namespace.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/task_work.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. /* Maximum number of mounts in a mount namespace */
  29. unsigned int sysctl_mount_max __read_mostly = 100000;
  30. static unsigned int m_hash_mask __read_mostly;
  31. static unsigned int m_hash_shift __read_mostly;
  32. static unsigned int mp_hash_mask __read_mostly;
  33. static unsigned int mp_hash_shift __read_mostly;
  34. static __initdata unsigned long mhash_entries;
  35. static int __init set_mhash_entries(char *str)
  36. {
  37. if (!str)
  38. return 0;
  39. mhash_entries = simple_strtoul(str, &str, 0);
  40. return 1;
  41. }
  42. __setup("mhash_entries=", set_mhash_entries);
  43. static __initdata unsigned long mphash_entries;
  44. static int __init set_mphash_entries(char *str)
  45. {
  46. if (!str)
  47. return 0;
  48. mphash_entries = simple_strtoul(str, &str, 0);
  49. return 1;
  50. }
  51. __setup("mphash_entries=", set_mphash_entries);
  52. static u64 event;
  53. static DEFINE_IDA(mnt_id_ida);
  54. static DEFINE_IDA(mnt_group_ida);
  55. static DEFINE_SPINLOCK(mnt_id_lock);
  56. static int mnt_id_start = 0;
  57. static int mnt_group_start = 1;
  58. static struct hlist_head *mount_hashtable __read_mostly;
  59. static struct hlist_head *mountpoint_hashtable __read_mostly;
  60. static struct kmem_cache *mnt_cache __read_mostly;
  61. static DECLARE_RWSEM(namespace_sem);
  62. /* /sys/fs */
  63. struct kobject *fs_kobj;
  64. EXPORT_SYMBOL_GPL(fs_kobj);
  65. /*
  66. * vfsmount lock may be taken for read to prevent changes to the
  67. * vfsmount hash, ie. during mountpoint lookups or walking back
  68. * up the tree.
  69. *
  70. * It should be taken for write in all cases where the vfsmount
  71. * tree or hash is modified or when a vfsmount structure is modified.
  72. */
  73. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  74. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  75. {
  76. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  77. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  78. tmp = tmp + (tmp >> m_hash_shift);
  79. return &mount_hashtable[tmp & m_hash_mask];
  80. }
  81. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  82. {
  83. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  84. tmp = tmp + (tmp >> mp_hash_shift);
  85. return &mountpoint_hashtable[tmp & mp_hash_mask];
  86. }
  87. /*
  88. * allocation is serialized by namespace_sem, but we need the spinlock to
  89. * serialize with freeing.
  90. */
  91. static int mnt_alloc_id(struct mount *mnt)
  92. {
  93. int res;
  94. retry:
  95. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  96. spin_lock(&mnt_id_lock);
  97. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  98. if (!res)
  99. mnt_id_start = mnt->mnt_id + 1;
  100. spin_unlock(&mnt_id_lock);
  101. if (res == -EAGAIN)
  102. goto retry;
  103. return res;
  104. }
  105. static void mnt_free_id(struct mount *mnt)
  106. {
  107. int id = mnt->mnt_id;
  108. spin_lock(&mnt_id_lock);
  109. ida_remove(&mnt_id_ida, id);
  110. if (mnt_id_start > id)
  111. mnt_id_start = id;
  112. spin_unlock(&mnt_id_lock);
  113. }
  114. /*
  115. * Allocate a new peer group ID
  116. *
  117. * mnt_group_ida is protected by namespace_sem
  118. */
  119. static int mnt_alloc_group_id(struct mount *mnt)
  120. {
  121. int res;
  122. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  123. return -ENOMEM;
  124. res = ida_get_new_above(&mnt_group_ida,
  125. mnt_group_start,
  126. &mnt->mnt_group_id);
  127. if (!res)
  128. mnt_group_start = mnt->mnt_group_id + 1;
  129. return res;
  130. }
  131. /*
  132. * Release a peer group ID
  133. */
  134. void mnt_release_group_id(struct mount *mnt)
  135. {
  136. int id = mnt->mnt_group_id;
  137. ida_remove(&mnt_group_ida, id);
  138. if (mnt_group_start > id)
  139. mnt_group_start = id;
  140. mnt->mnt_group_id = 0;
  141. }
  142. /*
  143. * vfsmount lock must be held for read
  144. */
  145. static inline void mnt_add_count(struct mount *mnt, int n)
  146. {
  147. #ifdef CONFIG_SMP
  148. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  149. #else
  150. preempt_disable();
  151. mnt->mnt_count += n;
  152. preempt_enable();
  153. #endif
  154. }
  155. /*
  156. * vfsmount lock must be held for write
  157. */
  158. unsigned int mnt_get_count(struct mount *mnt)
  159. {
  160. #ifdef CONFIG_SMP
  161. unsigned int count = 0;
  162. int cpu;
  163. for_each_possible_cpu(cpu) {
  164. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  165. }
  166. return count;
  167. #else
  168. return mnt->mnt_count;
  169. #endif
  170. }
  171. static void drop_mountpoint(struct fs_pin *p)
  172. {
  173. struct mount *m = container_of(p, struct mount, mnt_umount);
  174. dput(m->mnt_ex_mountpoint);
  175. pin_remove(p);
  176. mntput(&m->mnt);
  177. }
  178. static struct mount *alloc_vfsmnt(const char *name)
  179. {
  180. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  181. if (mnt) {
  182. int err;
  183. err = mnt_alloc_id(mnt);
  184. if (err)
  185. goto out_free_cache;
  186. if (name) {
  187. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  188. if (!mnt->mnt_devname)
  189. goto out_free_id;
  190. }
  191. #ifdef CONFIG_SMP
  192. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  193. if (!mnt->mnt_pcp)
  194. goto out_free_devname;
  195. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  196. #else
  197. mnt->mnt_count = 1;
  198. mnt->mnt_writers = 0;
  199. #endif
  200. INIT_HLIST_NODE(&mnt->mnt_hash);
  201. INIT_LIST_HEAD(&mnt->mnt_child);
  202. INIT_LIST_HEAD(&mnt->mnt_mounts);
  203. INIT_LIST_HEAD(&mnt->mnt_list);
  204. INIT_LIST_HEAD(&mnt->mnt_expire);
  205. INIT_LIST_HEAD(&mnt->mnt_share);
  206. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  207. INIT_LIST_HEAD(&mnt->mnt_slave);
  208. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  209. INIT_LIST_HEAD(&mnt->mnt_umounting);
  210. #ifdef CONFIG_FSNOTIFY
  211. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  212. #endif
  213. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  214. }
  215. return mnt;
  216. #ifdef CONFIG_SMP
  217. out_free_devname:
  218. kfree_const(mnt->mnt_devname);
  219. #endif
  220. out_free_id:
  221. mnt_free_id(mnt);
  222. out_free_cache:
  223. kmem_cache_free(mnt_cache, mnt);
  224. return NULL;
  225. }
  226. /*
  227. * Most r/o checks on a fs are for operations that take
  228. * discrete amounts of time, like a write() or unlink().
  229. * We must keep track of when those operations start
  230. * (for permission checks) and when they end, so that
  231. * we can determine when writes are able to occur to
  232. * a filesystem.
  233. */
  234. /*
  235. * __mnt_is_readonly: check whether a mount is read-only
  236. * @mnt: the mount to check for its write status
  237. *
  238. * This shouldn't be used directly ouside of the VFS.
  239. * It does not guarantee that the filesystem will stay
  240. * r/w, just that it is right *now*. This can not and
  241. * should not be used in place of IS_RDONLY(inode).
  242. * mnt_want/drop_write() will _keep_ the filesystem
  243. * r/w.
  244. */
  245. int __mnt_is_readonly(struct vfsmount *mnt)
  246. {
  247. if (mnt->mnt_flags & MNT_READONLY)
  248. return 1;
  249. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  250. return 1;
  251. return 0;
  252. }
  253. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  254. static inline void mnt_inc_writers(struct mount *mnt)
  255. {
  256. #ifdef CONFIG_SMP
  257. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  258. #else
  259. mnt->mnt_writers++;
  260. #endif
  261. }
  262. static inline void mnt_dec_writers(struct mount *mnt)
  263. {
  264. #ifdef CONFIG_SMP
  265. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  266. #else
  267. mnt->mnt_writers--;
  268. #endif
  269. }
  270. static unsigned int mnt_get_writers(struct mount *mnt)
  271. {
  272. #ifdef CONFIG_SMP
  273. unsigned int count = 0;
  274. int cpu;
  275. for_each_possible_cpu(cpu) {
  276. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  277. }
  278. return count;
  279. #else
  280. return mnt->mnt_writers;
  281. #endif
  282. }
  283. static int mnt_is_readonly(struct vfsmount *mnt)
  284. {
  285. if (mnt->mnt_sb->s_readonly_remount)
  286. return 1;
  287. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  288. smp_rmb();
  289. return __mnt_is_readonly(mnt);
  290. }
  291. /*
  292. * Most r/o & frozen checks on a fs are for operations that take discrete
  293. * amounts of time, like a write() or unlink(). We must keep track of when
  294. * those operations start (for permission checks) and when they end, so that we
  295. * can determine when writes are able to occur to a filesystem.
  296. */
  297. /**
  298. * __mnt_want_write - get write access to a mount without freeze protection
  299. * @m: the mount on which to take a write
  300. *
  301. * This tells the low-level filesystem that a write is about to be performed to
  302. * it, and makes sure that writes are allowed (mnt it read-write) before
  303. * returning success. This operation does not protect against filesystem being
  304. * frozen. When the write operation is finished, __mnt_drop_write() must be
  305. * called. This is effectively a refcount.
  306. */
  307. int __mnt_want_write(struct vfsmount *m)
  308. {
  309. struct mount *mnt = real_mount(m);
  310. int ret = 0;
  311. preempt_disable();
  312. mnt_inc_writers(mnt);
  313. /*
  314. * The store to mnt_inc_writers must be visible before we pass
  315. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  316. * incremented count after it has set MNT_WRITE_HOLD.
  317. */
  318. smp_mb();
  319. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  320. cpu_relax();
  321. /*
  322. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  323. * be set to match its requirements. So we must not load that until
  324. * MNT_WRITE_HOLD is cleared.
  325. */
  326. smp_rmb();
  327. if (mnt_is_readonly(m)) {
  328. mnt_dec_writers(mnt);
  329. ret = -EROFS;
  330. }
  331. preempt_enable();
  332. return ret;
  333. }
  334. /**
  335. * mnt_want_write - get write access to a mount
  336. * @m: the mount on which to take a write
  337. *
  338. * This tells the low-level filesystem that a write is about to be performed to
  339. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  340. * is not frozen) before returning success. When the write operation is
  341. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  342. */
  343. int mnt_want_write(struct vfsmount *m)
  344. {
  345. int ret;
  346. sb_start_write(m->mnt_sb);
  347. ret = __mnt_want_write(m);
  348. if (ret)
  349. sb_end_write(m->mnt_sb);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL_GPL(mnt_want_write);
  353. /**
  354. * mnt_clone_write - get write access to a mount
  355. * @mnt: the mount on which to take a write
  356. *
  357. * This is effectively like mnt_want_write, except
  358. * it must only be used to take an extra write reference
  359. * on a mountpoint that we already know has a write reference
  360. * on it. This allows some optimisation.
  361. *
  362. * After finished, mnt_drop_write must be called as usual to
  363. * drop the reference.
  364. */
  365. int mnt_clone_write(struct vfsmount *mnt)
  366. {
  367. /* superblock may be r/o */
  368. if (__mnt_is_readonly(mnt))
  369. return -EROFS;
  370. preempt_disable();
  371. mnt_inc_writers(real_mount(mnt));
  372. preempt_enable();
  373. return 0;
  374. }
  375. EXPORT_SYMBOL_GPL(mnt_clone_write);
  376. /**
  377. * __mnt_want_write_file - get write access to a file's mount
  378. * @file: the file who's mount on which to take a write
  379. *
  380. * This is like __mnt_want_write, but it takes a file and can
  381. * do some optimisations if the file is open for write already
  382. */
  383. int __mnt_want_write_file(struct file *file)
  384. {
  385. if (!(file->f_mode & FMODE_WRITER))
  386. return __mnt_want_write(file->f_path.mnt);
  387. else
  388. return mnt_clone_write(file->f_path.mnt);
  389. }
  390. /**
  391. * mnt_want_write_file - get write access to a file's mount
  392. * @file: the file who's mount on which to take a write
  393. *
  394. * This is like mnt_want_write, but it takes a file and can
  395. * do some optimisations if the file is open for write already
  396. */
  397. int mnt_want_write_file(struct file *file)
  398. {
  399. int ret;
  400. sb_start_write(file->f_path.mnt->mnt_sb);
  401. ret = __mnt_want_write_file(file);
  402. if (ret)
  403. sb_end_write(file->f_path.mnt->mnt_sb);
  404. return ret;
  405. }
  406. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  407. /**
  408. * __mnt_drop_write - give up write access to a mount
  409. * @mnt: the mount on which to give up write access
  410. *
  411. * Tells the low-level filesystem that we are done
  412. * performing writes to it. Must be matched with
  413. * __mnt_want_write() call above.
  414. */
  415. void __mnt_drop_write(struct vfsmount *mnt)
  416. {
  417. preempt_disable();
  418. mnt_dec_writers(real_mount(mnt));
  419. preempt_enable();
  420. }
  421. /**
  422. * mnt_drop_write - give up write access to a mount
  423. * @mnt: the mount on which to give up write access
  424. *
  425. * Tells the low-level filesystem that we are done performing writes to it and
  426. * also allows filesystem to be frozen again. Must be matched with
  427. * mnt_want_write() call above.
  428. */
  429. void mnt_drop_write(struct vfsmount *mnt)
  430. {
  431. __mnt_drop_write(mnt);
  432. sb_end_write(mnt->mnt_sb);
  433. }
  434. EXPORT_SYMBOL_GPL(mnt_drop_write);
  435. void __mnt_drop_write_file(struct file *file)
  436. {
  437. __mnt_drop_write(file->f_path.mnt);
  438. }
  439. void mnt_drop_write_file(struct file *file)
  440. {
  441. mnt_drop_write(file->f_path.mnt);
  442. }
  443. EXPORT_SYMBOL(mnt_drop_write_file);
  444. static int mnt_make_readonly(struct mount *mnt)
  445. {
  446. int ret = 0;
  447. lock_mount_hash();
  448. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  449. /*
  450. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  451. * should be visible before we do.
  452. */
  453. smp_mb();
  454. /*
  455. * With writers on hold, if this value is zero, then there are
  456. * definitely no active writers (although held writers may subsequently
  457. * increment the count, they'll have to wait, and decrement it after
  458. * seeing MNT_READONLY).
  459. *
  460. * It is OK to have counter incremented on one CPU and decremented on
  461. * another: the sum will add up correctly. The danger would be when we
  462. * sum up each counter, if we read a counter before it is incremented,
  463. * but then read another CPU's count which it has been subsequently
  464. * decremented from -- we would see more decrements than we should.
  465. * MNT_WRITE_HOLD protects against this scenario, because
  466. * mnt_want_write first increments count, then smp_mb, then spins on
  467. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  468. * we're counting up here.
  469. */
  470. if (mnt_get_writers(mnt) > 0)
  471. ret = -EBUSY;
  472. else
  473. mnt->mnt.mnt_flags |= MNT_READONLY;
  474. /*
  475. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  476. * that become unheld will see MNT_READONLY.
  477. */
  478. smp_wmb();
  479. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  480. unlock_mount_hash();
  481. return ret;
  482. }
  483. static void __mnt_unmake_readonly(struct mount *mnt)
  484. {
  485. lock_mount_hash();
  486. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  487. unlock_mount_hash();
  488. }
  489. int sb_prepare_remount_readonly(struct super_block *sb)
  490. {
  491. struct mount *mnt;
  492. int err = 0;
  493. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  494. if (atomic_long_read(&sb->s_remove_count))
  495. return -EBUSY;
  496. lock_mount_hash();
  497. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  498. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  499. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  500. smp_mb();
  501. if (mnt_get_writers(mnt) > 0) {
  502. err = -EBUSY;
  503. break;
  504. }
  505. }
  506. }
  507. if (!err && atomic_long_read(&sb->s_remove_count))
  508. err = -EBUSY;
  509. if (!err) {
  510. sb->s_readonly_remount = 1;
  511. smp_wmb();
  512. }
  513. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  514. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  515. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  516. }
  517. unlock_mount_hash();
  518. return err;
  519. }
  520. static void free_vfsmnt(struct mount *mnt)
  521. {
  522. kfree_const(mnt->mnt_devname);
  523. #ifdef CONFIG_SMP
  524. free_percpu(mnt->mnt_pcp);
  525. #endif
  526. kmem_cache_free(mnt_cache, mnt);
  527. }
  528. static void delayed_free_vfsmnt(struct rcu_head *head)
  529. {
  530. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  531. }
  532. /* call under rcu_read_lock */
  533. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  534. {
  535. struct mount *mnt;
  536. if (read_seqretry(&mount_lock, seq))
  537. return 1;
  538. if (bastard == NULL)
  539. return 0;
  540. mnt = real_mount(bastard);
  541. mnt_add_count(mnt, 1);
  542. if (likely(!read_seqretry(&mount_lock, seq)))
  543. return 0;
  544. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  545. mnt_add_count(mnt, -1);
  546. return 1;
  547. }
  548. return -1;
  549. }
  550. /* call under rcu_read_lock */
  551. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  552. {
  553. int res = __legitimize_mnt(bastard, seq);
  554. if (likely(!res))
  555. return true;
  556. if (unlikely(res < 0)) {
  557. rcu_read_unlock();
  558. mntput(bastard);
  559. rcu_read_lock();
  560. }
  561. return false;
  562. }
  563. /*
  564. * find the first mount at @dentry on vfsmount @mnt.
  565. * call under rcu_read_lock()
  566. */
  567. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  568. {
  569. struct hlist_head *head = m_hash(mnt, dentry);
  570. struct mount *p;
  571. hlist_for_each_entry_rcu(p, head, mnt_hash)
  572. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  573. return p;
  574. return NULL;
  575. }
  576. /*
  577. * lookup_mnt - Return the first child mount mounted at path
  578. *
  579. * "First" means first mounted chronologically. If you create the
  580. * following mounts:
  581. *
  582. * mount /dev/sda1 /mnt
  583. * mount /dev/sda2 /mnt
  584. * mount /dev/sda3 /mnt
  585. *
  586. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  587. * return successively the root dentry and vfsmount of /dev/sda1, then
  588. * /dev/sda2, then /dev/sda3, then NULL.
  589. *
  590. * lookup_mnt takes a reference to the found vfsmount.
  591. */
  592. struct vfsmount *lookup_mnt(struct path *path)
  593. {
  594. struct mount *child_mnt;
  595. struct vfsmount *m;
  596. unsigned seq;
  597. rcu_read_lock();
  598. do {
  599. seq = read_seqbegin(&mount_lock);
  600. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  601. m = child_mnt ? &child_mnt->mnt : NULL;
  602. } while (!legitimize_mnt(m, seq));
  603. rcu_read_unlock();
  604. return m;
  605. }
  606. /*
  607. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  608. * current mount namespace.
  609. *
  610. * The common case is dentries are not mountpoints at all and that
  611. * test is handled inline. For the slow case when we are actually
  612. * dealing with a mountpoint of some kind, walk through all of the
  613. * mounts in the current mount namespace and test to see if the dentry
  614. * is a mountpoint.
  615. *
  616. * The mount_hashtable is not usable in the context because we
  617. * need to identify all mounts that may be in the current mount
  618. * namespace not just a mount that happens to have some specified
  619. * parent mount.
  620. */
  621. bool __is_local_mountpoint(struct dentry *dentry)
  622. {
  623. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  624. struct mount *mnt;
  625. bool is_covered = false;
  626. if (!d_mountpoint(dentry))
  627. goto out;
  628. down_read(&namespace_sem);
  629. list_for_each_entry(mnt, &ns->list, mnt_list) {
  630. is_covered = (mnt->mnt_mountpoint == dentry);
  631. if (is_covered)
  632. break;
  633. }
  634. up_read(&namespace_sem);
  635. out:
  636. return is_covered;
  637. }
  638. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  639. {
  640. struct hlist_head *chain = mp_hash(dentry);
  641. struct mountpoint *mp;
  642. hlist_for_each_entry(mp, chain, m_hash) {
  643. if (mp->m_dentry == dentry) {
  644. /* might be worth a WARN_ON() */
  645. if (d_unlinked(dentry))
  646. return ERR_PTR(-ENOENT);
  647. mp->m_count++;
  648. return mp;
  649. }
  650. }
  651. return NULL;
  652. }
  653. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  654. {
  655. struct mountpoint *mp, *new = NULL;
  656. int ret;
  657. if (d_mountpoint(dentry)) {
  658. mountpoint:
  659. read_seqlock_excl(&mount_lock);
  660. mp = lookup_mountpoint(dentry);
  661. read_sequnlock_excl(&mount_lock);
  662. if (mp)
  663. goto done;
  664. }
  665. if (!new)
  666. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  667. if (!new)
  668. return ERR_PTR(-ENOMEM);
  669. /* Exactly one processes may set d_mounted */
  670. ret = d_set_mounted(dentry);
  671. /* Someone else set d_mounted? */
  672. if (ret == -EBUSY)
  673. goto mountpoint;
  674. /* The dentry is not available as a mountpoint? */
  675. mp = ERR_PTR(ret);
  676. if (ret)
  677. goto done;
  678. /* Add the new mountpoint to the hash table */
  679. read_seqlock_excl(&mount_lock);
  680. new->m_dentry = dentry;
  681. new->m_count = 1;
  682. hlist_add_head(&new->m_hash, mp_hash(dentry));
  683. INIT_HLIST_HEAD(&new->m_list);
  684. read_sequnlock_excl(&mount_lock);
  685. mp = new;
  686. new = NULL;
  687. done:
  688. kfree(new);
  689. return mp;
  690. }
  691. static void put_mountpoint(struct mountpoint *mp)
  692. {
  693. if (!--mp->m_count) {
  694. struct dentry *dentry = mp->m_dentry;
  695. BUG_ON(!hlist_empty(&mp->m_list));
  696. spin_lock(&dentry->d_lock);
  697. dentry->d_flags &= ~DCACHE_MOUNTED;
  698. spin_unlock(&dentry->d_lock);
  699. hlist_del(&mp->m_hash);
  700. kfree(mp);
  701. }
  702. }
  703. static inline int check_mnt(struct mount *mnt)
  704. {
  705. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  706. }
  707. /*
  708. * vfsmount lock must be held for write
  709. */
  710. static void touch_mnt_namespace(struct mnt_namespace *ns)
  711. {
  712. if (ns) {
  713. ns->event = ++event;
  714. wake_up_interruptible(&ns->poll);
  715. }
  716. }
  717. /*
  718. * vfsmount lock must be held for write
  719. */
  720. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  721. {
  722. if (ns && ns->event != event) {
  723. ns->event = event;
  724. wake_up_interruptible(&ns->poll);
  725. }
  726. }
  727. /*
  728. * vfsmount lock must be held for write
  729. */
  730. static void unhash_mnt(struct mount *mnt)
  731. {
  732. mnt->mnt_parent = mnt;
  733. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  734. list_del_init(&mnt->mnt_child);
  735. hlist_del_init_rcu(&mnt->mnt_hash);
  736. hlist_del_init(&mnt->mnt_mp_list);
  737. put_mountpoint(mnt->mnt_mp);
  738. mnt->mnt_mp = NULL;
  739. }
  740. /*
  741. * vfsmount lock must be held for write
  742. */
  743. static void detach_mnt(struct mount *mnt, struct path *old_path)
  744. {
  745. old_path->dentry = mnt->mnt_mountpoint;
  746. old_path->mnt = &mnt->mnt_parent->mnt;
  747. unhash_mnt(mnt);
  748. }
  749. /*
  750. * vfsmount lock must be held for write
  751. */
  752. static void umount_mnt(struct mount *mnt)
  753. {
  754. /* old mountpoint will be dropped when we can do that */
  755. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  756. unhash_mnt(mnt);
  757. }
  758. /*
  759. * vfsmount lock must be held for write
  760. */
  761. void mnt_set_mountpoint(struct mount *mnt,
  762. struct mountpoint *mp,
  763. struct mount *child_mnt)
  764. {
  765. mp->m_count++;
  766. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  767. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  768. child_mnt->mnt_parent = mnt;
  769. child_mnt->mnt_mp = mp;
  770. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  771. }
  772. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  773. {
  774. hlist_add_head_rcu(&mnt->mnt_hash,
  775. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  776. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  777. }
  778. /*
  779. * vfsmount lock must be held for write
  780. */
  781. static void attach_mnt(struct mount *mnt,
  782. struct mount *parent,
  783. struct mountpoint *mp)
  784. {
  785. mnt_set_mountpoint(parent, mp, mnt);
  786. __attach_mnt(mnt, parent);
  787. }
  788. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  789. {
  790. struct mountpoint *old_mp = mnt->mnt_mp;
  791. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  792. struct mount *old_parent = mnt->mnt_parent;
  793. list_del_init(&mnt->mnt_child);
  794. hlist_del_init(&mnt->mnt_mp_list);
  795. hlist_del_init_rcu(&mnt->mnt_hash);
  796. attach_mnt(mnt, parent, mp);
  797. put_mountpoint(old_mp);
  798. /*
  799. * Safely avoid even the suggestion this code might sleep or
  800. * lock the mount hash by taking advantage of the knowledge that
  801. * mnt_change_mountpoint will not release the final reference
  802. * to a mountpoint.
  803. *
  804. * During mounting, the mount passed in as the parent mount will
  805. * continue to use the old mountpoint and during unmounting, the
  806. * old mountpoint will continue to exist until namespace_unlock,
  807. * which happens well after mnt_change_mountpoint.
  808. */
  809. spin_lock(&old_mountpoint->d_lock);
  810. old_mountpoint->d_lockref.count--;
  811. spin_unlock(&old_mountpoint->d_lock);
  812. mnt_add_count(old_parent, -1);
  813. }
  814. /*
  815. * vfsmount lock must be held for write
  816. */
  817. static void commit_tree(struct mount *mnt)
  818. {
  819. struct mount *parent = mnt->mnt_parent;
  820. struct mount *m;
  821. LIST_HEAD(head);
  822. struct mnt_namespace *n = parent->mnt_ns;
  823. BUG_ON(parent == mnt);
  824. list_add_tail(&head, &mnt->mnt_list);
  825. list_for_each_entry(m, &head, mnt_list)
  826. m->mnt_ns = n;
  827. list_splice(&head, n->list.prev);
  828. n->mounts += n->pending_mounts;
  829. n->pending_mounts = 0;
  830. __attach_mnt(mnt, parent);
  831. touch_mnt_namespace(n);
  832. }
  833. static struct mount *next_mnt(struct mount *p, struct mount *root)
  834. {
  835. struct list_head *next = p->mnt_mounts.next;
  836. if (next == &p->mnt_mounts) {
  837. while (1) {
  838. if (p == root)
  839. return NULL;
  840. next = p->mnt_child.next;
  841. if (next != &p->mnt_parent->mnt_mounts)
  842. break;
  843. p = p->mnt_parent;
  844. }
  845. }
  846. return list_entry(next, struct mount, mnt_child);
  847. }
  848. static struct mount *skip_mnt_tree(struct mount *p)
  849. {
  850. struct list_head *prev = p->mnt_mounts.prev;
  851. while (prev != &p->mnt_mounts) {
  852. p = list_entry(prev, struct mount, mnt_child);
  853. prev = p->mnt_mounts.prev;
  854. }
  855. return p;
  856. }
  857. struct vfsmount *
  858. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  859. {
  860. struct mount *mnt;
  861. struct dentry *root;
  862. if (!type)
  863. return ERR_PTR(-ENODEV);
  864. mnt = alloc_vfsmnt(name);
  865. if (!mnt)
  866. return ERR_PTR(-ENOMEM);
  867. if (flags & MS_KERNMOUNT)
  868. mnt->mnt.mnt_flags = MNT_INTERNAL;
  869. root = mount_fs(type, flags, name, data);
  870. if (IS_ERR(root)) {
  871. mnt_free_id(mnt);
  872. free_vfsmnt(mnt);
  873. return ERR_CAST(root);
  874. }
  875. mnt->mnt.mnt_root = root;
  876. mnt->mnt.mnt_sb = root->d_sb;
  877. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  878. mnt->mnt_parent = mnt;
  879. lock_mount_hash();
  880. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  881. unlock_mount_hash();
  882. return &mnt->mnt;
  883. }
  884. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  885. struct vfsmount *
  886. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  887. const char *name, void *data)
  888. {
  889. /* Until it is worked out how to pass the user namespace
  890. * through from the parent mount to the submount don't support
  891. * unprivileged mounts with submounts.
  892. */
  893. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  894. return ERR_PTR(-EPERM);
  895. return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
  896. }
  897. EXPORT_SYMBOL_GPL(vfs_submount);
  898. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  899. int flag)
  900. {
  901. struct super_block *sb = old->mnt.mnt_sb;
  902. struct mount *mnt;
  903. int err;
  904. mnt = alloc_vfsmnt(old->mnt_devname);
  905. if (!mnt)
  906. return ERR_PTR(-ENOMEM);
  907. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  908. mnt->mnt_group_id = 0; /* not a peer of original */
  909. else
  910. mnt->mnt_group_id = old->mnt_group_id;
  911. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  912. err = mnt_alloc_group_id(mnt);
  913. if (err)
  914. goto out_free;
  915. }
  916. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  917. /* Don't allow unprivileged users to change mount flags */
  918. if (flag & CL_UNPRIVILEGED) {
  919. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  920. if (mnt->mnt.mnt_flags & MNT_READONLY)
  921. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  922. if (mnt->mnt.mnt_flags & MNT_NODEV)
  923. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  924. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  925. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  926. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  927. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  928. }
  929. /* Don't allow unprivileged users to reveal what is under a mount */
  930. if ((flag & CL_UNPRIVILEGED) &&
  931. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  932. mnt->mnt.mnt_flags |= MNT_LOCKED;
  933. atomic_inc(&sb->s_active);
  934. mnt->mnt.mnt_sb = sb;
  935. mnt->mnt.mnt_root = dget(root);
  936. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  937. mnt->mnt_parent = mnt;
  938. lock_mount_hash();
  939. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  940. unlock_mount_hash();
  941. if ((flag & CL_SLAVE) ||
  942. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  943. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  944. mnt->mnt_master = old;
  945. CLEAR_MNT_SHARED(mnt);
  946. } else if (!(flag & CL_PRIVATE)) {
  947. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  948. list_add(&mnt->mnt_share, &old->mnt_share);
  949. if (IS_MNT_SLAVE(old))
  950. list_add(&mnt->mnt_slave, &old->mnt_slave);
  951. mnt->mnt_master = old->mnt_master;
  952. }
  953. if (flag & CL_MAKE_SHARED)
  954. set_mnt_shared(mnt);
  955. /* stick the duplicate mount on the same expiry list
  956. * as the original if that was on one */
  957. if (flag & CL_EXPIRE) {
  958. if (!list_empty(&old->mnt_expire))
  959. list_add(&mnt->mnt_expire, &old->mnt_expire);
  960. }
  961. return mnt;
  962. out_free:
  963. mnt_free_id(mnt);
  964. free_vfsmnt(mnt);
  965. return ERR_PTR(err);
  966. }
  967. static void cleanup_mnt(struct mount *mnt)
  968. {
  969. /*
  970. * This probably indicates that somebody messed
  971. * up a mnt_want/drop_write() pair. If this
  972. * happens, the filesystem was probably unable
  973. * to make r/w->r/o transitions.
  974. */
  975. /*
  976. * The locking used to deal with mnt_count decrement provides barriers,
  977. * so mnt_get_writers() below is safe.
  978. */
  979. WARN_ON(mnt_get_writers(mnt));
  980. if (unlikely(mnt->mnt_pins.first))
  981. mnt_pin_kill(mnt);
  982. fsnotify_vfsmount_delete(&mnt->mnt);
  983. dput(mnt->mnt.mnt_root);
  984. deactivate_super(mnt->mnt.mnt_sb);
  985. mnt_free_id(mnt);
  986. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  987. }
  988. static void __cleanup_mnt(struct rcu_head *head)
  989. {
  990. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  991. }
  992. static LLIST_HEAD(delayed_mntput_list);
  993. static void delayed_mntput(struct work_struct *unused)
  994. {
  995. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  996. struct llist_node *next;
  997. for (; node; node = next) {
  998. next = llist_next(node);
  999. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  1000. }
  1001. }
  1002. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1003. static void mntput_no_expire(struct mount *mnt)
  1004. {
  1005. rcu_read_lock();
  1006. mnt_add_count(mnt, -1);
  1007. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1008. rcu_read_unlock();
  1009. return;
  1010. }
  1011. lock_mount_hash();
  1012. if (mnt_get_count(mnt)) {
  1013. rcu_read_unlock();
  1014. unlock_mount_hash();
  1015. return;
  1016. }
  1017. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1018. rcu_read_unlock();
  1019. unlock_mount_hash();
  1020. return;
  1021. }
  1022. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1023. rcu_read_unlock();
  1024. list_del(&mnt->mnt_instance);
  1025. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1026. struct mount *p, *tmp;
  1027. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1028. umount_mnt(p);
  1029. }
  1030. }
  1031. unlock_mount_hash();
  1032. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1033. struct task_struct *task = current;
  1034. if (likely(!(task->flags & PF_KTHREAD))) {
  1035. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1036. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1037. return;
  1038. }
  1039. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1040. schedule_delayed_work(&delayed_mntput_work, 1);
  1041. return;
  1042. }
  1043. cleanup_mnt(mnt);
  1044. }
  1045. void mntput(struct vfsmount *mnt)
  1046. {
  1047. if (mnt) {
  1048. struct mount *m = real_mount(mnt);
  1049. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1050. if (unlikely(m->mnt_expiry_mark))
  1051. m->mnt_expiry_mark = 0;
  1052. mntput_no_expire(m);
  1053. }
  1054. }
  1055. EXPORT_SYMBOL(mntput);
  1056. struct vfsmount *mntget(struct vfsmount *mnt)
  1057. {
  1058. if (mnt)
  1059. mnt_add_count(real_mount(mnt), 1);
  1060. return mnt;
  1061. }
  1062. EXPORT_SYMBOL(mntget);
  1063. struct vfsmount *mnt_clone_internal(struct path *path)
  1064. {
  1065. struct mount *p;
  1066. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1067. if (IS_ERR(p))
  1068. return ERR_CAST(p);
  1069. p->mnt.mnt_flags |= MNT_INTERNAL;
  1070. return &p->mnt;
  1071. }
  1072. static inline void mangle(struct seq_file *m, const char *s)
  1073. {
  1074. seq_escape(m, s, " \t\n\\");
  1075. }
  1076. /*
  1077. * Simple .show_options callback for filesystems which don't want to
  1078. * implement more complex mount option showing.
  1079. *
  1080. * See also save_mount_options().
  1081. */
  1082. int generic_show_options(struct seq_file *m, struct dentry *root)
  1083. {
  1084. const char *options;
  1085. rcu_read_lock();
  1086. options = rcu_dereference(root->d_sb->s_options);
  1087. if (options != NULL && options[0]) {
  1088. seq_putc(m, ',');
  1089. mangle(m, options);
  1090. }
  1091. rcu_read_unlock();
  1092. return 0;
  1093. }
  1094. EXPORT_SYMBOL(generic_show_options);
  1095. /*
  1096. * If filesystem uses generic_show_options(), this function should be
  1097. * called from the fill_super() callback.
  1098. *
  1099. * The .remount_fs callback usually needs to be handled in a special
  1100. * way, to make sure, that previous options are not overwritten if the
  1101. * remount fails.
  1102. *
  1103. * Also note, that if the filesystem's .remount_fs function doesn't
  1104. * reset all options to their default value, but changes only newly
  1105. * given options, then the displayed options will not reflect reality
  1106. * any more.
  1107. */
  1108. void save_mount_options(struct super_block *sb, char *options)
  1109. {
  1110. BUG_ON(sb->s_options);
  1111. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1112. }
  1113. EXPORT_SYMBOL(save_mount_options);
  1114. void replace_mount_options(struct super_block *sb, char *options)
  1115. {
  1116. char *old = sb->s_options;
  1117. rcu_assign_pointer(sb->s_options, options);
  1118. if (old) {
  1119. synchronize_rcu();
  1120. kfree(old);
  1121. }
  1122. }
  1123. EXPORT_SYMBOL(replace_mount_options);
  1124. #ifdef CONFIG_PROC_FS
  1125. /* iterator; we want it to have access to namespace_sem, thus here... */
  1126. static void *m_start(struct seq_file *m, loff_t *pos)
  1127. {
  1128. struct proc_mounts *p = m->private;
  1129. down_read(&namespace_sem);
  1130. if (p->cached_event == p->ns->event) {
  1131. void *v = p->cached_mount;
  1132. if (*pos == p->cached_index)
  1133. return v;
  1134. if (*pos == p->cached_index + 1) {
  1135. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1136. return p->cached_mount = v;
  1137. }
  1138. }
  1139. p->cached_event = p->ns->event;
  1140. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1141. p->cached_index = *pos;
  1142. return p->cached_mount;
  1143. }
  1144. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1145. {
  1146. struct proc_mounts *p = m->private;
  1147. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1148. p->cached_index = *pos;
  1149. return p->cached_mount;
  1150. }
  1151. static void m_stop(struct seq_file *m, void *v)
  1152. {
  1153. up_read(&namespace_sem);
  1154. }
  1155. static int m_show(struct seq_file *m, void *v)
  1156. {
  1157. struct proc_mounts *p = m->private;
  1158. struct mount *r = list_entry(v, struct mount, mnt_list);
  1159. return p->show(m, &r->mnt);
  1160. }
  1161. const struct seq_operations mounts_op = {
  1162. .start = m_start,
  1163. .next = m_next,
  1164. .stop = m_stop,
  1165. .show = m_show,
  1166. };
  1167. #endif /* CONFIG_PROC_FS */
  1168. /**
  1169. * may_umount_tree - check if a mount tree is busy
  1170. * @mnt: root of mount tree
  1171. *
  1172. * This is called to check if a tree of mounts has any
  1173. * open files, pwds, chroots or sub mounts that are
  1174. * busy.
  1175. */
  1176. int may_umount_tree(struct vfsmount *m)
  1177. {
  1178. struct mount *mnt = real_mount(m);
  1179. int actual_refs = 0;
  1180. int minimum_refs = 0;
  1181. struct mount *p;
  1182. BUG_ON(!m);
  1183. /* write lock needed for mnt_get_count */
  1184. lock_mount_hash();
  1185. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1186. actual_refs += mnt_get_count(p);
  1187. minimum_refs += 2;
  1188. }
  1189. unlock_mount_hash();
  1190. if (actual_refs > minimum_refs)
  1191. return 0;
  1192. return 1;
  1193. }
  1194. EXPORT_SYMBOL(may_umount_tree);
  1195. /**
  1196. * may_umount - check if a mount point is busy
  1197. * @mnt: root of mount
  1198. *
  1199. * This is called to check if a mount point has any
  1200. * open files, pwds, chroots or sub mounts. If the
  1201. * mount has sub mounts this will return busy
  1202. * regardless of whether the sub mounts are busy.
  1203. *
  1204. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1205. * give false negatives. The main reason why it's here is that we need
  1206. * a non-destructive way to look for easily umountable filesystems.
  1207. */
  1208. int may_umount(struct vfsmount *mnt)
  1209. {
  1210. int ret = 1;
  1211. down_read(&namespace_sem);
  1212. lock_mount_hash();
  1213. if (propagate_mount_busy(real_mount(mnt), 2))
  1214. ret = 0;
  1215. unlock_mount_hash();
  1216. up_read(&namespace_sem);
  1217. return ret;
  1218. }
  1219. EXPORT_SYMBOL(may_umount);
  1220. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1221. static void namespace_unlock(void)
  1222. {
  1223. struct hlist_head head;
  1224. hlist_move_list(&unmounted, &head);
  1225. up_write(&namespace_sem);
  1226. if (likely(hlist_empty(&head)))
  1227. return;
  1228. synchronize_rcu();
  1229. group_pin_kill(&head);
  1230. }
  1231. static inline void namespace_lock(void)
  1232. {
  1233. down_write(&namespace_sem);
  1234. }
  1235. enum umount_tree_flags {
  1236. UMOUNT_SYNC = 1,
  1237. UMOUNT_PROPAGATE = 2,
  1238. UMOUNT_CONNECTED = 4,
  1239. };
  1240. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1241. {
  1242. /* Leaving mounts connected is only valid for lazy umounts */
  1243. if (how & UMOUNT_SYNC)
  1244. return true;
  1245. /* A mount without a parent has nothing to be connected to */
  1246. if (!mnt_has_parent(mnt))
  1247. return true;
  1248. /* Because the reference counting rules change when mounts are
  1249. * unmounted and connected, umounted mounts may not be
  1250. * connected to mounted mounts.
  1251. */
  1252. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1253. return true;
  1254. /* Has it been requested that the mount remain connected? */
  1255. if (how & UMOUNT_CONNECTED)
  1256. return false;
  1257. /* Is the mount locked such that it needs to remain connected? */
  1258. if (IS_MNT_LOCKED(mnt))
  1259. return false;
  1260. /* By default disconnect the mount */
  1261. return true;
  1262. }
  1263. /*
  1264. * mount_lock must be held
  1265. * namespace_sem must be held for write
  1266. */
  1267. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1268. {
  1269. LIST_HEAD(tmp_list);
  1270. struct mount *p;
  1271. if (how & UMOUNT_PROPAGATE)
  1272. propagate_mount_unlock(mnt);
  1273. /* Gather the mounts to umount */
  1274. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1275. p->mnt.mnt_flags |= MNT_UMOUNT;
  1276. list_move(&p->mnt_list, &tmp_list);
  1277. }
  1278. /* Hide the mounts from mnt_mounts */
  1279. list_for_each_entry(p, &tmp_list, mnt_list) {
  1280. list_del_init(&p->mnt_child);
  1281. }
  1282. /* Add propogated mounts to the tmp_list */
  1283. if (how & UMOUNT_PROPAGATE)
  1284. propagate_umount(&tmp_list);
  1285. while (!list_empty(&tmp_list)) {
  1286. struct mnt_namespace *ns;
  1287. bool disconnect;
  1288. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1289. list_del_init(&p->mnt_expire);
  1290. list_del_init(&p->mnt_list);
  1291. ns = p->mnt_ns;
  1292. if (ns) {
  1293. ns->mounts--;
  1294. __touch_mnt_namespace(ns);
  1295. }
  1296. p->mnt_ns = NULL;
  1297. if (how & UMOUNT_SYNC)
  1298. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1299. disconnect = disconnect_mount(p, how);
  1300. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1301. disconnect ? &unmounted : NULL);
  1302. if (mnt_has_parent(p)) {
  1303. mnt_add_count(p->mnt_parent, -1);
  1304. if (!disconnect) {
  1305. /* Don't forget about p */
  1306. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1307. } else {
  1308. umount_mnt(p);
  1309. }
  1310. }
  1311. change_mnt_propagation(p, MS_PRIVATE);
  1312. }
  1313. }
  1314. static void shrink_submounts(struct mount *mnt);
  1315. static int do_umount(struct mount *mnt, int flags)
  1316. {
  1317. struct super_block *sb = mnt->mnt.mnt_sb;
  1318. int retval;
  1319. retval = security_sb_umount(&mnt->mnt, flags);
  1320. if (retval)
  1321. return retval;
  1322. /*
  1323. * Allow userspace to request a mountpoint be expired rather than
  1324. * unmounting unconditionally. Unmount only happens if:
  1325. * (1) the mark is already set (the mark is cleared by mntput())
  1326. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1327. */
  1328. if (flags & MNT_EXPIRE) {
  1329. if (&mnt->mnt == current->fs->root.mnt ||
  1330. flags & (MNT_FORCE | MNT_DETACH))
  1331. return -EINVAL;
  1332. /*
  1333. * probably don't strictly need the lock here if we examined
  1334. * all race cases, but it's a slowpath.
  1335. */
  1336. lock_mount_hash();
  1337. if (mnt_get_count(mnt) != 2) {
  1338. unlock_mount_hash();
  1339. return -EBUSY;
  1340. }
  1341. unlock_mount_hash();
  1342. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1343. return -EAGAIN;
  1344. }
  1345. /*
  1346. * If we may have to abort operations to get out of this
  1347. * mount, and they will themselves hold resources we must
  1348. * allow the fs to do things. In the Unix tradition of
  1349. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1350. * might fail to complete on the first run through as other tasks
  1351. * must return, and the like. Thats for the mount program to worry
  1352. * about for the moment.
  1353. */
  1354. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1355. sb->s_op->umount_begin(sb);
  1356. }
  1357. /*
  1358. * No sense to grab the lock for this test, but test itself looks
  1359. * somewhat bogus. Suggestions for better replacement?
  1360. * Ho-hum... In principle, we might treat that as umount + switch
  1361. * to rootfs. GC would eventually take care of the old vfsmount.
  1362. * Actually it makes sense, especially if rootfs would contain a
  1363. * /reboot - static binary that would close all descriptors and
  1364. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1365. */
  1366. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1367. /*
  1368. * Special case for "unmounting" root ...
  1369. * we just try to remount it readonly.
  1370. */
  1371. if (!capable(CAP_SYS_ADMIN))
  1372. return -EPERM;
  1373. down_write(&sb->s_umount);
  1374. if (!(sb->s_flags & MS_RDONLY))
  1375. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1376. up_write(&sb->s_umount);
  1377. return retval;
  1378. }
  1379. namespace_lock();
  1380. lock_mount_hash();
  1381. event++;
  1382. if (flags & MNT_DETACH) {
  1383. if (!list_empty(&mnt->mnt_list))
  1384. umount_tree(mnt, UMOUNT_PROPAGATE);
  1385. retval = 0;
  1386. } else {
  1387. shrink_submounts(mnt);
  1388. retval = -EBUSY;
  1389. if (!propagate_mount_busy(mnt, 2)) {
  1390. if (!list_empty(&mnt->mnt_list))
  1391. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1392. retval = 0;
  1393. }
  1394. }
  1395. unlock_mount_hash();
  1396. namespace_unlock();
  1397. return retval;
  1398. }
  1399. /*
  1400. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1401. *
  1402. * During unlink, rmdir, and d_drop it is possible to loose the path
  1403. * to an existing mountpoint, and wind up leaking the mount.
  1404. * detach_mounts allows lazily unmounting those mounts instead of
  1405. * leaking them.
  1406. *
  1407. * The caller may hold dentry->d_inode->i_mutex.
  1408. */
  1409. void __detach_mounts(struct dentry *dentry)
  1410. {
  1411. struct mountpoint *mp;
  1412. struct mount *mnt;
  1413. namespace_lock();
  1414. lock_mount_hash();
  1415. mp = lookup_mountpoint(dentry);
  1416. if (IS_ERR_OR_NULL(mp))
  1417. goto out_unlock;
  1418. event++;
  1419. while (!hlist_empty(&mp->m_list)) {
  1420. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1421. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1422. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1423. umount_mnt(mnt);
  1424. }
  1425. else umount_tree(mnt, UMOUNT_CONNECTED);
  1426. }
  1427. put_mountpoint(mp);
  1428. out_unlock:
  1429. unlock_mount_hash();
  1430. namespace_unlock();
  1431. }
  1432. /*
  1433. * Is the caller allowed to modify his namespace?
  1434. */
  1435. static inline bool may_mount(void)
  1436. {
  1437. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1438. }
  1439. static inline bool may_mandlock(void)
  1440. {
  1441. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1442. return false;
  1443. #endif
  1444. return capable(CAP_SYS_ADMIN);
  1445. }
  1446. /*
  1447. * Now umount can handle mount points as well as block devices.
  1448. * This is important for filesystems which use unnamed block devices.
  1449. *
  1450. * We now support a flag for forced unmount like the other 'big iron'
  1451. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1452. */
  1453. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1454. {
  1455. struct path path;
  1456. struct mount *mnt;
  1457. int retval;
  1458. int lookup_flags = 0;
  1459. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1460. return -EINVAL;
  1461. if (!may_mount())
  1462. return -EPERM;
  1463. if (!(flags & UMOUNT_NOFOLLOW))
  1464. lookup_flags |= LOOKUP_FOLLOW;
  1465. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1466. if (retval)
  1467. goto out;
  1468. mnt = real_mount(path.mnt);
  1469. retval = -EINVAL;
  1470. if (path.dentry != path.mnt->mnt_root)
  1471. goto dput_and_out;
  1472. if (!check_mnt(mnt))
  1473. goto dput_and_out;
  1474. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1475. goto dput_and_out;
  1476. retval = -EPERM;
  1477. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1478. goto dput_and_out;
  1479. retval = do_umount(mnt, flags);
  1480. dput_and_out:
  1481. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1482. dput(path.dentry);
  1483. mntput_no_expire(mnt);
  1484. out:
  1485. return retval;
  1486. }
  1487. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1488. /*
  1489. * The 2.0 compatible umount. No flags.
  1490. */
  1491. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1492. {
  1493. return sys_umount(name, 0);
  1494. }
  1495. #endif
  1496. static bool is_mnt_ns_file(struct dentry *dentry)
  1497. {
  1498. /* Is this a proxy for a mount namespace? */
  1499. return dentry->d_op == &ns_dentry_operations &&
  1500. dentry->d_fsdata == &mntns_operations;
  1501. }
  1502. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1503. {
  1504. return container_of(ns, struct mnt_namespace, ns);
  1505. }
  1506. static bool mnt_ns_loop(struct dentry *dentry)
  1507. {
  1508. /* Could bind mounting the mount namespace inode cause a
  1509. * mount namespace loop?
  1510. */
  1511. struct mnt_namespace *mnt_ns;
  1512. if (!is_mnt_ns_file(dentry))
  1513. return false;
  1514. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1515. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1516. }
  1517. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1518. int flag)
  1519. {
  1520. struct mount *res, *p, *q, *r, *parent;
  1521. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1522. return ERR_PTR(-EINVAL);
  1523. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1524. return ERR_PTR(-EINVAL);
  1525. res = q = clone_mnt(mnt, dentry, flag);
  1526. if (IS_ERR(q))
  1527. return q;
  1528. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1529. p = mnt;
  1530. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1531. struct mount *s;
  1532. if (!is_subdir(r->mnt_mountpoint, dentry))
  1533. continue;
  1534. for (s = r; s; s = next_mnt(s, r)) {
  1535. if (!(flag & CL_COPY_UNBINDABLE) &&
  1536. IS_MNT_UNBINDABLE(s)) {
  1537. s = skip_mnt_tree(s);
  1538. continue;
  1539. }
  1540. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1541. is_mnt_ns_file(s->mnt.mnt_root)) {
  1542. s = skip_mnt_tree(s);
  1543. continue;
  1544. }
  1545. while (p != s->mnt_parent) {
  1546. p = p->mnt_parent;
  1547. q = q->mnt_parent;
  1548. }
  1549. p = s;
  1550. parent = q;
  1551. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1552. if (IS_ERR(q))
  1553. goto out;
  1554. lock_mount_hash();
  1555. list_add_tail(&q->mnt_list, &res->mnt_list);
  1556. attach_mnt(q, parent, p->mnt_mp);
  1557. unlock_mount_hash();
  1558. }
  1559. }
  1560. return res;
  1561. out:
  1562. if (res) {
  1563. lock_mount_hash();
  1564. umount_tree(res, UMOUNT_SYNC);
  1565. unlock_mount_hash();
  1566. }
  1567. return q;
  1568. }
  1569. /* Caller should check returned pointer for errors */
  1570. struct vfsmount *collect_mounts(struct path *path)
  1571. {
  1572. struct mount *tree;
  1573. namespace_lock();
  1574. if (!check_mnt(real_mount(path->mnt)))
  1575. tree = ERR_PTR(-EINVAL);
  1576. else
  1577. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1578. CL_COPY_ALL | CL_PRIVATE);
  1579. namespace_unlock();
  1580. if (IS_ERR(tree))
  1581. return ERR_CAST(tree);
  1582. return &tree->mnt;
  1583. }
  1584. void drop_collected_mounts(struct vfsmount *mnt)
  1585. {
  1586. namespace_lock();
  1587. lock_mount_hash();
  1588. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1589. unlock_mount_hash();
  1590. namespace_unlock();
  1591. }
  1592. /**
  1593. * clone_private_mount - create a private clone of a path
  1594. *
  1595. * This creates a new vfsmount, which will be the clone of @path. The new will
  1596. * not be attached anywhere in the namespace and will be private (i.e. changes
  1597. * to the originating mount won't be propagated into this).
  1598. *
  1599. * Release with mntput().
  1600. */
  1601. struct vfsmount *clone_private_mount(struct path *path)
  1602. {
  1603. struct mount *old_mnt = real_mount(path->mnt);
  1604. struct mount *new_mnt;
  1605. if (IS_MNT_UNBINDABLE(old_mnt))
  1606. return ERR_PTR(-EINVAL);
  1607. down_read(&namespace_sem);
  1608. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1609. up_read(&namespace_sem);
  1610. if (IS_ERR(new_mnt))
  1611. return ERR_CAST(new_mnt);
  1612. return &new_mnt->mnt;
  1613. }
  1614. EXPORT_SYMBOL_GPL(clone_private_mount);
  1615. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1616. struct vfsmount *root)
  1617. {
  1618. struct mount *mnt;
  1619. int res = f(root, arg);
  1620. if (res)
  1621. return res;
  1622. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1623. res = f(&mnt->mnt, arg);
  1624. if (res)
  1625. return res;
  1626. }
  1627. return 0;
  1628. }
  1629. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1630. {
  1631. struct mount *p;
  1632. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1633. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1634. mnt_release_group_id(p);
  1635. }
  1636. }
  1637. static int invent_group_ids(struct mount *mnt, bool recurse)
  1638. {
  1639. struct mount *p;
  1640. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1641. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1642. int err = mnt_alloc_group_id(p);
  1643. if (err) {
  1644. cleanup_group_ids(mnt, p);
  1645. return err;
  1646. }
  1647. }
  1648. }
  1649. return 0;
  1650. }
  1651. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1652. {
  1653. unsigned int max = READ_ONCE(sysctl_mount_max);
  1654. unsigned int mounts = 0, old, pending, sum;
  1655. struct mount *p;
  1656. for (p = mnt; p; p = next_mnt(p, mnt))
  1657. mounts++;
  1658. old = ns->mounts;
  1659. pending = ns->pending_mounts;
  1660. sum = old + pending;
  1661. if ((old > sum) ||
  1662. (pending > sum) ||
  1663. (max < sum) ||
  1664. (mounts > (max - sum)))
  1665. return -ENOSPC;
  1666. ns->pending_mounts = pending + mounts;
  1667. return 0;
  1668. }
  1669. /*
  1670. * @source_mnt : mount tree to be attached
  1671. * @nd : place the mount tree @source_mnt is attached
  1672. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1673. * store the parent mount and mountpoint dentry.
  1674. * (done when source_mnt is moved)
  1675. *
  1676. * NOTE: in the table below explains the semantics when a source mount
  1677. * of a given type is attached to a destination mount of a given type.
  1678. * ---------------------------------------------------------------------------
  1679. * | BIND MOUNT OPERATION |
  1680. * |**************************************************************************
  1681. * | source-->| shared | private | slave | unbindable |
  1682. * | dest | | | | |
  1683. * | | | | | | |
  1684. * | v | | | | |
  1685. * |**************************************************************************
  1686. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1687. * | | | | | |
  1688. * |non-shared| shared (+) | private | slave (*) | invalid |
  1689. * ***************************************************************************
  1690. * A bind operation clones the source mount and mounts the clone on the
  1691. * destination mount.
  1692. *
  1693. * (++) the cloned mount is propagated to all the mounts in the propagation
  1694. * tree of the destination mount and the cloned mount is added to
  1695. * the peer group of the source mount.
  1696. * (+) the cloned mount is created under the destination mount and is marked
  1697. * as shared. The cloned mount is added to the peer group of the source
  1698. * mount.
  1699. * (+++) the mount is propagated to all the mounts in the propagation tree
  1700. * of the destination mount and the cloned mount is made slave
  1701. * of the same master as that of the source mount. The cloned mount
  1702. * is marked as 'shared and slave'.
  1703. * (*) the cloned mount is made a slave of the same master as that of the
  1704. * source mount.
  1705. *
  1706. * ---------------------------------------------------------------------------
  1707. * | MOVE MOUNT OPERATION |
  1708. * |**************************************************************************
  1709. * | source-->| shared | private | slave | unbindable |
  1710. * | dest | | | | |
  1711. * | | | | | | |
  1712. * | v | | | | |
  1713. * |**************************************************************************
  1714. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1715. * | | | | | |
  1716. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1717. * ***************************************************************************
  1718. *
  1719. * (+) the mount is moved to the destination. And is then propagated to
  1720. * all the mounts in the propagation tree of the destination mount.
  1721. * (+*) the mount is moved to the destination.
  1722. * (+++) the mount is moved to the destination and is then propagated to
  1723. * all the mounts belonging to the destination mount's propagation tree.
  1724. * the mount is marked as 'shared and slave'.
  1725. * (*) the mount continues to be a slave at the new location.
  1726. *
  1727. * if the source mount is a tree, the operations explained above is
  1728. * applied to each mount in the tree.
  1729. * Must be called without spinlocks held, since this function can sleep
  1730. * in allocations.
  1731. */
  1732. static int attach_recursive_mnt(struct mount *source_mnt,
  1733. struct mount *dest_mnt,
  1734. struct mountpoint *dest_mp,
  1735. struct path *parent_path)
  1736. {
  1737. HLIST_HEAD(tree_list);
  1738. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1739. struct mountpoint *smp;
  1740. struct mount *child, *p;
  1741. struct hlist_node *n;
  1742. int err;
  1743. /* Preallocate a mountpoint in case the new mounts need
  1744. * to be tucked under other mounts.
  1745. */
  1746. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1747. if (IS_ERR(smp))
  1748. return PTR_ERR(smp);
  1749. /* Is there space to add these mounts to the mount namespace? */
  1750. if (!parent_path) {
  1751. err = count_mounts(ns, source_mnt);
  1752. if (err)
  1753. goto out;
  1754. }
  1755. if (IS_MNT_SHARED(dest_mnt)) {
  1756. err = invent_group_ids(source_mnt, true);
  1757. if (err)
  1758. goto out;
  1759. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1760. lock_mount_hash();
  1761. if (err)
  1762. goto out_cleanup_ids;
  1763. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1764. set_mnt_shared(p);
  1765. } else {
  1766. lock_mount_hash();
  1767. }
  1768. if (parent_path) {
  1769. detach_mnt(source_mnt, parent_path);
  1770. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1771. touch_mnt_namespace(source_mnt->mnt_ns);
  1772. } else {
  1773. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1774. commit_tree(source_mnt);
  1775. }
  1776. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1777. struct mount *q;
  1778. hlist_del_init(&child->mnt_hash);
  1779. q = __lookup_mnt(&child->mnt_parent->mnt,
  1780. child->mnt_mountpoint);
  1781. if (q)
  1782. mnt_change_mountpoint(child, smp, q);
  1783. commit_tree(child);
  1784. }
  1785. put_mountpoint(smp);
  1786. unlock_mount_hash();
  1787. return 0;
  1788. out_cleanup_ids:
  1789. while (!hlist_empty(&tree_list)) {
  1790. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1791. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1792. umount_tree(child, UMOUNT_SYNC);
  1793. }
  1794. unlock_mount_hash();
  1795. cleanup_group_ids(source_mnt, NULL);
  1796. out:
  1797. ns->pending_mounts = 0;
  1798. read_seqlock_excl(&mount_lock);
  1799. put_mountpoint(smp);
  1800. read_sequnlock_excl(&mount_lock);
  1801. return err;
  1802. }
  1803. static struct mountpoint *lock_mount(struct path *path)
  1804. {
  1805. struct vfsmount *mnt;
  1806. struct dentry *dentry = path->dentry;
  1807. retry:
  1808. inode_lock(dentry->d_inode);
  1809. if (unlikely(cant_mount(dentry))) {
  1810. inode_unlock(dentry->d_inode);
  1811. return ERR_PTR(-ENOENT);
  1812. }
  1813. namespace_lock();
  1814. mnt = lookup_mnt(path);
  1815. if (likely(!mnt)) {
  1816. struct mountpoint *mp = get_mountpoint(dentry);
  1817. if (IS_ERR(mp)) {
  1818. namespace_unlock();
  1819. inode_unlock(dentry->d_inode);
  1820. return mp;
  1821. }
  1822. return mp;
  1823. }
  1824. namespace_unlock();
  1825. inode_unlock(path->dentry->d_inode);
  1826. path_put(path);
  1827. path->mnt = mnt;
  1828. dentry = path->dentry = dget(mnt->mnt_root);
  1829. goto retry;
  1830. }
  1831. static void unlock_mount(struct mountpoint *where)
  1832. {
  1833. struct dentry *dentry = where->m_dentry;
  1834. read_seqlock_excl(&mount_lock);
  1835. put_mountpoint(where);
  1836. read_sequnlock_excl(&mount_lock);
  1837. namespace_unlock();
  1838. inode_unlock(dentry->d_inode);
  1839. }
  1840. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1841. {
  1842. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1843. return -EINVAL;
  1844. if (d_is_dir(mp->m_dentry) !=
  1845. d_is_dir(mnt->mnt.mnt_root))
  1846. return -ENOTDIR;
  1847. return attach_recursive_mnt(mnt, p, mp, NULL);
  1848. }
  1849. /*
  1850. * Sanity check the flags to change_mnt_propagation.
  1851. */
  1852. static int flags_to_propagation_type(int flags)
  1853. {
  1854. int type = flags & ~(MS_REC | MS_SILENT);
  1855. /* Fail if any non-propagation flags are set */
  1856. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1857. return 0;
  1858. /* Only one propagation flag should be set */
  1859. if (!is_power_of_2(type))
  1860. return 0;
  1861. return type;
  1862. }
  1863. /*
  1864. * recursively change the type of the mountpoint.
  1865. */
  1866. static int do_change_type(struct path *path, int flag)
  1867. {
  1868. struct mount *m;
  1869. struct mount *mnt = real_mount(path->mnt);
  1870. int recurse = flag & MS_REC;
  1871. int type;
  1872. int err = 0;
  1873. if (path->dentry != path->mnt->mnt_root)
  1874. return -EINVAL;
  1875. type = flags_to_propagation_type(flag);
  1876. if (!type)
  1877. return -EINVAL;
  1878. namespace_lock();
  1879. if (type == MS_SHARED) {
  1880. err = invent_group_ids(mnt, recurse);
  1881. if (err)
  1882. goto out_unlock;
  1883. }
  1884. lock_mount_hash();
  1885. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1886. change_mnt_propagation(m, type);
  1887. unlock_mount_hash();
  1888. out_unlock:
  1889. namespace_unlock();
  1890. return err;
  1891. }
  1892. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1893. {
  1894. struct mount *child;
  1895. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1896. if (!is_subdir(child->mnt_mountpoint, dentry))
  1897. continue;
  1898. if (child->mnt.mnt_flags & MNT_LOCKED)
  1899. return true;
  1900. }
  1901. return false;
  1902. }
  1903. /*
  1904. * do loopback mount.
  1905. */
  1906. static int do_loopback(struct path *path, const char *old_name,
  1907. int recurse)
  1908. {
  1909. struct path old_path;
  1910. struct mount *mnt = NULL, *old, *parent;
  1911. struct mountpoint *mp;
  1912. int err;
  1913. if (!old_name || !*old_name)
  1914. return -EINVAL;
  1915. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1916. if (err)
  1917. return err;
  1918. err = -EINVAL;
  1919. if (mnt_ns_loop(old_path.dentry))
  1920. goto out;
  1921. mp = lock_mount(path);
  1922. err = PTR_ERR(mp);
  1923. if (IS_ERR(mp))
  1924. goto out;
  1925. old = real_mount(old_path.mnt);
  1926. parent = real_mount(path->mnt);
  1927. err = -EINVAL;
  1928. if (IS_MNT_UNBINDABLE(old))
  1929. goto out2;
  1930. if (!check_mnt(parent))
  1931. goto out2;
  1932. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1933. goto out2;
  1934. if (!recurse && has_locked_children(old, old_path.dentry))
  1935. goto out2;
  1936. if (recurse)
  1937. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1938. else
  1939. mnt = clone_mnt(old, old_path.dentry, 0);
  1940. if (IS_ERR(mnt)) {
  1941. err = PTR_ERR(mnt);
  1942. goto out2;
  1943. }
  1944. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1945. err = graft_tree(mnt, parent, mp);
  1946. if (err) {
  1947. lock_mount_hash();
  1948. umount_tree(mnt, UMOUNT_SYNC);
  1949. unlock_mount_hash();
  1950. }
  1951. out2:
  1952. unlock_mount(mp);
  1953. out:
  1954. path_put(&old_path);
  1955. return err;
  1956. }
  1957. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1958. {
  1959. int error = 0;
  1960. int readonly_request = 0;
  1961. if (ms_flags & MS_RDONLY)
  1962. readonly_request = 1;
  1963. if (readonly_request == __mnt_is_readonly(mnt))
  1964. return 0;
  1965. if (readonly_request)
  1966. error = mnt_make_readonly(real_mount(mnt));
  1967. else
  1968. __mnt_unmake_readonly(real_mount(mnt));
  1969. return error;
  1970. }
  1971. /*
  1972. * change filesystem flags. dir should be a physical root of filesystem.
  1973. * If you've mounted a non-root directory somewhere and want to do remount
  1974. * on it - tough luck.
  1975. */
  1976. static int do_remount(struct path *path, int flags, int mnt_flags,
  1977. void *data)
  1978. {
  1979. int err;
  1980. struct super_block *sb = path->mnt->mnt_sb;
  1981. struct mount *mnt = real_mount(path->mnt);
  1982. if (!check_mnt(mnt))
  1983. return -EINVAL;
  1984. if (path->dentry != path->mnt->mnt_root)
  1985. return -EINVAL;
  1986. /* Don't allow changing of locked mnt flags.
  1987. *
  1988. * No locks need to be held here while testing the various
  1989. * MNT_LOCK flags because those flags can never be cleared
  1990. * once they are set.
  1991. */
  1992. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1993. !(mnt_flags & MNT_READONLY)) {
  1994. return -EPERM;
  1995. }
  1996. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1997. !(mnt_flags & MNT_NODEV)) {
  1998. return -EPERM;
  1999. }
  2000. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2001. !(mnt_flags & MNT_NOSUID)) {
  2002. return -EPERM;
  2003. }
  2004. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2005. !(mnt_flags & MNT_NOEXEC)) {
  2006. return -EPERM;
  2007. }
  2008. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2009. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2010. return -EPERM;
  2011. }
  2012. err = security_sb_remount(sb, data);
  2013. if (err)
  2014. return err;
  2015. down_write(&sb->s_umount);
  2016. if (flags & MS_BIND)
  2017. err = change_mount_flags(path->mnt, flags);
  2018. else if (!capable(CAP_SYS_ADMIN))
  2019. err = -EPERM;
  2020. else
  2021. err = do_remount_sb(sb, flags, data, 0);
  2022. if (!err) {
  2023. lock_mount_hash();
  2024. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2025. mnt->mnt.mnt_flags = mnt_flags;
  2026. touch_mnt_namespace(mnt->mnt_ns);
  2027. unlock_mount_hash();
  2028. }
  2029. up_write(&sb->s_umount);
  2030. return err;
  2031. }
  2032. static inline int tree_contains_unbindable(struct mount *mnt)
  2033. {
  2034. struct mount *p;
  2035. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2036. if (IS_MNT_UNBINDABLE(p))
  2037. return 1;
  2038. }
  2039. return 0;
  2040. }
  2041. static int do_move_mount(struct path *path, const char *old_name)
  2042. {
  2043. struct path old_path, parent_path;
  2044. struct mount *p;
  2045. struct mount *old;
  2046. struct mountpoint *mp;
  2047. int err;
  2048. if (!old_name || !*old_name)
  2049. return -EINVAL;
  2050. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2051. if (err)
  2052. return err;
  2053. mp = lock_mount(path);
  2054. err = PTR_ERR(mp);
  2055. if (IS_ERR(mp))
  2056. goto out;
  2057. old = real_mount(old_path.mnt);
  2058. p = real_mount(path->mnt);
  2059. err = -EINVAL;
  2060. if (!check_mnt(p) || !check_mnt(old))
  2061. goto out1;
  2062. if (old->mnt.mnt_flags & MNT_LOCKED)
  2063. goto out1;
  2064. err = -EINVAL;
  2065. if (old_path.dentry != old_path.mnt->mnt_root)
  2066. goto out1;
  2067. if (!mnt_has_parent(old))
  2068. goto out1;
  2069. if (d_is_dir(path->dentry) !=
  2070. d_is_dir(old_path.dentry))
  2071. goto out1;
  2072. /*
  2073. * Don't move a mount residing in a shared parent.
  2074. */
  2075. if (IS_MNT_SHARED(old->mnt_parent))
  2076. goto out1;
  2077. /*
  2078. * Don't move a mount tree containing unbindable mounts to a destination
  2079. * mount which is shared.
  2080. */
  2081. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2082. goto out1;
  2083. err = -ELOOP;
  2084. for (; mnt_has_parent(p); p = p->mnt_parent)
  2085. if (p == old)
  2086. goto out1;
  2087. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2088. if (err)
  2089. goto out1;
  2090. /* if the mount is moved, it should no longer be expire
  2091. * automatically */
  2092. list_del_init(&old->mnt_expire);
  2093. out1:
  2094. unlock_mount(mp);
  2095. out:
  2096. if (!err)
  2097. path_put(&parent_path);
  2098. path_put(&old_path);
  2099. return err;
  2100. }
  2101. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2102. {
  2103. int err;
  2104. const char *subtype = strchr(fstype, '.');
  2105. if (subtype) {
  2106. subtype++;
  2107. err = -EINVAL;
  2108. if (!subtype[0])
  2109. goto err;
  2110. } else
  2111. subtype = "";
  2112. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2113. err = -ENOMEM;
  2114. if (!mnt->mnt_sb->s_subtype)
  2115. goto err;
  2116. return mnt;
  2117. err:
  2118. mntput(mnt);
  2119. return ERR_PTR(err);
  2120. }
  2121. /*
  2122. * add a mount into a namespace's mount tree
  2123. */
  2124. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2125. {
  2126. struct mountpoint *mp;
  2127. struct mount *parent;
  2128. int err;
  2129. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2130. mp = lock_mount(path);
  2131. if (IS_ERR(mp))
  2132. return PTR_ERR(mp);
  2133. parent = real_mount(path->mnt);
  2134. err = -EINVAL;
  2135. if (unlikely(!check_mnt(parent))) {
  2136. /* that's acceptable only for automounts done in private ns */
  2137. if (!(mnt_flags & MNT_SHRINKABLE))
  2138. goto unlock;
  2139. /* ... and for those we'd better have mountpoint still alive */
  2140. if (!parent->mnt_ns)
  2141. goto unlock;
  2142. }
  2143. /* Refuse the same filesystem on the same mount point */
  2144. err = -EBUSY;
  2145. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2146. path->mnt->mnt_root == path->dentry)
  2147. goto unlock;
  2148. err = -EINVAL;
  2149. if (d_is_symlink(newmnt->mnt.mnt_root))
  2150. goto unlock;
  2151. newmnt->mnt.mnt_flags = mnt_flags;
  2152. err = graft_tree(newmnt, parent, mp);
  2153. unlock:
  2154. unlock_mount(mp);
  2155. return err;
  2156. }
  2157. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2158. /*
  2159. * create a new mount for userspace and request it to be added into the
  2160. * namespace's tree
  2161. */
  2162. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2163. int mnt_flags, const char *name, void *data)
  2164. {
  2165. struct file_system_type *type;
  2166. struct vfsmount *mnt;
  2167. int err;
  2168. if (!fstype)
  2169. return -EINVAL;
  2170. type = get_fs_type(fstype);
  2171. if (!type)
  2172. return -ENODEV;
  2173. mnt = vfs_kern_mount(type, flags, name, data);
  2174. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2175. !mnt->mnt_sb->s_subtype)
  2176. mnt = fs_set_subtype(mnt, fstype);
  2177. put_filesystem(type);
  2178. if (IS_ERR(mnt))
  2179. return PTR_ERR(mnt);
  2180. if (mount_too_revealing(mnt, &mnt_flags)) {
  2181. mntput(mnt);
  2182. return -EPERM;
  2183. }
  2184. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2185. if (err)
  2186. mntput(mnt);
  2187. return err;
  2188. }
  2189. int finish_automount(struct vfsmount *m, struct path *path)
  2190. {
  2191. struct mount *mnt = real_mount(m);
  2192. int err;
  2193. /* The new mount record should have at least 2 refs to prevent it being
  2194. * expired before we get a chance to add it
  2195. */
  2196. BUG_ON(mnt_get_count(mnt) < 2);
  2197. if (m->mnt_sb == path->mnt->mnt_sb &&
  2198. m->mnt_root == path->dentry) {
  2199. err = -ELOOP;
  2200. goto fail;
  2201. }
  2202. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2203. if (!err)
  2204. return 0;
  2205. fail:
  2206. /* remove m from any expiration list it may be on */
  2207. if (!list_empty(&mnt->mnt_expire)) {
  2208. namespace_lock();
  2209. list_del_init(&mnt->mnt_expire);
  2210. namespace_unlock();
  2211. }
  2212. mntput(m);
  2213. mntput(m);
  2214. return err;
  2215. }
  2216. /**
  2217. * mnt_set_expiry - Put a mount on an expiration list
  2218. * @mnt: The mount to list.
  2219. * @expiry_list: The list to add the mount to.
  2220. */
  2221. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2222. {
  2223. namespace_lock();
  2224. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2225. namespace_unlock();
  2226. }
  2227. EXPORT_SYMBOL(mnt_set_expiry);
  2228. /*
  2229. * process a list of expirable mountpoints with the intent of discarding any
  2230. * mountpoints that aren't in use and haven't been touched since last we came
  2231. * here
  2232. */
  2233. void mark_mounts_for_expiry(struct list_head *mounts)
  2234. {
  2235. struct mount *mnt, *next;
  2236. LIST_HEAD(graveyard);
  2237. if (list_empty(mounts))
  2238. return;
  2239. namespace_lock();
  2240. lock_mount_hash();
  2241. /* extract from the expiration list every vfsmount that matches the
  2242. * following criteria:
  2243. * - only referenced by its parent vfsmount
  2244. * - still marked for expiry (marked on the last call here; marks are
  2245. * cleared by mntput())
  2246. */
  2247. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2248. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2249. propagate_mount_busy(mnt, 1))
  2250. continue;
  2251. list_move(&mnt->mnt_expire, &graveyard);
  2252. }
  2253. while (!list_empty(&graveyard)) {
  2254. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2255. touch_mnt_namespace(mnt->mnt_ns);
  2256. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2257. }
  2258. unlock_mount_hash();
  2259. namespace_unlock();
  2260. }
  2261. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2262. /*
  2263. * Ripoff of 'select_parent()'
  2264. *
  2265. * search the list of submounts for a given mountpoint, and move any
  2266. * shrinkable submounts to the 'graveyard' list.
  2267. */
  2268. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2269. {
  2270. struct mount *this_parent = parent;
  2271. struct list_head *next;
  2272. int found = 0;
  2273. repeat:
  2274. next = this_parent->mnt_mounts.next;
  2275. resume:
  2276. while (next != &this_parent->mnt_mounts) {
  2277. struct list_head *tmp = next;
  2278. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2279. next = tmp->next;
  2280. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2281. continue;
  2282. /*
  2283. * Descend a level if the d_mounts list is non-empty.
  2284. */
  2285. if (!list_empty(&mnt->mnt_mounts)) {
  2286. this_parent = mnt;
  2287. goto repeat;
  2288. }
  2289. if (!propagate_mount_busy(mnt, 1)) {
  2290. list_move_tail(&mnt->mnt_expire, graveyard);
  2291. found++;
  2292. }
  2293. }
  2294. /*
  2295. * All done at this level ... ascend and resume the search
  2296. */
  2297. if (this_parent != parent) {
  2298. next = this_parent->mnt_child.next;
  2299. this_parent = this_parent->mnt_parent;
  2300. goto resume;
  2301. }
  2302. return found;
  2303. }
  2304. /*
  2305. * process a list of expirable mountpoints with the intent of discarding any
  2306. * submounts of a specific parent mountpoint
  2307. *
  2308. * mount_lock must be held for write
  2309. */
  2310. static void shrink_submounts(struct mount *mnt)
  2311. {
  2312. LIST_HEAD(graveyard);
  2313. struct mount *m;
  2314. /* extract submounts of 'mountpoint' from the expiration list */
  2315. while (select_submounts(mnt, &graveyard)) {
  2316. while (!list_empty(&graveyard)) {
  2317. m = list_first_entry(&graveyard, struct mount,
  2318. mnt_expire);
  2319. touch_mnt_namespace(m->mnt_ns);
  2320. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2321. }
  2322. }
  2323. }
  2324. /*
  2325. * Some copy_from_user() implementations do not return the exact number of
  2326. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2327. * Note that this function differs from copy_from_user() in that it will oops
  2328. * on bad values of `to', rather than returning a short copy.
  2329. */
  2330. static long exact_copy_from_user(void *to, const void __user * from,
  2331. unsigned long n)
  2332. {
  2333. char *t = to;
  2334. const char __user *f = from;
  2335. char c;
  2336. if (!access_ok(VERIFY_READ, from, n))
  2337. return n;
  2338. while (n) {
  2339. if (__get_user(c, f)) {
  2340. memset(t, 0, n);
  2341. break;
  2342. }
  2343. *t++ = c;
  2344. f++;
  2345. n--;
  2346. }
  2347. return n;
  2348. }
  2349. void *copy_mount_options(const void __user * data)
  2350. {
  2351. int i;
  2352. unsigned long size;
  2353. char *copy;
  2354. if (!data)
  2355. return NULL;
  2356. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2357. if (!copy)
  2358. return ERR_PTR(-ENOMEM);
  2359. /* We only care that *some* data at the address the user
  2360. * gave us is valid. Just in case, we'll zero
  2361. * the remainder of the page.
  2362. */
  2363. /* copy_from_user cannot cross TASK_SIZE ! */
  2364. size = TASK_SIZE - (unsigned long)data;
  2365. if (size > PAGE_SIZE)
  2366. size = PAGE_SIZE;
  2367. i = size - exact_copy_from_user(copy, data, size);
  2368. if (!i) {
  2369. kfree(copy);
  2370. return ERR_PTR(-EFAULT);
  2371. }
  2372. if (i != PAGE_SIZE)
  2373. memset(copy + i, 0, PAGE_SIZE - i);
  2374. return copy;
  2375. }
  2376. char *copy_mount_string(const void __user *data)
  2377. {
  2378. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2379. }
  2380. /*
  2381. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2382. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2383. *
  2384. * data is a (void *) that can point to any structure up to
  2385. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2386. * information (or be NULL).
  2387. *
  2388. * Pre-0.97 versions of mount() didn't have a flags word.
  2389. * When the flags word was introduced its top half was required
  2390. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2391. * Therefore, if this magic number is present, it carries no information
  2392. * and must be discarded.
  2393. */
  2394. long do_mount(const char *dev_name, const char __user *dir_name,
  2395. const char *type_page, unsigned long flags, void *data_page)
  2396. {
  2397. struct path path;
  2398. int retval = 0;
  2399. int mnt_flags = 0;
  2400. /* Discard magic */
  2401. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2402. flags &= ~MS_MGC_MSK;
  2403. /* Basic sanity checks */
  2404. if (data_page)
  2405. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2406. /* ... and get the mountpoint */
  2407. retval = user_path(dir_name, &path);
  2408. if (retval)
  2409. return retval;
  2410. retval = security_sb_mount(dev_name, &path,
  2411. type_page, flags, data_page);
  2412. if (!retval && !may_mount())
  2413. retval = -EPERM;
  2414. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2415. retval = -EPERM;
  2416. if (retval)
  2417. goto dput_out;
  2418. /* Default to relatime unless overriden */
  2419. if (!(flags & MS_NOATIME))
  2420. mnt_flags |= MNT_RELATIME;
  2421. /* Separate the per-mountpoint flags */
  2422. if (flags & MS_NOSUID)
  2423. mnt_flags |= MNT_NOSUID;
  2424. if (flags & MS_NODEV)
  2425. mnt_flags |= MNT_NODEV;
  2426. if (flags & MS_NOEXEC)
  2427. mnt_flags |= MNT_NOEXEC;
  2428. if (flags & MS_NOATIME)
  2429. mnt_flags |= MNT_NOATIME;
  2430. if (flags & MS_NODIRATIME)
  2431. mnt_flags |= MNT_NODIRATIME;
  2432. if (flags & MS_STRICTATIME)
  2433. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2434. if (flags & MS_RDONLY)
  2435. mnt_flags |= MNT_READONLY;
  2436. /* The default atime for remount is preservation */
  2437. if ((flags & MS_REMOUNT) &&
  2438. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2439. MS_STRICTATIME)) == 0)) {
  2440. mnt_flags &= ~MNT_ATIME_MASK;
  2441. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2442. }
  2443. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2444. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2445. MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
  2446. if (flags & MS_REMOUNT)
  2447. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2448. data_page);
  2449. else if (flags & MS_BIND)
  2450. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2451. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2452. retval = do_change_type(&path, flags);
  2453. else if (flags & MS_MOVE)
  2454. retval = do_move_mount(&path, dev_name);
  2455. else
  2456. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2457. dev_name, data_page);
  2458. dput_out:
  2459. path_put(&path);
  2460. return retval;
  2461. }
  2462. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2463. {
  2464. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2465. }
  2466. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2467. {
  2468. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2469. }
  2470. static void free_mnt_ns(struct mnt_namespace *ns)
  2471. {
  2472. ns_free_inum(&ns->ns);
  2473. dec_mnt_namespaces(ns->ucounts);
  2474. put_user_ns(ns->user_ns);
  2475. kfree(ns);
  2476. }
  2477. /*
  2478. * Assign a sequence number so we can detect when we attempt to bind
  2479. * mount a reference to an older mount namespace into the current
  2480. * mount namespace, preventing reference counting loops. A 64bit
  2481. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2482. * is effectively never, so we can ignore the possibility.
  2483. */
  2484. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2485. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2486. {
  2487. struct mnt_namespace *new_ns;
  2488. struct ucounts *ucounts;
  2489. int ret;
  2490. ucounts = inc_mnt_namespaces(user_ns);
  2491. if (!ucounts)
  2492. return ERR_PTR(-ENOSPC);
  2493. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2494. if (!new_ns) {
  2495. dec_mnt_namespaces(ucounts);
  2496. return ERR_PTR(-ENOMEM);
  2497. }
  2498. ret = ns_alloc_inum(&new_ns->ns);
  2499. if (ret) {
  2500. kfree(new_ns);
  2501. dec_mnt_namespaces(ucounts);
  2502. return ERR_PTR(ret);
  2503. }
  2504. new_ns->ns.ops = &mntns_operations;
  2505. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2506. atomic_set(&new_ns->count, 1);
  2507. new_ns->root = NULL;
  2508. INIT_LIST_HEAD(&new_ns->list);
  2509. init_waitqueue_head(&new_ns->poll);
  2510. new_ns->event = 0;
  2511. new_ns->user_ns = get_user_ns(user_ns);
  2512. new_ns->ucounts = ucounts;
  2513. new_ns->mounts = 0;
  2514. new_ns->pending_mounts = 0;
  2515. return new_ns;
  2516. }
  2517. __latent_entropy
  2518. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2519. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2520. {
  2521. struct mnt_namespace *new_ns;
  2522. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2523. struct mount *p, *q;
  2524. struct mount *old;
  2525. struct mount *new;
  2526. int copy_flags;
  2527. BUG_ON(!ns);
  2528. if (likely(!(flags & CLONE_NEWNS))) {
  2529. get_mnt_ns(ns);
  2530. return ns;
  2531. }
  2532. old = ns->root;
  2533. new_ns = alloc_mnt_ns(user_ns);
  2534. if (IS_ERR(new_ns))
  2535. return new_ns;
  2536. namespace_lock();
  2537. /* First pass: copy the tree topology */
  2538. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2539. if (user_ns != ns->user_ns)
  2540. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2541. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2542. if (IS_ERR(new)) {
  2543. namespace_unlock();
  2544. free_mnt_ns(new_ns);
  2545. return ERR_CAST(new);
  2546. }
  2547. new_ns->root = new;
  2548. list_add_tail(&new_ns->list, &new->mnt_list);
  2549. /*
  2550. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2551. * as belonging to new namespace. We have already acquired a private
  2552. * fs_struct, so tsk->fs->lock is not needed.
  2553. */
  2554. p = old;
  2555. q = new;
  2556. while (p) {
  2557. q->mnt_ns = new_ns;
  2558. new_ns->mounts++;
  2559. if (new_fs) {
  2560. if (&p->mnt == new_fs->root.mnt) {
  2561. new_fs->root.mnt = mntget(&q->mnt);
  2562. rootmnt = &p->mnt;
  2563. }
  2564. if (&p->mnt == new_fs->pwd.mnt) {
  2565. new_fs->pwd.mnt = mntget(&q->mnt);
  2566. pwdmnt = &p->mnt;
  2567. }
  2568. }
  2569. p = next_mnt(p, old);
  2570. q = next_mnt(q, new);
  2571. if (!q)
  2572. break;
  2573. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2574. p = next_mnt(p, old);
  2575. }
  2576. namespace_unlock();
  2577. if (rootmnt)
  2578. mntput(rootmnt);
  2579. if (pwdmnt)
  2580. mntput(pwdmnt);
  2581. return new_ns;
  2582. }
  2583. /**
  2584. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2585. * @mnt: pointer to the new root filesystem mountpoint
  2586. */
  2587. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2588. {
  2589. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2590. if (!IS_ERR(new_ns)) {
  2591. struct mount *mnt = real_mount(m);
  2592. mnt->mnt_ns = new_ns;
  2593. new_ns->root = mnt;
  2594. new_ns->mounts++;
  2595. list_add(&mnt->mnt_list, &new_ns->list);
  2596. } else {
  2597. mntput(m);
  2598. }
  2599. return new_ns;
  2600. }
  2601. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2602. {
  2603. struct mnt_namespace *ns;
  2604. struct super_block *s;
  2605. struct path path;
  2606. int err;
  2607. ns = create_mnt_ns(mnt);
  2608. if (IS_ERR(ns))
  2609. return ERR_CAST(ns);
  2610. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2611. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2612. put_mnt_ns(ns);
  2613. if (err)
  2614. return ERR_PTR(err);
  2615. /* trade a vfsmount reference for active sb one */
  2616. s = path.mnt->mnt_sb;
  2617. atomic_inc(&s->s_active);
  2618. mntput(path.mnt);
  2619. /* lock the sucker */
  2620. down_write(&s->s_umount);
  2621. /* ... and return the root of (sub)tree on it */
  2622. return path.dentry;
  2623. }
  2624. EXPORT_SYMBOL(mount_subtree);
  2625. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2626. char __user *, type, unsigned long, flags, void __user *, data)
  2627. {
  2628. int ret;
  2629. char *kernel_type;
  2630. char *kernel_dev;
  2631. void *options;
  2632. kernel_type = copy_mount_string(type);
  2633. ret = PTR_ERR(kernel_type);
  2634. if (IS_ERR(kernel_type))
  2635. goto out_type;
  2636. kernel_dev = copy_mount_string(dev_name);
  2637. ret = PTR_ERR(kernel_dev);
  2638. if (IS_ERR(kernel_dev))
  2639. goto out_dev;
  2640. options = copy_mount_options(data);
  2641. ret = PTR_ERR(options);
  2642. if (IS_ERR(options))
  2643. goto out_data;
  2644. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2645. kfree(options);
  2646. out_data:
  2647. kfree(kernel_dev);
  2648. out_dev:
  2649. kfree(kernel_type);
  2650. out_type:
  2651. return ret;
  2652. }
  2653. /*
  2654. * Return true if path is reachable from root
  2655. *
  2656. * namespace_sem or mount_lock is held
  2657. */
  2658. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2659. const struct path *root)
  2660. {
  2661. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2662. dentry = mnt->mnt_mountpoint;
  2663. mnt = mnt->mnt_parent;
  2664. }
  2665. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2666. }
  2667. bool path_is_under(struct path *path1, struct path *path2)
  2668. {
  2669. bool res;
  2670. read_seqlock_excl(&mount_lock);
  2671. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2672. read_sequnlock_excl(&mount_lock);
  2673. return res;
  2674. }
  2675. EXPORT_SYMBOL(path_is_under);
  2676. /*
  2677. * pivot_root Semantics:
  2678. * Moves the root file system of the current process to the directory put_old,
  2679. * makes new_root as the new root file system of the current process, and sets
  2680. * root/cwd of all processes which had them on the current root to new_root.
  2681. *
  2682. * Restrictions:
  2683. * The new_root and put_old must be directories, and must not be on the
  2684. * same file system as the current process root. The put_old must be
  2685. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2686. * pointed to by put_old must yield the same directory as new_root. No other
  2687. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2688. *
  2689. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2690. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2691. * in this situation.
  2692. *
  2693. * Notes:
  2694. * - we don't move root/cwd if they are not at the root (reason: if something
  2695. * cared enough to change them, it's probably wrong to force them elsewhere)
  2696. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2697. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2698. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2699. * first.
  2700. */
  2701. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2702. const char __user *, put_old)
  2703. {
  2704. struct path new, old, parent_path, root_parent, root;
  2705. struct mount *new_mnt, *root_mnt, *old_mnt;
  2706. struct mountpoint *old_mp, *root_mp;
  2707. int error;
  2708. if (!may_mount())
  2709. return -EPERM;
  2710. error = user_path_dir(new_root, &new);
  2711. if (error)
  2712. goto out0;
  2713. error = user_path_dir(put_old, &old);
  2714. if (error)
  2715. goto out1;
  2716. error = security_sb_pivotroot(&old, &new);
  2717. if (error)
  2718. goto out2;
  2719. get_fs_root(current->fs, &root);
  2720. old_mp = lock_mount(&old);
  2721. error = PTR_ERR(old_mp);
  2722. if (IS_ERR(old_mp))
  2723. goto out3;
  2724. error = -EINVAL;
  2725. new_mnt = real_mount(new.mnt);
  2726. root_mnt = real_mount(root.mnt);
  2727. old_mnt = real_mount(old.mnt);
  2728. if (IS_MNT_SHARED(old_mnt) ||
  2729. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2730. IS_MNT_SHARED(root_mnt->mnt_parent))
  2731. goto out4;
  2732. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2733. goto out4;
  2734. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2735. goto out4;
  2736. error = -ENOENT;
  2737. if (d_unlinked(new.dentry))
  2738. goto out4;
  2739. error = -EBUSY;
  2740. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2741. goto out4; /* loop, on the same file system */
  2742. error = -EINVAL;
  2743. if (root.mnt->mnt_root != root.dentry)
  2744. goto out4; /* not a mountpoint */
  2745. if (!mnt_has_parent(root_mnt))
  2746. goto out4; /* not attached */
  2747. root_mp = root_mnt->mnt_mp;
  2748. if (new.mnt->mnt_root != new.dentry)
  2749. goto out4; /* not a mountpoint */
  2750. if (!mnt_has_parent(new_mnt))
  2751. goto out4; /* not attached */
  2752. /* make sure we can reach put_old from new_root */
  2753. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2754. goto out4;
  2755. /* make certain new is below the root */
  2756. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2757. goto out4;
  2758. root_mp->m_count++; /* pin it so it won't go away */
  2759. lock_mount_hash();
  2760. detach_mnt(new_mnt, &parent_path);
  2761. detach_mnt(root_mnt, &root_parent);
  2762. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2763. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2764. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2765. }
  2766. /* mount old root on put_old */
  2767. attach_mnt(root_mnt, old_mnt, old_mp);
  2768. /* mount new_root on / */
  2769. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2770. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2771. /* A moved mount should not expire automatically */
  2772. list_del_init(&new_mnt->mnt_expire);
  2773. put_mountpoint(root_mp);
  2774. unlock_mount_hash();
  2775. chroot_fs_refs(&root, &new);
  2776. error = 0;
  2777. out4:
  2778. unlock_mount(old_mp);
  2779. if (!error) {
  2780. path_put(&root_parent);
  2781. path_put(&parent_path);
  2782. }
  2783. out3:
  2784. path_put(&root);
  2785. out2:
  2786. path_put(&old);
  2787. out1:
  2788. path_put(&new);
  2789. out0:
  2790. return error;
  2791. }
  2792. static void __init init_mount_tree(void)
  2793. {
  2794. struct vfsmount *mnt;
  2795. struct mnt_namespace *ns;
  2796. struct path root;
  2797. struct file_system_type *type;
  2798. type = get_fs_type("rootfs");
  2799. if (!type)
  2800. panic("Can't find rootfs type");
  2801. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2802. put_filesystem(type);
  2803. if (IS_ERR(mnt))
  2804. panic("Can't create rootfs");
  2805. ns = create_mnt_ns(mnt);
  2806. if (IS_ERR(ns))
  2807. panic("Can't allocate initial namespace");
  2808. init_task.nsproxy->mnt_ns = ns;
  2809. get_mnt_ns(ns);
  2810. root.mnt = mnt;
  2811. root.dentry = mnt->mnt_root;
  2812. mnt->mnt_flags |= MNT_LOCKED;
  2813. set_fs_pwd(current->fs, &root);
  2814. set_fs_root(current->fs, &root);
  2815. }
  2816. void __init mnt_init(void)
  2817. {
  2818. unsigned u;
  2819. int err;
  2820. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2821. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2822. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2823. sizeof(struct hlist_head),
  2824. mhash_entries, 19,
  2825. 0,
  2826. &m_hash_shift, &m_hash_mask, 0, 0);
  2827. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2828. sizeof(struct hlist_head),
  2829. mphash_entries, 19,
  2830. 0,
  2831. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2832. if (!mount_hashtable || !mountpoint_hashtable)
  2833. panic("Failed to allocate mount hash table\n");
  2834. for (u = 0; u <= m_hash_mask; u++)
  2835. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2836. for (u = 0; u <= mp_hash_mask; u++)
  2837. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2838. kernfs_init();
  2839. err = sysfs_init();
  2840. if (err)
  2841. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2842. __func__, err);
  2843. fs_kobj = kobject_create_and_add("fs", NULL);
  2844. if (!fs_kobj)
  2845. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2846. init_rootfs();
  2847. init_mount_tree();
  2848. }
  2849. void put_mnt_ns(struct mnt_namespace *ns)
  2850. {
  2851. if (!atomic_dec_and_test(&ns->count))
  2852. return;
  2853. drop_collected_mounts(&ns->root->mnt);
  2854. free_mnt_ns(ns);
  2855. }
  2856. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2857. {
  2858. struct vfsmount *mnt;
  2859. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2860. if (!IS_ERR(mnt)) {
  2861. /*
  2862. * it is a longterm mount, don't release mnt until
  2863. * we unmount before file sys is unregistered
  2864. */
  2865. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2866. }
  2867. return mnt;
  2868. }
  2869. EXPORT_SYMBOL_GPL(kern_mount_data);
  2870. void kern_unmount(struct vfsmount *mnt)
  2871. {
  2872. /* release long term mount so mount point can be released */
  2873. if (!IS_ERR_OR_NULL(mnt)) {
  2874. real_mount(mnt)->mnt_ns = NULL;
  2875. synchronize_rcu(); /* yecchhh... */
  2876. mntput(mnt);
  2877. }
  2878. }
  2879. EXPORT_SYMBOL(kern_unmount);
  2880. bool our_mnt(struct vfsmount *mnt)
  2881. {
  2882. return check_mnt(real_mount(mnt));
  2883. }
  2884. bool current_chrooted(void)
  2885. {
  2886. /* Does the current process have a non-standard root */
  2887. struct path ns_root;
  2888. struct path fs_root;
  2889. bool chrooted;
  2890. /* Find the namespace root */
  2891. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2892. ns_root.dentry = ns_root.mnt->mnt_root;
  2893. path_get(&ns_root);
  2894. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2895. ;
  2896. get_fs_root(current->fs, &fs_root);
  2897. chrooted = !path_equal(&fs_root, &ns_root);
  2898. path_put(&fs_root);
  2899. path_put(&ns_root);
  2900. return chrooted;
  2901. }
  2902. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2903. int *new_mnt_flags)
  2904. {
  2905. int new_flags = *new_mnt_flags;
  2906. struct mount *mnt;
  2907. bool visible = false;
  2908. down_read(&namespace_sem);
  2909. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2910. struct mount *child;
  2911. int mnt_flags;
  2912. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2913. continue;
  2914. /* This mount is not fully visible if it's root directory
  2915. * is not the root directory of the filesystem.
  2916. */
  2917. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2918. continue;
  2919. /* A local view of the mount flags */
  2920. mnt_flags = mnt->mnt.mnt_flags;
  2921. /* Don't miss readonly hidden in the superblock flags */
  2922. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2923. mnt_flags |= MNT_LOCK_READONLY;
  2924. /* Verify the mount flags are equal to or more permissive
  2925. * than the proposed new mount.
  2926. */
  2927. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2928. !(new_flags & MNT_READONLY))
  2929. continue;
  2930. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2931. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2932. continue;
  2933. /* This mount is not fully visible if there are any
  2934. * locked child mounts that cover anything except for
  2935. * empty directories.
  2936. */
  2937. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2938. struct inode *inode = child->mnt_mountpoint->d_inode;
  2939. /* Only worry about locked mounts */
  2940. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2941. continue;
  2942. /* Is the directory permanetly empty? */
  2943. if (!is_empty_dir_inode(inode))
  2944. goto next;
  2945. }
  2946. /* Preserve the locked attributes */
  2947. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2948. MNT_LOCK_ATIME);
  2949. visible = true;
  2950. goto found;
  2951. next: ;
  2952. }
  2953. found:
  2954. up_read(&namespace_sem);
  2955. return visible;
  2956. }
  2957. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2958. {
  2959. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2960. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2961. unsigned long s_iflags;
  2962. if (ns->user_ns == &init_user_ns)
  2963. return false;
  2964. /* Can this filesystem be too revealing? */
  2965. s_iflags = mnt->mnt_sb->s_iflags;
  2966. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2967. return false;
  2968. if ((s_iflags & required_iflags) != required_iflags) {
  2969. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2970. required_iflags);
  2971. return true;
  2972. }
  2973. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2974. }
  2975. bool mnt_may_suid(struct vfsmount *mnt)
  2976. {
  2977. /*
  2978. * Foreign mounts (accessed via fchdir or through /proc
  2979. * symlinks) are always treated as if they are nosuid. This
  2980. * prevents namespaces from trusting potentially unsafe
  2981. * suid/sgid bits, file caps, or security labels that originate
  2982. * in other namespaces.
  2983. */
  2984. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  2985. current_in_userns(mnt->mnt_sb->s_user_ns);
  2986. }
  2987. static struct ns_common *mntns_get(struct task_struct *task)
  2988. {
  2989. struct ns_common *ns = NULL;
  2990. struct nsproxy *nsproxy;
  2991. task_lock(task);
  2992. nsproxy = task->nsproxy;
  2993. if (nsproxy) {
  2994. ns = &nsproxy->mnt_ns->ns;
  2995. get_mnt_ns(to_mnt_ns(ns));
  2996. }
  2997. task_unlock(task);
  2998. return ns;
  2999. }
  3000. static void mntns_put(struct ns_common *ns)
  3001. {
  3002. put_mnt_ns(to_mnt_ns(ns));
  3003. }
  3004. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3005. {
  3006. struct fs_struct *fs = current->fs;
  3007. struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
  3008. struct path root;
  3009. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3010. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3011. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3012. return -EPERM;
  3013. if (fs->users != 1)
  3014. return -EINVAL;
  3015. get_mnt_ns(mnt_ns);
  3016. put_mnt_ns(nsproxy->mnt_ns);
  3017. nsproxy->mnt_ns = mnt_ns;
  3018. /* Find the root */
  3019. root.mnt = &mnt_ns->root->mnt;
  3020. root.dentry = mnt_ns->root->mnt.mnt_root;
  3021. path_get(&root);
  3022. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  3023. ;
  3024. /* Update the pwd and root */
  3025. set_fs_pwd(fs, &root);
  3026. set_fs_root(fs, &root);
  3027. path_put(&root);
  3028. return 0;
  3029. }
  3030. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3031. {
  3032. return to_mnt_ns(ns)->user_ns;
  3033. }
  3034. const struct proc_ns_operations mntns_operations = {
  3035. .name = "mnt",
  3036. .type = CLONE_NEWNS,
  3037. .get = mntns_get,
  3038. .put = mntns_put,
  3039. .install = mntns_install,
  3040. .owner = mntns_owner,
  3041. };