mm.h 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. #ifndef page_to_virt
  64. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  65. #endif
  66. /*
  67. * To prevent common memory management code establishing
  68. * a zero page mapping on a read fault.
  69. * This macro should be defined within <asm/pgtable.h>.
  70. * s390 does this to prevent multiplexing of hardware bits
  71. * related to the physical page in case of virtualization.
  72. */
  73. #ifndef mm_forbids_zeropage
  74. #define mm_forbids_zeropage(X) (0)
  75. #endif
  76. /*
  77. * Default maximum number of active map areas, this limits the number of vmas
  78. * per mm struct. Users can overwrite this number by sysctl but there is a
  79. * problem.
  80. *
  81. * When a program's coredump is generated as ELF format, a section is created
  82. * per a vma. In ELF, the number of sections is represented in unsigned short.
  83. * This means the number of sections should be smaller than 65535 at coredump.
  84. * Because the kernel adds some informative sections to a image of program at
  85. * generating coredump, we need some margin. The number of extra sections is
  86. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  87. *
  88. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  89. * not a hard limit any more. Although some userspace tools can be surprised by
  90. * that.
  91. */
  92. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  93. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  94. extern int sysctl_max_map_count;
  95. extern unsigned long sysctl_user_reserve_kbytes;
  96. extern unsigned long sysctl_admin_reserve_kbytes;
  97. extern int sysctl_overcommit_memory;
  98. extern int sysctl_overcommit_ratio;
  99. extern unsigned long sysctl_overcommit_kbytes;
  100. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  101. size_t *, loff_t *);
  102. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  103. size_t *, loff_t *);
  104. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  105. /* to align the pointer to the (next) page boundary */
  106. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  107. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  108. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  109. /*
  110. * Linux kernel virtual memory manager primitives.
  111. * The idea being to have a "virtual" mm in the same way
  112. * we have a virtual fs - giving a cleaner interface to the
  113. * mm details, and allowing different kinds of memory mappings
  114. * (from shared memory to executable loading to arbitrary
  115. * mmap() functions).
  116. */
  117. extern struct kmem_cache *vm_area_cachep;
  118. #ifndef CONFIG_MMU
  119. extern struct rb_root nommu_region_tree;
  120. extern struct rw_semaphore nommu_region_sem;
  121. extern unsigned int kobjsize(const void *objp);
  122. #endif
  123. /*
  124. * vm_flags in vm_area_struct, see mm_types.h.
  125. * When changing, update also include/trace/events/mmflags.h
  126. */
  127. #define VM_NONE 0x00000000
  128. #define VM_READ 0x00000001 /* currently active flags */
  129. #define VM_WRITE 0x00000002
  130. #define VM_EXEC 0x00000004
  131. #define VM_SHARED 0x00000008
  132. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  133. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  134. #define VM_MAYWRITE 0x00000020
  135. #define VM_MAYEXEC 0x00000040
  136. #define VM_MAYSHARE 0x00000080
  137. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  138. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  139. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  140. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  141. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  142. #define VM_LOCKED 0x00002000
  143. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  144. /* Used by sys_madvise() */
  145. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  146. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  147. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  148. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  149. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  150. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  151. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  152. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  153. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  154. #define VM_ARCH_2 0x02000000
  155. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  156. #ifdef CONFIG_MEM_SOFT_DIRTY
  157. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  158. #else
  159. # define VM_SOFTDIRTY 0
  160. #endif
  161. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  162. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  163. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  164. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  165. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  166. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  167. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  168. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  169. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  170. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  171. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  172. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  173. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  174. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  175. #if defined(CONFIG_X86)
  176. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  177. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  178. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  179. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  180. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  181. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  182. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  183. #endif
  184. #elif defined(CONFIG_PPC)
  185. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  186. #elif defined(CONFIG_PARISC)
  187. # define VM_GROWSUP VM_ARCH_1
  188. #elif defined(CONFIG_METAG)
  189. # define VM_GROWSUP VM_ARCH_1
  190. #elif defined(CONFIG_IA64)
  191. # define VM_GROWSUP VM_ARCH_1
  192. #elif !defined(CONFIG_MMU)
  193. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  194. #endif
  195. #if defined(CONFIG_X86)
  196. /* MPX specific bounds table or bounds directory */
  197. # define VM_MPX VM_ARCH_2
  198. #endif
  199. #ifndef VM_GROWSUP
  200. # define VM_GROWSUP VM_NONE
  201. #endif
  202. /* Bits set in the VMA until the stack is in its final location */
  203. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  204. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  205. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  206. #endif
  207. #ifdef CONFIG_STACK_GROWSUP
  208. #define VM_STACK VM_GROWSUP
  209. #else
  210. #define VM_STACK VM_GROWSDOWN
  211. #endif
  212. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  213. /*
  214. * Special vmas that are non-mergable, non-mlock()able.
  215. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  216. */
  217. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  218. /* This mask defines which mm->def_flags a process can inherit its parent */
  219. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  220. /* This mask is used to clear all the VMA flags used by mlock */
  221. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  222. /*
  223. * mapping from the currently active vm_flags protection bits (the
  224. * low four bits) to a page protection mask..
  225. */
  226. extern pgprot_t protection_map[16];
  227. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  228. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  229. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  230. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  231. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  232. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  233. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  234. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  235. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  236. /*
  237. * vm_fault is filled by the the pagefault handler and passed to the vma's
  238. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  239. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  240. *
  241. * MM layer fills up gfp_mask for page allocations but fault handler might
  242. * alter it if its implementation requires a different allocation context.
  243. *
  244. * pgoff should be used in favour of virtual_address, if possible.
  245. */
  246. struct vm_fault {
  247. unsigned int flags; /* FAULT_FLAG_xxx flags */
  248. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  249. pgoff_t pgoff; /* Logical page offset based on vma */
  250. void __user *virtual_address; /* Faulting virtual address */
  251. struct page *cow_page; /* Handler may choose to COW */
  252. struct page *page; /* ->fault handlers should return a
  253. * page here, unless VM_FAULT_NOPAGE
  254. * is set (which is also implied by
  255. * VM_FAULT_ERROR).
  256. */
  257. void *entry; /* ->fault handler can alternatively
  258. * return locked DAX entry. In that
  259. * case handler should return
  260. * VM_FAULT_DAX_LOCKED and fill in
  261. * entry here.
  262. */
  263. };
  264. /*
  265. * Page fault context: passes though page fault handler instead of endless list
  266. * of function arguments.
  267. */
  268. struct fault_env {
  269. struct vm_area_struct *vma; /* Target VMA */
  270. unsigned long address; /* Faulting virtual address */
  271. unsigned int flags; /* FAULT_FLAG_xxx flags */
  272. pmd_t *pmd; /* Pointer to pmd entry matching
  273. * the 'address'
  274. */
  275. pte_t *pte; /* Pointer to pte entry matching
  276. * the 'address'. NULL if the page
  277. * table hasn't been allocated.
  278. */
  279. spinlock_t *ptl; /* Page table lock.
  280. * Protects pte page table if 'pte'
  281. * is not NULL, otherwise pmd.
  282. */
  283. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  284. * vm_ops->map_pages() calls
  285. * alloc_set_pte() from atomic context.
  286. * do_fault_around() pre-allocates
  287. * page table to avoid allocation from
  288. * atomic context.
  289. */
  290. };
  291. /*
  292. * These are the virtual MM functions - opening of an area, closing and
  293. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  294. * to the functions called when a no-page or a wp-page exception occurs.
  295. */
  296. struct vm_operations_struct {
  297. void (*open)(struct vm_area_struct * area);
  298. void (*close)(struct vm_area_struct * area);
  299. int (*mremap)(struct vm_area_struct * area);
  300. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  301. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  302. pmd_t *, unsigned int flags);
  303. void (*map_pages)(struct fault_env *fe,
  304. pgoff_t start_pgoff, pgoff_t end_pgoff);
  305. /* notification that a previously read-only page is about to become
  306. * writable, if an error is returned it will cause a SIGBUS */
  307. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  308. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  309. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  310. /* called by access_process_vm when get_user_pages() fails, typically
  311. * for use by special VMAs that can switch between memory and hardware
  312. */
  313. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  314. void *buf, int len, int write);
  315. /* Called by the /proc/PID/maps code to ask the vma whether it
  316. * has a special name. Returning non-NULL will also cause this
  317. * vma to be dumped unconditionally. */
  318. const char *(*name)(struct vm_area_struct *vma);
  319. #ifdef CONFIG_NUMA
  320. /*
  321. * set_policy() op must add a reference to any non-NULL @new mempolicy
  322. * to hold the policy upon return. Caller should pass NULL @new to
  323. * remove a policy and fall back to surrounding context--i.e. do not
  324. * install a MPOL_DEFAULT policy, nor the task or system default
  325. * mempolicy.
  326. */
  327. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  328. /*
  329. * get_policy() op must add reference [mpol_get()] to any policy at
  330. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  331. * in mm/mempolicy.c will do this automatically.
  332. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  333. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  334. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  335. * must return NULL--i.e., do not "fallback" to task or system default
  336. * policy.
  337. */
  338. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  339. unsigned long addr);
  340. #endif
  341. /*
  342. * Called by vm_normal_page() for special PTEs to find the
  343. * page for @addr. This is useful if the default behavior
  344. * (using pte_page()) would not find the correct page.
  345. */
  346. struct page *(*find_special_page)(struct vm_area_struct *vma,
  347. unsigned long addr);
  348. };
  349. struct mmu_gather;
  350. struct inode;
  351. #define page_private(page) ((page)->private)
  352. #define set_page_private(page, v) ((page)->private = (v))
  353. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  354. static inline int pmd_devmap(pmd_t pmd)
  355. {
  356. return 0;
  357. }
  358. #endif
  359. /*
  360. * FIXME: take this include out, include page-flags.h in
  361. * files which need it (119 of them)
  362. */
  363. #include <linux/page-flags.h>
  364. #include <linux/huge_mm.h>
  365. /*
  366. * Methods to modify the page usage count.
  367. *
  368. * What counts for a page usage:
  369. * - cache mapping (page->mapping)
  370. * - private data (page->private)
  371. * - page mapped in a task's page tables, each mapping
  372. * is counted separately
  373. *
  374. * Also, many kernel routines increase the page count before a critical
  375. * routine so they can be sure the page doesn't go away from under them.
  376. */
  377. /*
  378. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  379. */
  380. static inline int put_page_testzero(struct page *page)
  381. {
  382. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  383. return page_ref_dec_and_test(page);
  384. }
  385. /*
  386. * Try to grab a ref unless the page has a refcount of zero, return false if
  387. * that is the case.
  388. * This can be called when MMU is off so it must not access
  389. * any of the virtual mappings.
  390. */
  391. static inline int get_page_unless_zero(struct page *page)
  392. {
  393. return page_ref_add_unless(page, 1, 0);
  394. }
  395. extern int page_is_ram(unsigned long pfn);
  396. enum {
  397. REGION_INTERSECTS,
  398. REGION_DISJOINT,
  399. REGION_MIXED,
  400. };
  401. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  402. unsigned long desc);
  403. /* Support for virtually mapped pages */
  404. struct page *vmalloc_to_page(const void *addr);
  405. unsigned long vmalloc_to_pfn(const void *addr);
  406. /*
  407. * Determine if an address is within the vmalloc range
  408. *
  409. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  410. * is no special casing required.
  411. */
  412. static inline bool is_vmalloc_addr(const void *x)
  413. {
  414. #ifdef CONFIG_MMU
  415. unsigned long addr = (unsigned long)x;
  416. return addr >= VMALLOC_START && addr < VMALLOC_END;
  417. #else
  418. return false;
  419. #endif
  420. }
  421. #ifdef CONFIG_MMU
  422. extern int is_vmalloc_or_module_addr(const void *x);
  423. #else
  424. static inline int is_vmalloc_or_module_addr(const void *x)
  425. {
  426. return 0;
  427. }
  428. #endif
  429. extern void kvfree(const void *addr);
  430. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  431. {
  432. return &page[1].compound_mapcount;
  433. }
  434. static inline int compound_mapcount(struct page *page)
  435. {
  436. VM_BUG_ON_PAGE(!PageCompound(page), page);
  437. page = compound_head(page);
  438. return atomic_read(compound_mapcount_ptr(page)) + 1;
  439. }
  440. /*
  441. * The atomic page->_mapcount, starts from -1: so that transitions
  442. * both from it and to it can be tracked, using atomic_inc_and_test
  443. * and atomic_add_negative(-1).
  444. */
  445. static inline void page_mapcount_reset(struct page *page)
  446. {
  447. atomic_set(&(page)->_mapcount, -1);
  448. }
  449. int __page_mapcount(struct page *page);
  450. static inline int page_mapcount(struct page *page)
  451. {
  452. VM_BUG_ON_PAGE(PageSlab(page), page);
  453. if (unlikely(PageCompound(page)))
  454. return __page_mapcount(page);
  455. return atomic_read(&page->_mapcount) + 1;
  456. }
  457. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  458. int total_mapcount(struct page *page);
  459. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  460. #else
  461. static inline int total_mapcount(struct page *page)
  462. {
  463. return page_mapcount(page);
  464. }
  465. static inline int page_trans_huge_mapcount(struct page *page,
  466. int *total_mapcount)
  467. {
  468. int mapcount = page_mapcount(page);
  469. if (total_mapcount)
  470. *total_mapcount = mapcount;
  471. return mapcount;
  472. }
  473. #endif
  474. static inline struct page *virt_to_head_page(const void *x)
  475. {
  476. struct page *page = virt_to_page(x);
  477. return compound_head(page);
  478. }
  479. void __put_page(struct page *page);
  480. void put_pages_list(struct list_head *pages);
  481. void split_page(struct page *page, unsigned int order);
  482. /*
  483. * Compound pages have a destructor function. Provide a
  484. * prototype for that function and accessor functions.
  485. * These are _only_ valid on the head of a compound page.
  486. */
  487. typedef void compound_page_dtor(struct page *);
  488. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  489. enum compound_dtor_id {
  490. NULL_COMPOUND_DTOR,
  491. COMPOUND_PAGE_DTOR,
  492. #ifdef CONFIG_HUGETLB_PAGE
  493. HUGETLB_PAGE_DTOR,
  494. #endif
  495. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  496. TRANSHUGE_PAGE_DTOR,
  497. #endif
  498. NR_COMPOUND_DTORS,
  499. };
  500. extern compound_page_dtor * const compound_page_dtors[];
  501. static inline void set_compound_page_dtor(struct page *page,
  502. enum compound_dtor_id compound_dtor)
  503. {
  504. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  505. page[1].compound_dtor = compound_dtor;
  506. }
  507. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  508. {
  509. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  510. return compound_page_dtors[page[1].compound_dtor];
  511. }
  512. static inline unsigned int compound_order(struct page *page)
  513. {
  514. if (!PageHead(page))
  515. return 0;
  516. return page[1].compound_order;
  517. }
  518. static inline void set_compound_order(struct page *page, unsigned int order)
  519. {
  520. page[1].compound_order = order;
  521. }
  522. void free_compound_page(struct page *page);
  523. #ifdef CONFIG_MMU
  524. /*
  525. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  526. * servicing faults for write access. In the normal case, do always want
  527. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  528. * that do not have writing enabled, when used by access_process_vm.
  529. */
  530. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  531. {
  532. if (likely(vma->vm_flags & VM_WRITE))
  533. pte = pte_mkwrite(pte);
  534. return pte;
  535. }
  536. int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
  537. struct page *page);
  538. #endif
  539. /*
  540. * Multiple processes may "see" the same page. E.g. for untouched
  541. * mappings of /dev/null, all processes see the same page full of
  542. * zeroes, and text pages of executables and shared libraries have
  543. * only one copy in memory, at most, normally.
  544. *
  545. * For the non-reserved pages, page_count(page) denotes a reference count.
  546. * page_count() == 0 means the page is free. page->lru is then used for
  547. * freelist management in the buddy allocator.
  548. * page_count() > 0 means the page has been allocated.
  549. *
  550. * Pages are allocated by the slab allocator in order to provide memory
  551. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  552. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  553. * unless a particular usage is carefully commented. (the responsibility of
  554. * freeing the kmalloc memory is the caller's, of course).
  555. *
  556. * A page may be used by anyone else who does a __get_free_page().
  557. * In this case, page_count still tracks the references, and should only
  558. * be used through the normal accessor functions. The top bits of page->flags
  559. * and page->virtual store page management information, but all other fields
  560. * are unused and could be used privately, carefully. The management of this
  561. * page is the responsibility of the one who allocated it, and those who have
  562. * subsequently been given references to it.
  563. *
  564. * The other pages (we may call them "pagecache pages") are completely
  565. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  566. * The following discussion applies only to them.
  567. *
  568. * A pagecache page contains an opaque `private' member, which belongs to the
  569. * page's address_space. Usually, this is the address of a circular list of
  570. * the page's disk buffers. PG_private must be set to tell the VM to call
  571. * into the filesystem to release these pages.
  572. *
  573. * A page may belong to an inode's memory mapping. In this case, page->mapping
  574. * is the pointer to the inode, and page->index is the file offset of the page,
  575. * in units of PAGE_SIZE.
  576. *
  577. * If pagecache pages are not associated with an inode, they are said to be
  578. * anonymous pages. These may become associated with the swapcache, and in that
  579. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  580. *
  581. * In either case (swapcache or inode backed), the pagecache itself holds one
  582. * reference to the page. Setting PG_private should also increment the
  583. * refcount. The each user mapping also has a reference to the page.
  584. *
  585. * The pagecache pages are stored in a per-mapping radix tree, which is
  586. * rooted at mapping->page_tree, and indexed by offset.
  587. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  588. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  589. *
  590. * All pagecache pages may be subject to I/O:
  591. * - inode pages may need to be read from disk,
  592. * - inode pages which have been modified and are MAP_SHARED may need
  593. * to be written back to the inode on disk,
  594. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  595. * modified may need to be swapped out to swap space and (later) to be read
  596. * back into memory.
  597. */
  598. /*
  599. * The zone field is never updated after free_area_init_core()
  600. * sets it, so none of the operations on it need to be atomic.
  601. */
  602. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  603. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  604. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  605. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  606. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  607. /*
  608. * Define the bit shifts to access each section. For non-existent
  609. * sections we define the shift as 0; that plus a 0 mask ensures
  610. * the compiler will optimise away reference to them.
  611. */
  612. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  613. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  614. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  615. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  616. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  617. #ifdef NODE_NOT_IN_PAGE_FLAGS
  618. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  619. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  620. SECTIONS_PGOFF : ZONES_PGOFF)
  621. #else
  622. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  623. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  624. NODES_PGOFF : ZONES_PGOFF)
  625. #endif
  626. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  627. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  628. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  629. #endif
  630. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  631. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  632. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  633. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  634. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  635. static inline enum zone_type page_zonenum(const struct page *page)
  636. {
  637. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  638. }
  639. #ifdef CONFIG_ZONE_DEVICE
  640. void get_zone_device_page(struct page *page);
  641. void put_zone_device_page(struct page *page);
  642. static inline bool is_zone_device_page(const struct page *page)
  643. {
  644. return page_zonenum(page) == ZONE_DEVICE;
  645. }
  646. #else
  647. static inline void get_zone_device_page(struct page *page)
  648. {
  649. }
  650. static inline void put_zone_device_page(struct page *page)
  651. {
  652. }
  653. static inline bool is_zone_device_page(const struct page *page)
  654. {
  655. return false;
  656. }
  657. #endif
  658. static inline void get_page(struct page *page)
  659. {
  660. page = compound_head(page);
  661. /*
  662. * Getting a normal page or the head of a compound page
  663. * requires to already have an elevated page->_refcount.
  664. */
  665. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  666. page_ref_inc(page);
  667. if (unlikely(is_zone_device_page(page)))
  668. get_zone_device_page(page);
  669. }
  670. static inline void put_page(struct page *page)
  671. {
  672. page = compound_head(page);
  673. if (put_page_testzero(page))
  674. __put_page(page);
  675. if (unlikely(is_zone_device_page(page)))
  676. put_zone_device_page(page);
  677. }
  678. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  679. #define SECTION_IN_PAGE_FLAGS
  680. #endif
  681. /*
  682. * The identification function is mainly used by the buddy allocator for
  683. * determining if two pages could be buddies. We are not really identifying
  684. * the zone since we could be using the section number id if we do not have
  685. * node id available in page flags.
  686. * We only guarantee that it will return the same value for two combinable
  687. * pages in a zone.
  688. */
  689. static inline int page_zone_id(struct page *page)
  690. {
  691. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  692. }
  693. static inline int zone_to_nid(struct zone *zone)
  694. {
  695. #ifdef CONFIG_NUMA
  696. return zone->node;
  697. #else
  698. return 0;
  699. #endif
  700. }
  701. #ifdef NODE_NOT_IN_PAGE_FLAGS
  702. extern int page_to_nid(const struct page *page);
  703. #else
  704. static inline int page_to_nid(const struct page *page)
  705. {
  706. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  707. }
  708. #endif
  709. #ifdef CONFIG_NUMA_BALANCING
  710. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  711. {
  712. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  713. }
  714. static inline int cpupid_to_pid(int cpupid)
  715. {
  716. return cpupid & LAST__PID_MASK;
  717. }
  718. static inline int cpupid_to_cpu(int cpupid)
  719. {
  720. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  721. }
  722. static inline int cpupid_to_nid(int cpupid)
  723. {
  724. return cpu_to_node(cpupid_to_cpu(cpupid));
  725. }
  726. static inline bool cpupid_pid_unset(int cpupid)
  727. {
  728. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  729. }
  730. static inline bool cpupid_cpu_unset(int cpupid)
  731. {
  732. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  733. }
  734. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  735. {
  736. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  737. }
  738. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  739. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  740. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  741. {
  742. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  743. }
  744. static inline int page_cpupid_last(struct page *page)
  745. {
  746. return page->_last_cpupid;
  747. }
  748. static inline void page_cpupid_reset_last(struct page *page)
  749. {
  750. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  751. }
  752. #else
  753. static inline int page_cpupid_last(struct page *page)
  754. {
  755. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  756. }
  757. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  758. static inline void page_cpupid_reset_last(struct page *page)
  759. {
  760. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  761. }
  762. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  763. #else /* !CONFIG_NUMA_BALANCING */
  764. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  765. {
  766. return page_to_nid(page); /* XXX */
  767. }
  768. static inline int page_cpupid_last(struct page *page)
  769. {
  770. return page_to_nid(page); /* XXX */
  771. }
  772. static inline int cpupid_to_nid(int cpupid)
  773. {
  774. return -1;
  775. }
  776. static inline int cpupid_to_pid(int cpupid)
  777. {
  778. return -1;
  779. }
  780. static inline int cpupid_to_cpu(int cpupid)
  781. {
  782. return -1;
  783. }
  784. static inline int cpu_pid_to_cpupid(int nid, int pid)
  785. {
  786. return -1;
  787. }
  788. static inline bool cpupid_pid_unset(int cpupid)
  789. {
  790. return 1;
  791. }
  792. static inline void page_cpupid_reset_last(struct page *page)
  793. {
  794. }
  795. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  796. {
  797. return false;
  798. }
  799. #endif /* CONFIG_NUMA_BALANCING */
  800. static inline struct zone *page_zone(const struct page *page)
  801. {
  802. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  803. }
  804. static inline pg_data_t *page_pgdat(const struct page *page)
  805. {
  806. return NODE_DATA(page_to_nid(page));
  807. }
  808. #ifdef SECTION_IN_PAGE_FLAGS
  809. static inline void set_page_section(struct page *page, unsigned long section)
  810. {
  811. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  812. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  813. }
  814. static inline unsigned long page_to_section(const struct page *page)
  815. {
  816. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  817. }
  818. #endif
  819. static inline void set_page_zone(struct page *page, enum zone_type zone)
  820. {
  821. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  822. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  823. }
  824. static inline void set_page_node(struct page *page, unsigned long node)
  825. {
  826. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  827. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  828. }
  829. static inline void set_page_links(struct page *page, enum zone_type zone,
  830. unsigned long node, unsigned long pfn)
  831. {
  832. set_page_zone(page, zone);
  833. set_page_node(page, node);
  834. #ifdef SECTION_IN_PAGE_FLAGS
  835. set_page_section(page, pfn_to_section_nr(pfn));
  836. #endif
  837. }
  838. #ifdef CONFIG_MEMCG
  839. static inline struct mem_cgroup *page_memcg(struct page *page)
  840. {
  841. return page->mem_cgroup;
  842. }
  843. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  844. {
  845. WARN_ON_ONCE(!rcu_read_lock_held());
  846. return READ_ONCE(page->mem_cgroup);
  847. }
  848. #else
  849. static inline struct mem_cgroup *page_memcg(struct page *page)
  850. {
  851. return NULL;
  852. }
  853. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  854. {
  855. WARN_ON_ONCE(!rcu_read_lock_held());
  856. return NULL;
  857. }
  858. #endif
  859. /*
  860. * Some inline functions in vmstat.h depend on page_zone()
  861. */
  862. #include <linux/vmstat.h>
  863. static __always_inline void *lowmem_page_address(const struct page *page)
  864. {
  865. return page_to_virt(page);
  866. }
  867. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  868. #define HASHED_PAGE_VIRTUAL
  869. #endif
  870. #if defined(WANT_PAGE_VIRTUAL)
  871. static inline void *page_address(const struct page *page)
  872. {
  873. return page->virtual;
  874. }
  875. static inline void set_page_address(struct page *page, void *address)
  876. {
  877. page->virtual = address;
  878. }
  879. #define page_address_init() do { } while(0)
  880. #endif
  881. #if defined(HASHED_PAGE_VIRTUAL)
  882. void *page_address(const struct page *page);
  883. void set_page_address(struct page *page, void *virtual);
  884. void page_address_init(void);
  885. #endif
  886. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  887. #define page_address(page) lowmem_page_address(page)
  888. #define set_page_address(page, address) do { } while(0)
  889. #define page_address_init() do { } while(0)
  890. #endif
  891. extern void *page_rmapping(struct page *page);
  892. extern struct anon_vma *page_anon_vma(struct page *page);
  893. extern struct address_space *page_mapping(struct page *page);
  894. extern struct address_space *__page_file_mapping(struct page *);
  895. static inline
  896. struct address_space *page_file_mapping(struct page *page)
  897. {
  898. if (unlikely(PageSwapCache(page)))
  899. return __page_file_mapping(page);
  900. return page->mapping;
  901. }
  902. extern pgoff_t __page_file_index(struct page *page);
  903. /*
  904. * Return the pagecache index of the passed page. Regular pagecache pages
  905. * use ->index whereas swapcache pages use swp_offset(->private)
  906. */
  907. static inline pgoff_t page_index(struct page *page)
  908. {
  909. if (unlikely(PageSwapCache(page)))
  910. return __page_file_index(page);
  911. return page->index;
  912. }
  913. bool page_mapped(struct page *page);
  914. struct address_space *page_mapping(struct page *page);
  915. /*
  916. * Return true only if the page has been allocated with
  917. * ALLOC_NO_WATERMARKS and the low watermark was not
  918. * met implying that the system is under some pressure.
  919. */
  920. static inline bool page_is_pfmemalloc(struct page *page)
  921. {
  922. /*
  923. * Page index cannot be this large so this must be
  924. * a pfmemalloc page.
  925. */
  926. return page->index == -1UL;
  927. }
  928. /*
  929. * Only to be called by the page allocator on a freshly allocated
  930. * page.
  931. */
  932. static inline void set_page_pfmemalloc(struct page *page)
  933. {
  934. page->index = -1UL;
  935. }
  936. static inline void clear_page_pfmemalloc(struct page *page)
  937. {
  938. page->index = 0;
  939. }
  940. /*
  941. * Different kinds of faults, as returned by handle_mm_fault().
  942. * Used to decide whether a process gets delivered SIGBUS or
  943. * just gets major/minor fault counters bumped up.
  944. */
  945. #define VM_FAULT_OOM 0x0001
  946. #define VM_FAULT_SIGBUS 0x0002
  947. #define VM_FAULT_MAJOR 0x0004
  948. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  949. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  950. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  951. #define VM_FAULT_SIGSEGV 0x0040
  952. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  953. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  954. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  955. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  956. #define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
  957. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  958. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  959. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  960. VM_FAULT_FALLBACK)
  961. /* Encode hstate index for a hwpoisoned large page */
  962. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  963. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  964. /*
  965. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  966. */
  967. extern void pagefault_out_of_memory(void);
  968. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  969. /*
  970. * Flags passed to show_mem() and show_free_areas() to suppress output in
  971. * various contexts.
  972. */
  973. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  974. extern void show_free_areas(unsigned int flags);
  975. extern bool skip_free_areas_node(unsigned int flags, int nid);
  976. int shmem_zero_setup(struct vm_area_struct *);
  977. #ifdef CONFIG_SHMEM
  978. bool shmem_mapping(struct address_space *mapping);
  979. #else
  980. static inline bool shmem_mapping(struct address_space *mapping)
  981. {
  982. return false;
  983. }
  984. #endif
  985. extern bool can_do_mlock(void);
  986. extern int user_shm_lock(size_t, struct user_struct *);
  987. extern void user_shm_unlock(size_t, struct user_struct *);
  988. /*
  989. * Parameter block passed down to zap_pte_range in exceptional cases.
  990. */
  991. struct zap_details {
  992. struct address_space *check_mapping; /* Check page->mapping if set */
  993. pgoff_t first_index; /* Lowest page->index to unmap */
  994. pgoff_t last_index; /* Highest page->index to unmap */
  995. bool ignore_dirty; /* Ignore dirty pages */
  996. bool check_swap_entries; /* Check also swap entries */
  997. };
  998. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  999. pte_t pte);
  1000. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1001. pmd_t pmd);
  1002. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1003. unsigned long size);
  1004. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1005. unsigned long size, struct zap_details *);
  1006. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1007. unsigned long start, unsigned long end);
  1008. /**
  1009. * mm_walk - callbacks for walk_page_range
  1010. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1011. * this handler is required to be able to handle
  1012. * pmd_trans_huge() pmds. They may simply choose to
  1013. * split_huge_page() instead of handling it explicitly.
  1014. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1015. * @pte_hole: if set, called for each hole at all levels
  1016. * @hugetlb_entry: if set, called for each hugetlb entry
  1017. * @test_walk: caller specific callback function to determine whether
  1018. * we walk over the current vma or not. Returning 0
  1019. * value means "do page table walk over the current vma,"
  1020. * and a negative one means "abort current page table walk
  1021. * right now." 1 means "skip the current vma."
  1022. * @mm: mm_struct representing the target process of page table walk
  1023. * @vma: vma currently walked (NULL if walking outside vmas)
  1024. * @private: private data for callbacks' usage
  1025. *
  1026. * (see the comment on walk_page_range() for more details)
  1027. */
  1028. struct mm_walk {
  1029. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1030. unsigned long next, struct mm_walk *walk);
  1031. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1032. unsigned long next, struct mm_walk *walk);
  1033. int (*pte_hole)(unsigned long addr, unsigned long next,
  1034. struct mm_walk *walk);
  1035. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1036. unsigned long addr, unsigned long next,
  1037. struct mm_walk *walk);
  1038. int (*test_walk)(unsigned long addr, unsigned long next,
  1039. struct mm_walk *walk);
  1040. struct mm_struct *mm;
  1041. struct vm_area_struct *vma;
  1042. void *private;
  1043. };
  1044. int walk_page_range(unsigned long addr, unsigned long end,
  1045. struct mm_walk *walk);
  1046. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1047. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1048. unsigned long end, unsigned long floor, unsigned long ceiling);
  1049. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1050. struct vm_area_struct *vma);
  1051. void unmap_mapping_range(struct address_space *mapping,
  1052. loff_t const holebegin, loff_t const holelen, int even_cows);
  1053. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1054. unsigned long *pfn);
  1055. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1056. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1057. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1058. void *buf, int len, int write);
  1059. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1060. loff_t const holebegin, loff_t const holelen)
  1061. {
  1062. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1063. }
  1064. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1065. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1066. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1067. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1068. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1069. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1070. int invalidate_inode_page(struct page *page);
  1071. #ifdef CONFIG_MMU
  1072. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1073. unsigned int flags);
  1074. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1075. unsigned long address, unsigned int fault_flags,
  1076. bool *unlocked);
  1077. #else
  1078. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1079. unsigned long address, unsigned int flags)
  1080. {
  1081. /* should never happen if there's no MMU */
  1082. BUG();
  1083. return VM_FAULT_SIGBUS;
  1084. }
  1085. static inline int fixup_user_fault(struct task_struct *tsk,
  1086. struct mm_struct *mm, unsigned long address,
  1087. unsigned int fault_flags, bool *unlocked)
  1088. {
  1089. /* should never happen if there's no MMU */
  1090. BUG();
  1091. return -EFAULT;
  1092. }
  1093. #endif
  1094. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1095. unsigned int gup_flags);
  1096. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1097. void *buf, int len, unsigned int gup_flags);
  1098. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1099. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1100. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1101. unsigned long start, unsigned long nr_pages,
  1102. unsigned int gup_flags, struct page **pages,
  1103. struct vm_area_struct **vmas);
  1104. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1105. unsigned int gup_flags, struct page **pages,
  1106. struct vm_area_struct **vmas);
  1107. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1108. unsigned int gup_flags, struct page **pages, int *locked);
  1109. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1110. unsigned long start, unsigned long nr_pages,
  1111. struct page **pages, unsigned int gup_flags);
  1112. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1113. struct page **pages, unsigned int gup_flags);
  1114. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1115. struct page **pages);
  1116. /* Container for pinned pfns / pages */
  1117. struct frame_vector {
  1118. unsigned int nr_allocated; /* Number of frames we have space for */
  1119. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1120. bool got_ref; /* Did we pin pages by getting page ref? */
  1121. bool is_pfns; /* Does array contain pages or pfns? */
  1122. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1123. * pfns_vector_pages() or pfns_vector_pfns()
  1124. * for access */
  1125. };
  1126. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1127. void frame_vector_destroy(struct frame_vector *vec);
  1128. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1129. unsigned int gup_flags, struct frame_vector *vec);
  1130. void put_vaddr_frames(struct frame_vector *vec);
  1131. int frame_vector_to_pages(struct frame_vector *vec);
  1132. void frame_vector_to_pfns(struct frame_vector *vec);
  1133. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1134. {
  1135. return vec->nr_frames;
  1136. }
  1137. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1138. {
  1139. if (vec->is_pfns) {
  1140. int err = frame_vector_to_pages(vec);
  1141. if (err)
  1142. return ERR_PTR(err);
  1143. }
  1144. return (struct page **)(vec->ptrs);
  1145. }
  1146. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1147. {
  1148. if (!vec->is_pfns)
  1149. frame_vector_to_pfns(vec);
  1150. return (unsigned long *)(vec->ptrs);
  1151. }
  1152. struct kvec;
  1153. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1154. struct page **pages);
  1155. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1156. struct page *get_dump_page(unsigned long addr);
  1157. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1158. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1159. unsigned int length);
  1160. int __set_page_dirty_nobuffers(struct page *page);
  1161. int __set_page_dirty_no_writeback(struct page *page);
  1162. int redirty_page_for_writepage(struct writeback_control *wbc,
  1163. struct page *page);
  1164. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1165. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1166. struct bdi_writeback *wb);
  1167. int set_page_dirty(struct page *page);
  1168. int set_page_dirty_lock(struct page *page);
  1169. void cancel_dirty_page(struct page *page);
  1170. int clear_page_dirty_for_io(struct page *page);
  1171. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1172. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1173. {
  1174. return !vma->vm_ops;
  1175. }
  1176. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1177. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1178. unsigned long old_addr, struct vm_area_struct *new_vma,
  1179. unsigned long new_addr, unsigned long len,
  1180. bool need_rmap_locks);
  1181. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1182. unsigned long end, pgprot_t newprot,
  1183. int dirty_accountable, int prot_numa);
  1184. extern int mprotect_fixup(struct vm_area_struct *vma,
  1185. struct vm_area_struct **pprev, unsigned long start,
  1186. unsigned long end, unsigned long newflags);
  1187. /*
  1188. * doesn't attempt to fault and will return short.
  1189. */
  1190. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1191. struct page **pages);
  1192. /*
  1193. * per-process(per-mm_struct) statistics.
  1194. */
  1195. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1196. {
  1197. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1198. #ifdef SPLIT_RSS_COUNTING
  1199. /*
  1200. * counter is updated in asynchronous manner and may go to minus.
  1201. * But it's never be expected number for users.
  1202. */
  1203. if (val < 0)
  1204. val = 0;
  1205. #endif
  1206. return (unsigned long)val;
  1207. }
  1208. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1209. {
  1210. atomic_long_add(value, &mm->rss_stat.count[member]);
  1211. }
  1212. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1213. {
  1214. atomic_long_inc(&mm->rss_stat.count[member]);
  1215. }
  1216. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1217. {
  1218. atomic_long_dec(&mm->rss_stat.count[member]);
  1219. }
  1220. /* Optimized variant when page is already known not to be PageAnon */
  1221. static inline int mm_counter_file(struct page *page)
  1222. {
  1223. if (PageSwapBacked(page))
  1224. return MM_SHMEMPAGES;
  1225. return MM_FILEPAGES;
  1226. }
  1227. static inline int mm_counter(struct page *page)
  1228. {
  1229. if (PageAnon(page))
  1230. return MM_ANONPAGES;
  1231. return mm_counter_file(page);
  1232. }
  1233. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1234. {
  1235. return get_mm_counter(mm, MM_FILEPAGES) +
  1236. get_mm_counter(mm, MM_ANONPAGES) +
  1237. get_mm_counter(mm, MM_SHMEMPAGES);
  1238. }
  1239. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1240. {
  1241. return max(mm->hiwater_rss, get_mm_rss(mm));
  1242. }
  1243. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1244. {
  1245. return max(mm->hiwater_vm, mm->total_vm);
  1246. }
  1247. static inline void update_hiwater_rss(struct mm_struct *mm)
  1248. {
  1249. unsigned long _rss = get_mm_rss(mm);
  1250. if ((mm)->hiwater_rss < _rss)
  1251. (mm)->hiwater_rss = _rss;
  1252. }
  1253. static inline void update_hiwater_vm(struct mm_struct *mm)
  1254. {
  1255. if (mm->hiwater_vm < mm->total_vm)
  1256. mm->hiwater_vm = mm->total_vm;
  1257. }
  1258. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1259. {
  1260. mm->hiwater_rss = get_mm_rss(mm);
  1261. }
  1262. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1263. struct mm_struct *mm)
  1264. {
  1265. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1266. if (*maxrss < hiwater_rss)
  1267. *maxrss = hiwater_rss;
  1268. }
  1269. #if defined(SPLIT_RSS_COUNTING)
  1270. void sync_mm_rss(struct mm_struct *mm);
  1271. #else
  1272. static inline void sync_mm_rss(struct mm_struct *mm)
  1273. {
  1274. }
  1275. #endif
  1276. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1277. static inline int pte_devmap(pte_t pte)
  1278. {
  1279. return 0;
  1280. }
  1281. #endif
  1282. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1283. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1284. spinlock_t **ptl);
  1285. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1286. spinlock_t **ptl)
  1287. {
  1288. pte_t *ptep;
  1289. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1290. return ptep;
  1291. }
  1292. #ifdef __PAGETABLE_PUD_FOLDED
  1293. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1294. unsigned long address)
  1295. {
  1296. return 0;
  1297. }
  1298. #else
  1299. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1300. #endif
  1301. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1302. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1303. unsigned long address)
  1304. {
  1305. return 0;
  1306. }
  1307. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1308. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1309. {
  1310. return 0;
  1311. }
  1312. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1313. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1314. #else
  1315. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1316. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1317. {
  1318. atomic_long_set(&mm->nr_pmds, 0);
  1319. }
  1320. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1321. {
  1322. return atomic_long_read(&mm->nr_pmds);
  1323. }
  1324. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1325. {
  1326. atomic_long_inc(&mm->nr_pmds);
  1327. }
  1328. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1329. {
  1330. atomic_long_dec(&mm->nr_pmds);
  1331. }
  1332. #endif
  1333. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1334. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1335. /*
  1336. * The following ifdef needed to get the 4level-fixup.h header to work.
  1337. * Remove it when 4level-fixup.h has been removed.
  1338. */
  1339. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1340. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1341. {
  1342. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1343. NULL: pud_offset(pgd, address);
  1344. }
  1345. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1346. {
  1347. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1348. NULL: pmd_offset(pud, address);
  1349. }
  1350. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1351. #if USE_SPLIT_PTE_PTLOCKS
  1352. #if ALLOC_SPLIT_PTLOCKS
  1353. void __init ptlock_cache_init(void);
  1354. extern bool ptlock_alloc(struct page *page);
  1355. extern void ptlock_free(struct page *page);
  1356. static inline spinlock_t *ptlock_ptr(struct page *page)
  1357. {
  1358. return page->ptl;
  1359. }
  1360. #else /* ALLOC_SPLIT_PTLOCKS */
  1361. static inline void ptlock_cache_init(void)
  1362. {
  1363. }
  1364. static inline bool ptlock_alloc(struct page *page)
  1365. {
  1366. return true;
  1367. }
  1368. static inline void ptlock_free(struct page *page)
  1369. {
  1370. }
  1371. static inline spinlock_t *ptlock_ptr(struct page *page)
  1372. {
  1373. return &page->ptl;
  1374. }
  1375. #endif /* ALLOC_SPLIT_PTLOCKS */
  1376. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1377. {
  1378. return ptlock_ptr(pmd_page(*pmd));
  1379. }
  1380. static inline bool ptlock_init(struct page *page)
  1381. {
  1382. /*
  1383. * prep_new_page() initialize page->private (and therefore page->ptl)
  1384. * with 0. Make sure nobody took it in use in between.
  1385. *
  1386. * It can happen if arch try to use slab for page table allocation:
  1387. * slab code uses page->slab_cache, which share storage with page->ptl.
  1388. */
  1389. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1390. if (!ptlock_alloc(page))
  1391. return false;
  1392. spin_lock_init(ptlock_ptr(page));
  1393. return true;
  1394. }
  1395. /* Reset page->mapping so free_pages_check won't complain. */
  1396. static inline void pte_lock_deinit(struct page *page)
  1397. {
  1398. page->mapping = NULL;
  1399. ptlock_free(page);
  1400. }
  1401. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1402. /*
  1403. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1404. */
  1405. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1406. {
  1407. return &mm->page_table_lock;
  1408. }
  1409. static inline void ptlock_cache_init(void) {}
  1410. static inline bool ptlock_init(struct page *page) { return true; }
  1411. static inline void pte_lock_deinit(struct page *page) {}
  1412. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1413. static inline void pgtable_init(void)
  1414. {
  1415. ptlock_cache_init();
  1416. pgtable_cache_init();
  1417. }
  1418. static inline bool pgtable_page_ctor(struct page *page)
  1419. {
  1420. if (!ptlock_init(page))
  1421. return false;
  1422. inc_zone_page_state(page, NR_PAGETABLE);
  1423. return true;
  1424. }
  1425. static inline void pgtable_page_dtor(struct page *page)
  1426. {
  1427. pte_lock_deinit(page);
  1428. dec_zone_page_state(page, NR_PAGETABLE);
  1429. }
  1430. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1431. ({ \
  1432. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1433. pte_t *__pte = pte_offset_map(pmd, address); \
  1434. *(ptlp) = __ptl; \
  1435. spin_lock(__ptl); \
  1436. __pte; \
  1437. })
  1438. #define pte_unmap_unlock(pte, ptl) do { \
  1439. spin_unlock(ptl); \
  1440. pte_unmap(pte); \
  1441. } while (0)
  1442. #define pte_alloc(mm, pmd, address) \
  1443. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1444. #define pte_alloc_map(mm, pmd, address) \
  1445. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1446. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1447. (pte_alloc(mm, pmd, address) ? \
  1448. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1449. #define pte_alloc_kernel(pmd, address) \
  1450. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1451. NULL: pte_offset_kernel(pmd, address))
  1452. #if USE_SPLIT_PMD_PTLOCKS
  1453. static struct page *pmd_to_page(pmd_t *pmd)
  1454. {
  1455. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1456. return virt_to_page((void *)((unsigned long) pmd & mask));
  1457. }
  1458. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1459. {
  1460. return ptlock_ptr(pmd_to_page(pmd));
  1461. }
  1462. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1463. {
  1464. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1465. page->pmd_huge_pte = NULL;
  1466. #endif
  1467. return ptlock_init(page);
  1468. }
  1469. static inline void pgtable_pmd_page_dtor(struct page *page)
  1470. {
  1471. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1472. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1473. #endif
  1474. ptlock_free(page);
  1475. }
  1476. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1477. #else
  1478. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1479. {
  1480. return &mm->page_table_lock;
  1481. }
  1482. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1483. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1484. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1485. #endif
  1486. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1487. {
  1488. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1489. spin_lock(ptl);
  1490. return ptl;
  1491. }
  1492. extern void free_area_init(unsigned long * zones_size);
  1493. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1494. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1495. extern void free_initmem(void);
  1496. /*
  1497. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1498. * into the buddy system. The freed pages will be poisoned with pattern
  1499. * "poison" if it's within range [0, UCHAR_MAX].
  1500. * Return pages freed into the buddy system.
  1501. */
  1502. extern unsigned long free_reserved_area(void *start, void *end,
  1503. int poison, char *s);
  1504. #ifdef CONFIG_HIGHMEM
  1505. /*
  1506. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1507. * and totalram_pages.
  1508. */
  1509. extern void free_highmem_page(struct page *page);
  1510. #endif
  1511. extern void adjust_managed_page_count(struct page *page, long count);
  1512. extern void mem_init_print_info(const char *str);
  1513. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1514. /* Free the reserved page into the buddy system, so it gets managed. */
  1515. static inline void __free_reserved_page(struct page *page)
  1516. {
  1517. ClearPageReserved(page);
  1518. init_page_count(page);
  1519. __free_page(page);
  1520. }
  1521. static inline void free_reserved_page(struct page *page)
  1522. {
  1523. __free_reserved_page(page);
  1524. adjust_managed_page_count(page, 1);
  1525. }
  1526. static inline void mark_page_reserved(struct page *page)
  1527. {
  1528. SetPageReserved(page);
  1529. adjust_managed_page_count(page, -1);
  1530. }
  1531. /*
  1532. * Default method to free all the __init memory into the buddy system.
  1533. * The freed pages will be poisoned with pattern "poison" if it's within
  1534. * range [0, UCHAR_MAX].
  1535. * Return pages freed into the buddy system.
  1536. */
  1537. static inline unsigned long free_initmem_default(int poison)
  1538. {
  1539. extern char __init_begin[], __init_end[];
  1540. return free_reserved_area(&__init_begin, &__init_end,
  1541. poison, "unused kernel");
  1542. }
  1543. static inline unsigned long get_num_physpages(void)
  1544. {
  1545. int nid;
  1546. unsigned long phys_pages = 0;
  1547. for_each_online_node(nid)
  1548. phys_pages += node_present_pages(nid);
  1549. return phys_pages;
  1550. }
  1551. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1552. /*
  1553. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1554. * zones, allocate the backing mem_map and account for memory holes in a more
  1555. * architecture independent manner. This is a substitute for creating the
  1556. * zone_sizes[] and zholes_size[] arrays and passing them to
  1557. * free_area_init_node()
  1558. *
  1559. * An architecture is expected to register range of page frames backed by
  1560. * physical memory with memblock_add[_node]() before calling
  1561. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1562. * usage, an architecture is expected to do something like
  1563. *
  1564. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1565. * max_highmem_pfn};
  1566. * for_each_valid_physical_page_range()
  1567. * memblock_add_node(base, size, nid)
  1568. * free_area_init_nodes(max_zone_pfns);
  1569. *
  1570. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1571. * registered physical page range. Similarly
  1572. * sparse_memory_present_with_active_regions() calls memory_present() for
  1573. * each range when SPARSEMEM is enabled.
  1574. *
  1575. * See mm/page_alloc.c for more information on each function exposed by
  1576. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1577. */
  1578. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1579. unsigned long node_map_pfn_alignment(void);
  1580. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1581. unsigned long end_pfn);
  1582. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1583. unsigned long end_pfn);
  1584. extern void get_pfn_range_for_nid(unsigned int nid,
  1585. unsigned long *start_pfn, unsigned long *end_pfn);
  1586. extern unsigned long find_min_pfn_with_active_regions(void);
  1587. extern void free_bootmem_with_active_regions(int nid,
  1588. unsigned long max_low_pfn);
  1589. extern void sparse_memory_present_with_active_regions(int nid);
  1590. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1591. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1592. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1593. static inline int __early_pfn_to_nid(unsigned long pfn,
  1594. struct mminit_pfnnid_cache *state)
  1595. {
  1596. return 0;
  1597. }
  1598. #else
  1599. /* please see mm/page_alloc.c */
  1600. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1601. /* there is a per-arch backend function. */
  1602. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1603. struct mminit_pfnnid_cache *state);
  1604. #endif
  1605. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1606. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1607. unsigned long, enum memmap_context);
  1608. extern void setup_per_zone_wmarks(void);
  1609. extern int __meminit init_per_zone_wmark_min(void);
  1610. extern void mem_init(void);
  1611. extern void __init mmap_init(void);
  1612. extern void show_mem(unsigned int flags);
  1613. extern long si_mem_available(void);
  1614. extern void si_meminfo(struct sysinfo * val);
  1615. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1616. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1617. extern unsigned long arch_reserved_kernel_pages(void);
  1618. #endif
  1619. extern __printf(2, 3)
  1620. void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
  1621. extern void setup_per_cpu_pageset(void);
  1622. extern void zone_pcp_update(struct zone *zone);
  1623. extern void zone_pcp_reset(struct zone *zone);
  1624. /* page_alloc.c */
  1625. extern int min_free_kbytes;
  1626. extern int watermark_scale_factor;
  1627. /* nommu.c */
  1628. extern atomic_long_t mmap_pages_allocated;
  1629. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1630. /* interval_tree.c */
  1631. void vma_interval_tree_insert(struct vm_area_struct *node,
  1632. struct rb_root *root);
  1633. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1634. struct vm_area_struct *prev,
  1635. struct rb_root *root);
  1636. void vma_interval_tree_remove(struct vm_area_struct *node,
  1637. struct rb_root *root);
  1638. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1639. unsigned long start, unsigned long last);
  1640. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1641. unsigned long start, unsigned long last);
  1642. #define vma_interval_tree_foreach(vma, root, start, last) \
  1643. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1644. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1645. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1646. struct rb_root *root);
  1647. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1648. struct rb_root *root);
  1649. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1650. struct rb_root *root, unsigned long start, unsigned long last);
  1651. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1652. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1653. #ifdef CONFIG_DEBUG_VM_RB
  1654. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1655. #endif
  1656. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1657. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1658. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1659. /* mmap.c */
  1660. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1661. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1662. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1663. struct vm_area_struct *expand);
  1664. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1665. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1666. {
  1667. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1668. }
  1669. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1670. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1671. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1672. struct mempolicy *, struct vm_userfaultfd_ctx);
  1673. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1674. extern int split_vma(struct mm_struct *,
  1675. struct vm_area_struct *, unsigned long addr, int new_below);
  1676. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1677. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1678. struct rb_node **, struct rb_node *);
  1679. extern void unlink_file_vma(struct vm_area_struct *);
  1680. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1681. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1682. bool *need_rmap_locks);
  1683. extern void exit_mmap(struct mm_struct *);
  1684. static inline int check_data_rlimit(unsigned long rlim,
  1685. unsigned long new,
  1686. unsigned long start,
  1687. unsigned long end_data,
  1688. unsigned long start_data)
  1689. {
  1690. if (rlim < RLIM_INFINITY) {
  1691. if (((new - start) + (end_data - start_data)) > rlim)
  1692. return -ENOSPC;
  1693. }
  1694. return 0;
  1695. }
  1696. extern int mm_take_all_locks(struct mm_struct *mm);
  1697. extern void mm_drop_all_locks(struct mm_struct *mm);
  1698. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1699. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1700. extern struct file *get_task_exe_file(struct task_struct *task);
  1701. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1702. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1703. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1704. const struct vm_special_mapping *sm);
  1705. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1706. unsigned long addr, unsigned long len,
  1707. unsigned long flags,
  1708. const struct vm_special_mapping *spec);
  1709. /* This is an obsolete alternative to _install_special_mapping. */
  1710. extern int install_special_mapping(struct mm_struct *mm,
  1711. unsigned long addr, unsigned long len,
  1712. unsigned long flags, struct page **pages);
  1713. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1714. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1715. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1716. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1717. unsigned long len, unsigned long prot, unsigned long flags,
  1718. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1719. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1720. static inline unsigned long
  1721. do_mmap_pgoff(struct file *file, unsigned long addr,
  1722. unsigned long len, unsigned long prot, unsigned long flags,
  1723. unsigned long pgoff, unsigned long *populate)
  1724. {
  1725. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1726. }
  1727. #ifdef CONFIG_MMU
  1728. extern int __mm_populate(unsigned long addr, unsigned long len,
  1729. int ignore_errors);
  1730. static inline void mm_populate(unsigned long addr, unsigned long len)
  1731. {
  1732. /* Ignore errors */
  1733. (void) __mm_populate(addr, len, 1);
  1734. }
  1735. #else
  1736. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1737. #endif
  1738. /* These take the mm semaphore themselves */
  1739. extern int __must_check vm_brk(unsigned long, unsigned long);
  1740. extern int vm_munmap(unsigned long, size_t);
  1741. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1742. unsigned long, unsigned long,
  1743. unsigned long, unsigned long);
  1744. struct vm_unmapped_area_info {
  1745. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1746. unsigned long flags;
  1747. unsigned long length;
  1748. unsigned long low_limit;
  1749. unsigned long high_limit;
  1750. unsigned long align_mask;
  1751. unsigned long align_offset;
  1752. };
  1753. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1754. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1755. /*
  1756. * Search for an unmapped address range.
  1757. *
  1758. * We are looking for a range that:
  1759. * - does not intersect with any VMA;
  1760. * - is contained within the [low_limit, high_limit) interval;
  1761. * - is at least the desired size.
  1762. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1763. */
  1764. static inline unsigned long
  1765. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1766. {
  1767. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1768. return unmapped_area_topdown(info);
  1769. else
  1770. return unmapped_area(info);
  1771. }
  1772. /* truncate.c */
  1773. extern void truncate_inode_pages(struct address_space *, loff_t);
  1774. extern void truncate_inode_pages_range(struct address_space *,
  1775. loff_t lstart, loff_t lend);
  1776. extern void truncate_inode_pages_final(struct address_space *);
  1777. /* generic vm_area_ops exported for stackable file systems */
  1778. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1779. extern void filemap_map_pages(struct fault_env *fe,
  1780. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1781. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1782. /* mm/page-writeback.c */
  1783. int write_one_page(struct page *page, int wait);
  1784. void task_dirty_inc(struct task_struct *tsk);
  1785. /* readahead.c */
  1786. #define VM_MAX_READAHEAD 128 /* kbytes */
  1787. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1788. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1789. pgoff_t offset, unsigned long nr_to_read);
  1790. void page_cache_sync_readahead(struct address_space *mapping,
  1791. struct file_ra_state *ra,
  1792. struct file *filp,
  1793. pgoff_t offset,
  1794. unsigned long size);
  1795. void page_cache_async_readahead(struct address_space *mapping,
  1796. struct file_ra_state *ra,
  1797. struct file *filp,
  1798. struct page *pg,
  1799. pgoff_t offset,
  1800. unsigned long size);
  1801. extern unsigned long stack_guard_gap;
  1802. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1803. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1804. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1805. extern int expand_downwards(struct vm_area_struct *vma,
  1806. unsigned long address);
  1807. #if VM_GROWSUP
  1808. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1809. #else
  1810. #define expand_upwards(vma, address) (0)
  1811. #endif
  1812. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1813. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1814. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1815. struct vm_area_struct **pprev);
  1816. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1817. NULL if none. Assume start_addr < end_addr. */
  1818. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1819. {
  1820. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1821. if (vma && end_addr <= vma->vm_start)
  1822. vma = NULL;
  1823. return vma;
  1824. }
  1825. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  1826. {
  1827. unsigned long vm_start = vma->vm_start;
  1828. if (vma->vm_flags & VM_GROWSDOWN) {
  1829. vm_start -= stack_guard_gap;
  1830. if (vm_start > vma->vm_start)
  1831. vm_start = 0;
  1832. }
  1833. return vm_start;
  1834. }
  1835. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  1836. {
  1837. unsigned long vm_end = vma->vm_end;
  1838. if (vma->vm_flags & VM_GROWSUP) {
  1839. vm_end += stack_guard_gap;
  1840. if (vm_end < vma->vm_end)
  1841. vm_end = -PAGE_SIZE;
  1842. }
  1843. return vm_end;
  1844. }
  1845. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1846. {
  1847. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1848. }
  1849. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1850. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1851. unsigned long vm_start, unsigned long vm_end)
  1852. {
  1853. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1854. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1855. vma = NULL;
  1856. return vma;
  1857. }
  1858. #ifdef CONFIG_MMU
  1859. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1860. void vma_set_page_prot(struct vm_area_struct *vma);
  1861. #else
  1862. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1863. {
  1864. return __pgprot(0);
  1865. }
  1866. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1867. {
  1868. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1869. }
  1870. #endif
  1871. #ifdef CONFIG_NUMA_BALANCING
  1872. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1873. unsigned long start, unsigned long end);
  1874. #endif
  1875. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1876. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1877. unsigned long pfn, unsigned long size, pgprot_t);
  1878. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1879. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1880. unsigned long pfn);
  1881. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1882. unsigned long pfn, pgprot_t pgprot);
  1883. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1884. pfn_t pfn);
  1885. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1886. struct page *follow_page_mask(struct vm_area_struct *vma,
  1887. unsigned long address, unsigned int foll_flags,
  1888. unsigned int *page_mask);
  1889. static inline struct page *follow_page(struct vm_area_struct *vma,
  1890. unsigned long address, unsigned int foll_flags)
  1891. {
  1892. unsigned int unused_page_mask;
  1893. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1894. }
  1895. #define FOLL_WRITE 0x01 /* check pte is writable */
  1896. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1897. #define FOLL_GET 0x04 /* do get_page on page */
  1898. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1899. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1900. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1901. * and return without waiting upon it */
  1902. #define FOLL_POPULATE 0x40 /* fault in page */
  1903. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1904. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1905. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1906. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1907. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1908. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1909. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1910. #define FOLL_COW 0x4000 /* internal GUP flag */
  1911. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1912. void *data);
  1913. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1914. unsigned long size, pte_fn_t fn, void *data);
  1915. #ifdef CONFIG_PAGE_POISONING
  1916. extern bool page_poisoning_enabled(void);
  1917. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1918. extern bool page_is_poisoned(struct page *page);
  1919. #else
  1920. static inline bool page_poisoning_enabled(void) { return false; }
  1921. static inline void kernel_poison_pages(struct page *page, int numpages,
  1922. int enable) { }
  1923. static inline bool page_is_poisoned(struct page *page) { return false; }
  1924. #endif
  1925. #ifdef CONFIG_DEBUG_PAGEALLOC
  1926. extern bool _debug_pagealloc_enabled;
  1927. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1928. static inline bool debug_pagealloc_enabled(void)
  1929. {
  1930. return _debug_pagealloc_enabled;
  1931. }
  1932. static inline void
  1933. kernel_map_pages(struct page *page, int numpages, int enable)
  1934. {
  1935. if (!debug_pagealloc_enabled())
  1936. return;
  1937. __kernel_map_pages(page, numpages, enable);
  1938. }
  1939. #ifdef CONFIG_HIBERNATION
  1940. extern bool kernel_page_present(struct page *page);
  1941. #endif /* CONFIG_HIBERNATION */
  1942. #else /* CONFIG_DEBUG_PAGEALLOC */
  1943. static inline void
  1944. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1945. #ifdef CONFIG_HIBERNATION
  1946. static inline bool kernel_page_present(struct page *page) { return true; }
  1947. #endif /* CONFIG_HIBERNATION */
  1948. static inline bool debug_pagealloc_enabled(void)
  1949. {
  1950. return false;
  1951. }
  1952. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1953. #ifdef __HAVE_ARCH_GATE_AREA
  1954. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1955. extern int in_gate_area_no_mm(unsigned long addr);
  1956. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1957. #else
  1958. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1959. {
  1960. return NULL;
  1961. }
  1962. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1963. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1964. {
  1965. return 0;
  1966. }
  1967. #endif /* __HAVE_ARCH_GATE_AREA */
  1968. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  1969. #ifdef CONFIG_SYSCTL
  1970. extern int sysctl_drop_caches;
  1971. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1972. void __user *, size_t *, loff_t *);
  1973. #endif
  1974. void drop_slab(void);
  1975. void drop_slab_node(int nid);
  1976. #ifndef CONFIG_MMU
  1977. #define randomize_va_space 0
  1978. #else
  1979. extern int randomize_va_space;
  1980. #endif
  1981. const char * arch_vma_name(struct vm_area_struct *vma);
  1982. void print_vma_addr(char *prefix, unsigned long rip);
  1983. void sparse_mem_maps_populate_node(struct page **map_map,
  1984. unsigned long pnum_begin,
  1985. unsigned long pnum_end,
  1986. unsigned long map_count,
  1987. int nodeid);
  1988. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1989. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1990. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1991. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1992. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1993. void *vmemmap_alloc_block(unsigned long size, int node);
  1994. struct vmem_altmap;
  1995. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1996. struct vmem_altmap *altmap);
  1997. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1998. {
  1999. return __vmemmap_alloc_block_buf(size, node, NULL);
  2000. }
  2001. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2002. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2003. int node);
  2004. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2005. void vmemmap_populate_print_last(void);
  2006. #ifdef CONFIG_MEMORY_HOTPLUG
  2007. void vmemmap_free(unsigned long start, unsigned long end);
  2008. #endif
  2009. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2010. unsigned long size);
  2011. enum mf_flags {
  2012. MF_COUNT_INCREASED = 1 << 0,
  2013. MF_ACTION_REQUIRED = 1 << 1,
  2014. MF_MUST_KILL = 1 << 2,
  2015. MF_SOFT_OFFLINE = 1 << 3,
  2016. };
  2017. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2018. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2019. extern int unpoison_memory(unsigned long pfn);
  2020. extern int get_hwpoison_page(struct page *page);
  2021. #define put_hwpoison_page(page) put_page(page)
  2022. extern int sysctl_memory_failure_early_kill;
  2023. extern int sysctl_memory_failure_recovery;
  2024. extern void shake_page(struct page *p, int access);
  2025. extern atomic_long_t num_poisoned_pages;
  2026. extern int soft_offline_page(struct page *page, int flags);
  2027. /*
  2028. * Error handlers for various types of pages.
  2029. */
  2030. enum mf_result {
  2031. MF_IGNORED, /* Error: cannot be handled */
  2032. MF_FAILED, /* Error: handling failed */
  2033. MF_DELAYED, /* Will be handled later */
  2034. MF_RECOVERED, /* Successfully recovered */
  2035. };
  2036. enum mf_action_page_type {
  2037. MF_MSG_KERNEL,
  2038. MF_MSG_KERNEL_HIGH_ORDER,
  2039. MF_MSG_SLAB,
  2040. MF_MSG_DIFFERENT_COMPOUND,
  2041. MF_MSG_POISONED_HUGE,
  2042. MF_MSG_HUGE,
  2043. MF_MSG_FREE_HUGE,
  2044. MF_MSG_UNMAP_FAILED,
  2045. MF_MSG_DIRTY_SWAPCACHE,
  2046. MF_MSG_CLEAN_SWAPCACHE,
  2047. MF_MSG_DIRTY_MLOCKED_LRU,
  2048. MF_MSG_CLEAN_MLOCKED_LRU,
  2049. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2050. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2051. MF_MSG_DIRTY_LRU,
  2052. MF_MSG_CLEAN_LRU,
  2053. MF_MSG_TRUNCATED_LRU,
  2054. MF_MSG_BUDDY,
  2055. MF_MSG_BUDDY_2ND,
  2056. MF_MSG_UNKNOWN,
  2057. };
  2058. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2059. extern void clear_huge_page(struct page *page,
  2060. unsigned long addr,
  2061. unsigned int pages_per_huge_page);
  2062. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2063. unsigned long addr, struct vm_area_struct *vma,
  2064. unsigned int pages_per_huge_page);
  2065. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2066. extern struct page_ext_operations debug_guardpage_ops;
  2067. extern struct page_ext_operations page_poisoning_ops;
  2068. #ifdef CONFIG_DEBUG_PAGEALLOC
  2069. extern unsigned int _debug_guardpage_minorder;
  2070. extern bool _debug_guardpage_enabled;
  2071. static inline unsigned int debug_guardpage_minorder(void)
  2072. {
  2073. return _debug_guardpage_minorder;
  2074. }
  2075. static inline bool debug_guardpage_enabled(void)
  2076. {
  2077. return _debug_guardpage_enabled;
  2078. }
  2079. static inline bool page_is_guard(struct page *page)
  2080. {
  2081. struct page_ext *page_ext;
  2082. if (!debug_guardpage_enabled())
  2083. return false;
  2084. page_ext = lookup_page_ext(page);
  2085. if (unlikely(!page_ext))
  2086. return false;
  2087. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2088. }
  2089. #else
  2090. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2091. static inline bool debug_guardpage_enabled(void) { return false; }
  2092. static inline bool page_is_guard(struct page *page) { return false; }
  2093. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2094. #if MAX_NUMNODES > 1
  2095. void __init setup_nr_node_ids(void);
  2096. #else
  2097. static inline void setup_nr_node_ids(void) {}
  2098. #endif
  2099. #endif /* __KERNEL__ */
  2100. #endif /* _LINUX_MM_H */