI-state in that case.
  2551. */
  2552. if (q.pi_state && (q.pi_state->owner != current)) {
  2553. spin_lock(q.lock_ptr);
  2554. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2555. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
  2556. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2557. /*
  2558. * Drop the reference to the pi state which
  2559. * the requeue_pi() code acquired for us.
  2560. */
  2561. put_pi_state(q.pi_state);
  2562. spin_unlock(q.lock_ptr);
  2563. }
  2564. } else {
  2565. struct rt_mutex *pi_mutex;
  2566. /*
  2567. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2568. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2569. * the pi_state.
  2570. */
  2571. WARN_ON(!q.pi_state);
  2572. pi_mutex = &q.pi_state->pi_mutex;
  2573. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
  2574. debug_rt_mutex_free_waiter(&rt_waiter);
  2575. spin_lock(q.lock_ptr);
  2576. /*
  2577. * Fixup the pi_state owner and possibly acquire the lock if we
  2578. * haven't already.
  2579. */
  2580. res = fixup_owner(uaddr2, &q, !ret);
  2581. /*
  2582. * If fixup_owner() returned an error, proprogate that. If it
  2583. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2584. */
  2585. if (res)
  2586. ret = (res < 0) ? res : 0;
  2587. /*
  2588. * If fixup_pi_state_owner() faulted and was unable to handle
  2589. * the fault, unlock the rt_mutex and return the fault to
  2590. * userspace.
  2591. */
  2592. if (ret && rt_mutex_owner(pi_mutex) == current)
  2593. rt_mutex_unlock(pi_mutex);
  2594. /* Unqueue and drop the lock. */
  2595. unqueue_me_pi(&q);
  2596. }
  2597. if (ret == -EINTR) {
  2598. /*
  2599. * We've already been requeued, but cannot restart by calling
  2600. * futex_lock_pi() directly. We could restart this syscall, but
  2601. * it would detect that the user space "val" changed and return
  2602. * -EWOULDBLOCK. Save the overhead of the restart and return
  2603. * -EWOULDBLOCK directly.
  2604. */
  2605. ret = -EWOULDBLOCK;
  2606. }
  2607. out_put_keys:
  2608. put_futex_key(&q.key);
  2609. out_key2:
  2610. put_futex_key(&key2);
  2611. out:
  2612. if (to) {
  2613. hrtimer_cancel(&to->timer);
  2614. destroy_hrtimer_on_stack(&to->timer);
  2615. }
  2616. return ret;
  2617. }
  2618. /*
  2619. * Support for robust futexes: the kernel cleans up held futexes at
  2620. * thread exit time.
  2621. *
  2622. * Implementation: user-space maintains a per-thread list of locks it
  2623. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2624. * and marks all locks that are owned by this thread with the
  2625. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2626. * always manipulated with the lock held, so the list is private and
  2627. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2628. * field, to allow the kernel to clean up if the thread dies after
  2629. * acquiring the lock, but just before it could have added itself to
  2630. * the list. There can only be one such pending lock.
  2631. */
  2632. /**
  2633. * sys_set_robust_list() - Set the robust-futex list head of a task
  2634. * @head: pointer to the list-head
  2635. * @len: length of the list-head, as userspace expects
  2636. */
  2637. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2638. size_t, len)
  2639. {
  2640. if (!futex_cmpxchg_enabled)
  2641. return -ENOSYS;
  2642. /*
  2643. * The kernel knows only one size for now:
  2644. */
  2645. if (unlikely(len != sizeof(*head)))
  2646. return -EINVAL;
  2647. current->robust_list = head;
  2648. return 0;
  2649. }
  2650. /**
  2651. * sys_get_robust_list() - Get the robust-futex list head of a task
  2652. * @pid: pid of the process [zero for current task]
  2653. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2654. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2655. */
  2656. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2657. struct robust_list_head __user * __user *, head_ptr,
  2658. size_t __user *, len_ptr)
  2659. {
  2660. struct robust_list_head __user *head;
  2661. unsigned long ret;
  2662. struct task_struct *p;
  2663. if (!futex_cmpxchg_enabled)
  2664. return -ENOSYS;
  2665. rcu_read_lock();
  2666. ret = -ESRCH;
  2667. if (!pid)
  2668. p = current;
  2669. else {
  2670. p = find_task_by_vpid(pid);
  2671. if (!p)
  2672. goto err_unlock;
  2673. }
  2674. ret = -EPERM;
  2675. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2676. goto err_unlock;
  2677. head = p->robust_list;
  2678. rcu_read_unlock();
  2679. if (put_user(sizeof(*head), len_ptr))
  2680. return -EFAULT;
  2681. return put_user(head, head_ptr);
  2682. err_unlock:
  2683. rcu_read_unlock();
  2684. return ret;
  2685. }
  2686. /*
  2687. * Process a futex-list entry, check whether it's owned by the
  2688. * dying task, and do notification if so:
  2689. */
  2690. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2691. {
  2692. u32 uval, uninitialized_var(nval), mval;
  2693. retry:
  2694. if (get_user(uval, uaddr))
  2695. return -1;
  2696. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2697. /*
  2698. * Ok, this dying thread is truly holding a futex
  2699. * of interest. Set the OWNER_DIED bit atomically
  2700. * via cmpxchg, and if the value had FUTEX_WAITERS
  2701. * set, wake up a waiter (if any). (We have to do a
  2702. * futex_wake() even if OWNER_DIED is already set -
  2703. * to handle the rare but possible case of recursive
  2704. * thread-death.) The rest of the cleanup is done in
  2705. * userspace.
  2706. */
  2707. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2708. /*
  2709. * We are not holding a lock here, but we want to have
  2710. * the pagefault_disable/enable() protection because
  2711. * we want to handle the fault gracefully. If the
  2712. * access fails we try to fault in the futex with R/W
  2713. * verification via get_user_pages. get_user() above
  2714. * does not guarantee R/W access. If that fails we
  2715. * give up and leave the futex locked.
  2716. */
  2717. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2718. if (fault_in_user_writeable(uaddr))
  2719. return -1;
  2720. goto retry;
  2721. }
  2722. if (nval != uval)
  2723. goto retry;
  2724. /*
  2725. * Wake robust non-PI futexes here. The wakeup of
  2726. * PI futexes happens in exit_pi_state():
  2727. */
  2728. if (!pi && (uval & FUTEX_WAITERS))
  2729. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2730. }
  2731. return 0;
  2732. }
  2733. /*
  2734. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2735. */
  2736. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2737. struct robust_list __user * __user *head,
  2738. unsigned int *pi)
  2739. {
  2740. unsigned long uentry;
  2741. if (get_user(uentry, (unsigned long __user *)head))
  2742. return -EFAULT;
  2743. *entry = (void __user *)(uentry & ~1UL);
  2744. *pi = uentry & 1;
  2745. return 0;
  2746. }
  2747. /*
  2748. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2749. * and mark any locks found there dead, and notify any waiters.
  2750. *
  2751. * We silently return on any sign of list-walking problem.
  2752. */
  2753. void exit_robust_list(struct task_struct *curr)
  2754. {
  2755. struct robust_list_head __user *head = curr->robust_list;
  2756. struct robust_list __user *entry, *next_entry, *pending;
  2757. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2758. unsigned int uninitialized_var(next_pi);
  2759. unsigned long futex_offset;
  2760. int rc;
  2761. if (!futex_cmpxchg_enabled)
  2762. return;
  2763. /*
  2764. * Fetch the list head (which was registered earlier, via
  2765. * sys_set_robust_list()):
  2766. */
  2767. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2768. return;
  2769. /*
  2770. * Fetch the relative futex offset:
  2771. */
  2772. if (get_user(futex_offset, &head->futex_offset))
  2773. return;
  2774. /*
  2775. * Fetch any possibly pending lock-add first, and handle it
  2776. * if it exists:
  2777. */
  2778. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2779. return;
  2780. next_entry = NULL; /* avoid warning with gcc */
  2781. while (entry != &head->list) {
  2782. /*
  2783. * Fetch the next entry in the list before calling
  2784. * handle_futex_death:
  2785. */
  2786. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2787. /*
  2788. * A pending lock might already be on the list, so
  2789. * don't process it twice:
  2790. */
  2791. if (entry != pending)
  2792. if (handle_futex_death((void __user *)entry + futex_offset,
  2793. curr, pi))
  2794. return;
  2795. if (rc)
  2796. return;
  2797. entry = next_entry;
  2798. pi = next_pi;
  2799. /*
  2800. * Avoid excessively long or circular lists:
  2801. */
  2802. if (!--limit)
  2803. break;
  2804. cond_resched();
  2805. }
  2806. if (pending)
  2807. handle_futex_death((void __user *)pending + futex_offset,
  2808. curr, pip);
  2809. }
  2810. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2811. u32 __user *uaddr2, u32 val2, u32 val3)
  2812. {
  2813. int cmd = op & FUTEX_CMD_MASK;
  2814. unsigned int flags = 0;
  2815. if (!(op & FUTEX_PRIVATE_FLAG))
  2816. flags |= FLAGS_SHARED;
  2817. if (op & FUTEX_CLOCK_REALTIME) {
  2818. flags |= FLAGS_CLOCKRT;
  2819. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  2820. cmd != FUTEX_WAIT_REQUEUE_PI)
  2821. return -ENOSYS;
  2822. }
  2823. switch (cmd) {
  2824. case FUTEX_LOCK_PI:
  2825. case FUTEX_UNLOCK_PI:
  2826. case FUTEX_TRYLOCK_PI:
  2827. case FUTEX_WAIT_REQUEUE_PI:
  2828. case FUTEX_CMP_REQUEUE_PI:
  2829. if (!futex_cmpxchg_enabled)
  2830. return -ENOSYS;
  2831. }
  2832. switch (cmd) {
  2833. case FUTEX_WAIT:
  2834. val3 = FUTEX_BITSET_MATCH_ANY;
  2835. case FUTEX_WAIT_BITSET:
  2836. return futex_wait(uaddr, flags, val, timeout, val3);
  2837. case FUTEX_WAKE:
  2838. val3 = FUTEX_BITSET_MATCH_ANY;
  2839. case FUTEX_WAKE_BITSET:
  2840. return futex_wake(uaddr, flags, val, val3);
  2841. case FUTEX_REQUEUE:
  2842. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2843. case FUTEX_CMP_REQUEUE:
  2844. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2845. case FUTEX_WAKE_OP:
  2846. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2847. case FUTEX_LOCK_PI:
  2848. return futex_lock_pi(uaddr, flags, timeout, 0);
  2849. case FUTEX_UNLOCK_PI:
  2850. return futex_unlock_pi(uaddr, flags);
  2851. case FUTEX_TRYLOCK_PI:
  2852. return futex_lock_pi(uaddr, flags, NULL, 1);
  2853. case FUTEX_WAIT_REQUEUE_PI:
  2854. val3 = FUTEX_BITSET_MATCH_ANY;
  2855. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2856. uaddr2);
  2857. case FUTEX_CMP_REQUEUE_PI:
  2858. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2859. }
  2860. return -ENOSYS;
  2861. }
  2862. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2863. struct timespec __user *, utime, u32 __user *, uaddr2,
  2864. u32, val3)
  2865. {
  2866. struct timespec ts;
  2867. ktime_t t, *tp = NULL;
  2868. u32 val2 = 0;
  2869. int cmd = op & FUTEX_CMD_MASK;
  2870. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2871. cmd == FUTEX_WAIT_BITSET ||
  2872. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2873. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  2874. return -EFAULT;
  2875. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2876. return -EFAULT;
  2877. if (!timespec_valid(&ts))
  2878. return -EINVAL;
  2879. t = timespec_to_ktime(ts);
  2880. if (cmd == FUTEX_WAIT)
  2881. t = ktime_add_safe(ktime_get(), t);
  2882. tp = &t;
  2883. }
  2884. /*
  2885. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2886. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2887. */
  2888. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2889. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2890. val2 = (u32) (unsigned long) utime;
  2891. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2892. }
  2893. static void __init futex_detect_cmpxchg(void)
  2894. {
  2895. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2896. u32 curval;
  2897. /*
  2898. * This will fail and we want it. Some arch implementations do
  2899. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2900. * functionality. We want to know that before we call in any
  2901. * of the complex code paths. Also we want to prevent
  2902. * registration of robust lists in that case. NULL is
  2903. * guaranteed to fault and we get -EFAULT on functional
  2904. * implementation, the non-functional ones will return
  2905. * -ENOSYS.
  2906. */
  2907. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2908. futex_cmpxchg_enabled = 1;
  2909. #endif
  2910. }
  2911. static int __init futex_init(void)
  2912. {
  2913. unsigned int futex_shift;
  2914. unsigned long i;
  2915. #if CONFIG_BASE_SMALL
  2916. futex_hashsize = 16;
  2917. #else
  2918. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2919. #endif
  2920. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2921. futex_hashsize, 0,
  2922. futex_hashsize < 256 ? HASH_SMALL : 0,
  2923. &futex_shift, NULL,
  2924. futex_hashsize, futex_hashsize);
  2925. futex_hashsize = 1UL << futex_shift;
  2926. futex_detect_cmpxchg();
  2927. for (i = 0; i < futex_hashsize; i++) {
  2928. atomic_set(&futex_queues[i].waiters, 0);
  2929. plist_head_init(&futex_queues[i].chain);
  2930. spin_lock_init(&futex_queues[i].lock);
  2931. }
  2932. return 0;
  2933. }
  2934. core_initcall(futex_init);