spi-bcm-qspi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397
  1. /*
  2. * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers
  3. *
  4. * Copyright 2016 Broadcom
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation (the "GPL").
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License version 2 (GPLv2) for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * version 2 (GPLv2) along with this source code.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/delay.h>
  20. #include <linux/device.h>
  21. #include <linux/init.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/io.h>
  24. #include <linux/ioport.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/mtd/spi-nor.h>
  28. #include <linux/of.h>
  29. #include <linux/of_irq.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/slab.h>
  32. #include <linux/spi/spi.h>
  33. #include <linux/sysfs.h>
  34. #include <linux/types.h>
  35. #include "spi-bcm-qspi.h"
  36. #define DRIVER_NAME "bcm_qspi"
  37. /* BSPI register offsets */
  38. #define BSPI_REVISION_ID 0x000
  39. #define BSPI_SCRATCH 0x004
  40. #define BSPI_MAST_N_BOOT_CTRL 0x008
  41. #define BSPI_BUSY_STATUS 0x00c
  42. #define BSPI_INTR_STATUS 0x010
  43. #define BSPI_B0_STATUS 0x014
  44. #define BSPI_B0_CTRL 0x018
  45. #define BSPI_B1_STATUS 0x01c
  46. #define BSPI_B1_CTRL 0x020
  47. #define BSPI_STRAP_OVERRIDE_CTRL 0x024
  48. #define BSPI_FLEX_MODE_ENABLE 0x028
  49. #define BSPI_BITS_PER_CYCLE 0x02c
  50. #define BSPI_BITS_PER_PHASE 0x030
  51. #define BSPI_CMD_AND_MODE_BYTE 0x034
  52. #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
  53. #define BSPI_BSPI_XOR_VALUE 0x03c
  54. #define BSPI_BSPI_XOR_ENABLE 0x040
  55. #define BSPI_BSPI_PIO_MODE_ENABLE 0x044
  56. #define BSPI_BSPI_PIO_IODIR 0x048
  57. #define BSPI_BSPI_PIO_DATA 0x04c
  58. /* RAF register offsets */
  59. #define BSPI_RAF_START_ADDR 0x100
  60. #define BSPI_RAF_NUM_WORDS 0x104
  61. #define BSPI_RAF_CTRL 0x108
  62. #define BSPI_RAF_FULLNESS 0x10c
  63. #define BSPI_RAF_WATERMARK 0x110
  64. #define BSPI_RAF_STATUS 0x114
  65. #define BSPI_RAF_READ_DATA 0x118
  66. #define BSPI_RAF_WORD_CNT 0x11c
  67. #define BSPI_RAF_CURR_ADDR 0x120
  68. /* Override mode masks */
  69. #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0)
  70. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1)
  71. #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2)
  72. #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3)
  73. #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4)
  74. #define BSPI_ADDRLEN_3BYTES 3
  75. #define BSPI_ADDRLEN_4BYTES 4
  76. #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
  77. #define BSPI_RAF_CTRL_START_MASK BIT(0)
  78. #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1)
  79. #define BSPI_BPP_MODE_SELECT_MASK BIT(8)
  80. #define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
  81. #define BSPI_READ_LENGTH 256
  82. /* MSPI register offsets */
  83. #define MSPI_SPCR0_LSB 0x000
  84. #define MSPI_SPCR0_MSB 0x004
  85. #define MSPI_SPCR1_LSB 0x008
  86. #define MSPI_SPCR1_MSB 0x00c
  87. #define MSPI_NEWQP 0x010
  88. #define MSPI_ENDQP 0x014
  89. #define MSPI_SPCR2 0x018
  90. #define MSPI_MSPI_STATUS 0x020
  91. #define MSPI_CPTQP 0x024
  92. #define MSPI_SPCR3 0x028
  93. #define MSPI_TXRAM 0x040
  94. #define MSPI_RXRAM 0x0c0
  95. #define MSPI_CDRAM 0x140
  96. #define MSPI_WRITE_LOCK 0x180
  97. #define MSPI_MASTER_BIT BIT(7)
  98. #define MSPI_NUM_CDRAM 16
  99. #define MSPI_CDRAM_CONT_BIT BIT(7)
  100. #define MSPI_CDRAM_BITSE_BIT BIT(6)
  101. #define MSPI_CDRAM_PCS 0xf
  102. #define MSPI_SPCR2_SPE BIT(6)
  103. #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
  104. #define MSPI_MSPI_STATUS_SPIF BIT(0)
  105. #define INTR_BASE_BIT_SHIFT 0x02
  106. #define INTR_COUNT 0x07
  107. #define NUM_CHIPSELECT 4
  108. #define QSPI_SPBR_MIN 8U
  109. #define QSPI_SPBR_MAX 255U
  110. #define OPCODE_DIOR 0xBB
  111. #define OPCODE_QIOR 0xEB
  112. #define OPCODE_DIOR_4B 0xBC
  113. #define OPCODE_QIOR_4B 0xEC
  114. #define MAX_CMD_SIZE 6
  115. #define ADDR_4MB_MASK GENMASK(22, 0)
  116. /* stop at end of transfer, no other reason */
  117. #define TRANS_STATUS_BREAK_NONE 0
  118. /* stop at end of spi_message */
  119. #define TRANS_STATUS_BREAK_EOM 1
  120. /* stop at end of spi_transfer if delay */
  121. #define TRANS_STATUS_BREAK_DELAY 2
  122. /* stop at end of spi_transfer if cs_change */
  123. #define TRANS_STATUS_BREAK_CS_CHANGE 4
  124. /* stop if we run out of bytes */
  125. #define TRANS_STATUS_BREAK_NO_BYTES 8
  126. /* events that make us stop filling TX slots */
  127. #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \
  128. TRANS_STATUS_BREAK_DELAY | \
  129. TRANS_STATUS_BREAK_CS_CHANGE)
  130. /* events that make us deassert CS */
  131. #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
  132. TRANS_STATUS_BREAK_CS_CHANGE)
  133. struct bcm_qspi_parms {
  134. u32 speed_hz;
  135. u8 mode;
  136. u8 bits_per_word;
  137. };
  138. struct bcm_xfer_mode {
  139. bool flex_mode;
  140. unsigned int width;
  141. unsigned int addrlen;
  142. unsigned int hp;
  143. };
  144. enum base_type {
  145. MSPI,
  146. BSPI,
  147. CHIP_SELECT,
  148. BASEMAX,
  149. };
  150. enum irq_source {
  151. SINGLE_L2,
  152. MUXED_L1,
  153. };
  154. struct bcm_qspi_irq {
  155. const char *irq_name;
  156. const irq_handler_t irq_handler;
  157. int irq_source;
  158. u32 mask;
  159. };
  160. struct bcm_qspi_dev_id {
  161. const struct bcm_qspi_irq *irqp;
  162. void *dev;
  163. };
  164. struct qspi_trans {
  165. struct spi_transfer *trans;
  166. int byte;
  167. };
  168. struct bcm_qspi {
  169. struct platform_device *pdev;
  170. struct spi_master *master;
  171. struct clk *clk;
  172. u32 base_clk;
  173. u32 max_speed_hz;
  174. void __iomem *base[BASEMAX];
  175. /* Some SoCs provide custom interrupt status register(s) */
  176. struct bcm_qspi_soc_intc *soc_intc;
  177. struct bcm_qspi_parms last_parms;
  178. struct qspi_trans trans_pos;
  179. int curr_cs;
  180. int bspi_maj_rev;
  181. int bspi_min_rev;
  182. int bspi_enabled;
  183. struct spi_flash_read_message *bspi_rf_msg;
  184. u32 bspi_rf_msg_idx;
  185. u32 bspi_rf_msg_len;
  186. u32 bspi_rf_msg_status;
  187. struct bcm_xfer_mode xfer_mode;
  188. u32 s3_strap_override_ctrl;
  189. bool bspi_mode;
  190. bool big_endian;
  191. int num_irqs;
  192. struct bcm_qspi_dev_id *dev_ids;
  193. struct completion mspi_done;
  194. struct completion bspi_done;
  195. };
  196. static inline bool has_bspi(struct bcm_qspi *qspi)
  197. {
  198. return qspi->bspi_mode;
  199. }
  200. /* Read qspi controller register*/
  201. static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
  202. unsigned int offset)
  203. {
  204. return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
  205. }
  206. /* Write qspi controller register*/
  207. static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
  208. unsigned int offset, unsigned int data)
  209. {
  210. bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
  211. }
  212. /* BSPI helpers */
  213. static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
  214. {
  215. int i;
  216. /* this should normally finish within 10us */
  217. for (i = 0; i < 1000; i++) {
  218. if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
  219. return 0;
  220. udelay(1);
  221. }
  222. dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
  223. return -EIO;
  224. }
  225. static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
  226. {
  227. if (qspi->bspi_maj_rev < 4)
  228. return true;
  229. return false;
  230. }
  231. static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
  232. {
  233. bcm_qspi_bspi_busy_poll(qspi);
  234. /* Force rising edge for the b0/b1 'flush' field */
  235. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
  236. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
  237. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  238. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  239. }
  240. static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
  241. {
  242. return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
  243. BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
  244. }
  245. static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
  246. {
  247. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
  248. /* BSPI v3 LR is LE only, convert data to host endianness */
  249. if (bcm_qspi_bspi_ver_three(qspi))
  250. data = le32_to_cpu(data);
  251. return data;
  252. }
  253. static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
  254. {
  255. bcm_qspi_bspi_busy_poll(qspi);
  256. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  257. BSPI_RAF_CTRL_START_MASK);
  258. }
  259. static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
  260. {
  261. bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
  262. BSPI_RAF_CTRL_CLEAR_MASK);
  263. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  264. }
  265. static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
  266. {
  267. u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
  268. u32 data = 0;
  269. dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
  270. qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
  271. while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
  272. data = bcm_qspi_bspi_lr_read_fifo(qspi);
  273. if (likely(qspi->bspi_rf_msg_len >= 4) &&
  274. IS_ALIGNED((uintptr_t)buf, 4)) {
  275. buf[qspi->bspi_rf_msg_idx++] = data;
  276. qspi->bspi_rf_msg_len -= 4;
  277. } else {
  278. /* Read out remaining bytes, make sure*/
  279. u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
  280. data = cpu_to_le32(data);
  281. while (qspi->bspi_rf_msg_len) {
  282. *cbuf++ = (u8)data;
  283. data >>= 8;
  284. qspi->bspi_rf_msg_len--;
  285. }
  286. }
  287. }
  288. }
  289. static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
  290. int bpp, int bpc, int flex_mode)
  291. {
  292. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
  293. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
  294. bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
  295. bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
  296. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
  297. }
  298. static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
  299. int addrlen, int hp)
  300. {
  301. int bpc = 0, bpp = 0;
  302. u8 command = SPINOR_OP_READ_FAST;
  303. int flex_mode = 1, rv = 0;
  304. bool spans_4byte = false;
  305. dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
  306. width, addrlen, hp);
  307. if (addrlen == BSPI_ADDRLEN_4BYTES) {
  308. bpp = BSPI_BPP_ADDR_SELECT_MASK;
  309. spans_4byte = true;
  310. }
  311. bpp |= 8;
  312. switch (width) {
  313. case SPI_NBITS_SINGLE:
  314. if (addrlen == BSPI_ADDRLEN_3BYTES)
  315. /* default mode, does not need flex_cmd */
  316. flex_mode = 0;
  317. else
  318. command = SPINOR_OP_READ4_FAST;
  319. break;
  320. case SPI_NBITS_DUAL:
  321. bpc = 0x00000001;
  322. if (hp) {
  323. bpc |= 0x00010100; /* address and mode are 2-bit */
  324. bpp = BSPI_BPP_MODE_SELECT_MASK;
  325. command = OPCODE_DIOR;
  326. if (spans_4byte)
  327. command = OPCODE_DIOR_4B;
  328. } else {
  329. command = SPINOR_OP_READ_1_1_2;
  330. if (spans_4byte)
  331. command = SPINOR_OP_READ4_1_1_2;
  332. }
  333. break;
  334. case SPI_NBITS_QUAD:
  335. bpc = 0x00000002;
  336. if (hp) {
  337. bpc |= 0x00020200; /* address and mode are 4-bit */
  338. bpp = 4; /* dummy cycles */
  339. bpp |= BSPI_BPP_ADDR_SELECT_MASK;
  340. command = OPCODE_QIOR;
  341. if (spans_4byte)
  342. command = OPCODE_QIOR_4B;
  343. } else {
  344. command = SPINOR_OP_READ_1_1_4;
  345. if (spans_4byte)
  346. command = SPINOR_OP_READ4_1_1_4;
  347. }
  348. break;
  349. default:
  350. rv = -EINVAL;
  351. break;
  352. }
  353. if (rv == 0)
  354. bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
  355. flex_mode);
  356. return rv;
  357. }
  358. static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
  359. int addrlen, int hp)
  360. {
  361. u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  362. dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
  363. width, addrlen, hp);
  364. switch (width) {
  365. case SPI_NBITS_SINGLE:
  366. /* clear quad/dual mode */
  367. data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
  368. BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
  369. break;
  370. case SPI_NBITS_QUAD:
  371. /* clear dual mode and set quad mode */
  372. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  373. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  374. break;
  375. case SPI_NBITS_DUAL:
  376. /* clear quad mode set dual mode */
  377. data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
  378. data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
  379. break;
  380. default:
  381. return -EINVAL;
  382. }
  383. if (addrlen == BSPI_ADDRLEN_4BYTES)
  384. /* set 4byte mode*/
  385. data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  386. else
  387. /* clear 4 byte mode */
  388. data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
  389. /* set the override mode */
  390. data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  391. bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
  392. bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
  393. return 0;
  394. }
  395. static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
  396. int width, int addrlen, int hp)
  397. {
  398. int error = 0;
  399. /* default mode */
  400. qspi->xfer_mode.flex_mode = true;
  401. if (!bcm_qspi_bspi_ver_three(qspi)) {
  402. u32 val, mask;
  403. val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
  404. mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
  405. if (val & mask || qspi->s3_strap_override_ctrl & mask) {
  406. qspi->xfer_mode.flex_mode = false;
  407. bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
  408. 0);
  409. if ((val | qspi->s3_strap_override_ctrl) &
  410. BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
  411. width = SPI_NBITS_DUAL;
  412. else if ((val | qspi->s3_strap_override_ctrl) &
  413. BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
  414. width = SPI_NBITS_QUAD;
  415. error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
  416. hp);
  417. }
  418. }
  419. if (qspi->xfer_mode.flex_mode)
  420. error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
  421. if (error) {
  422. dev_warn(&qspi->pdev->dev,
  423. "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
  424. width, addrlen, hp);
  425. } else if (qspi->xfer_mode.width != width ||
  426. qspi->xfer_mode.addrlen != addrlen ||
  427. qspi->xfer_mode.hp != hp) {
  428. qspi->xfer_mode.width = width;
  429. qspi->xfer_mode.addrlen = addrlen;
  430. qspi->xfer_mode.hp = hp;
  431. dev_dbg(&qspi->pdev->dev,
  432. "cs:%d %d-lane output, %d-byte address%s\n",
  433. qspi->curr_cs,
  434. qspi->xfer_mode.width,
  435. qspi->xfer_mode.addrlen,
  436. qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
  437. }
  438. return error;
  439. }
  440. static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
  441. {
  442. if (!has_bspi(qspi) || (qspi->bspi_enabled))
  443. return;
  444. qspi->bspi_enabled = 1;
  445. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
  446. return;
  447. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  448. udelay(1);
  449. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
  450. udelay(1);
  451. }
  452. static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
  453. {
  454. if (!has_bspi(qspi) || (!qspi->bspi_enabled))
  455. return;
  456. qspi->bspi_enabled = 0;
  457. if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
  458. return;
  459. bcm_qspi_bspi_busy_poll(qspi);
  460. bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
  461. udelay(1);
  462. }
  463. static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
  464. {
  465. u32 data = 0;
  466. if (qspi->curr_cs == cs)
  467. return;
  468. if (qspi->base[CHIP_SELECT]) {
  469. data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
  470. data = (data & ~0xff) | (1 << cs);
  471. bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
  472. usleep_range(10, 20);
  473. }
  474. qspi->curr_cs = cs;
  475. }
  476. /* MSPI helpers */
  477. static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
  478. const struct bcm_qspi_parms *xp)
  479. {
  480. u32 spcr, spbr = 0;
  481. if (xp->speed_hz)
  482. spbr = qspi->base_clk / (2 * xp->speed_hz);
  483. spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
  484. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
  485. spcr = MSPI_MASTER_BIT;
  486. /* for 16 bit the data should be zero */
  487. if (xp->bits_per_word != 16)
  488. spcr |= xp->bits_per_word << 2;
  489. spcr |= xp->mode & 3;
  490. bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
  491. qspi->last_parms = *xp;
  492. }
  493. static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
  494. struct spi_device *spi,
  495. struct spi_transfer *trans)
  496. {
  497. struct bcm_qspi_parms xp;
  498. xp.speed_hz = trans->speed_hz;
  499. xp.bits_per_word = trans->bits_per_word;
  500. xp.mode = spi->mode;
  501. bcm_qspi_hw_set_parms(qspi, &xp);
  502. }
  503. static int bcm_qspi_setup(struct spi_device *spi)
  504. {
  505. struct bcm_qspi_parms *xp;
  506. if (spi->bits_per_word > 16)
  507. return -EINVAL;
  508. xp = spi_get_ctldata(spi);
  509. if (!xp) {
  510. xp = kzalloc(sizeof(*xp), GFP_KERNEL);
  511. if (!xp)
  512. return -ENOMEM;
  513. spi_set_ctldata(spi, xp);
  514. }
  515. xp->speed_hz = spi->max_speed_hz;
  516. xp->mode = spi->mode;
  517. if (spi->bits_per_word)
  518. xp->bits_per_word = spi->bits_per_word;
  519. else
  520. xp->bits_per_word = 8;
  521. return 0;
  522. }
  523. static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
  524. struct qspi_trans *qt, int flags)
  525. {
  526. int ret = TRANS_STATUS_BREAK_NONE;
  527. /* count the last transferred bytes */
  528. if (qt->trans->bits_per_word <= 8)
  529. qt->byte++;
  530. else
  531. qt->byte += 2;
  532. if (qt->byte >= qt->trans->len) {
  533. /* we're at the end of the spi_transfer */
  534. /* in TX mode, need to pause for a delay or CS change */
  535. if (qt->trans->delay_usecs &&
  536. (flags & TRANS_STATUS_BREAK_DELAY))
  537. ret |= TRANS_STATUS_BREAK_DELAY;
  538. if (qt->trans->cs_change &&
  539. (flags & TRANS_STATUS_BREAK_CS_CHANGE))
  540. ret |= TRANS_STATUS_BREAK_CS_CHANGE;
  541. if (ret)
  542. goto done;
  543. dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
  544. if (spi_transfer_is_last(qspi->master, qt->trans))
  545. ret = TRANS_STATUS_BREAK_EOM;
  546. else
  547. ret = TRANS_STATUS_BREAK_NO_BYTES;
  548. qt->trans = NULL;
  549. }
  550. done:
  551. dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
  552. qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
  553. return ret;
  554. }
  555. static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
  556. {
  557. u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
  558. /* mask out reserved bits */
  559. return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
  560. }
  561. static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
  562. {
  563. u32 reg_offset = MSPI_RXRAM;
  564. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  565. u32 msb_offset = reg_offset + (slot << 3);
  566. return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
  567. ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
  568. }
  569. static void read_from_hw(struct bcm_qspi *qspi, int slots)
  570. {
  571. struct qspi_trans tp;
  572. int slot;
  573. bcm_qspi_disable_bspi(qspi);
  574. if (slots > MSPI_NUM_CDRAM) {
  575. /* should never happen */
  576. dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
  577. return;
  578. }
  579. tp = qspi->trans_pos;
  580. for (slot = 0; slot < slots; slot++) {
  581. if (tp.trans->bits_per_word <= 8) {
  582. u8 *buf = tp.trans->rx_buf;
  583. if (buf)
  584. buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
  585. dev_dbg(&qspi->pdev->dev, "RD %02x\n",
  586. buf ? buf[tp.byte] : 0xff);
  587. } else {
  588. u16 *buf = tp.trans->rx_buf;
  589. if (buf)
  590. buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
  591. slot);
  592. dev_dbg(&qspi->pdev->dev, "RD %04x\n",
  593. buf ? buf[tp.byte] : 0xffff);
  594. }
  595. update_qspi_trans_byte_count(qspi, &tp,
  596. TRANS_STATUS_BREAK_NONE);
  597. }
  598. qspi->trans_pos = tp;
  599. }
  600. static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
  601. u8 val)
  602. {
  603. u32 reg_offset = MSPI_TXRAM + (slot << 3);
  604. /* mask out reserved bits */
  605. bcm_qspi_write(qspi, MSPI, reg_offset, val);
  606. }
  607. static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
  608. u16 val)
  609. {
  610. u32 reg_offset = MSPI_TXRAM;
  611. u32 msb_offset = reg_offset + (slot << 3);
  612. u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
  613. bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
  614. bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
  615. }
  616. static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
  617. {
  618. return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
  619. }
  620. static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
  621. {
  622. bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
  623. }
  624. /* Return number of slots written */
  625. static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
  626. {
  627. struct qspi_trans tp;
  628. int slot = 0, tstatus = 0;
  629. u32 mspi_cdram = 0;
  630. bcm_qspi_disable_bspi(qspi);
  631. tp = qspi->trans_pos;
  632. bcm_qspi_update_parms(qspi, spi, tp.trans);
  633. /* Run until end of transfer or reached the max data */
  634. while (!tstatus && slot < MSPI_NUM_CDRAM) {
  635. if (tp.trans->bits_per_word <= 8) {
  636. const u8 *buf = tp.trans->tx_buf;
  637. u8 val = buf ? buf[tp.byte] : 0xff;
  638. write_txram_slot_u8(qspi, slot, val);
  639. dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
  640. } else {
  641. const u16 *buf = tp.trans->tx_buf;
  642. u16 val = buf ? buf[tp.byte / 2] : 0xffff;
  643. write_txram_slot_u16(qspi, slot, val);
  644. dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
  645. }
  646. mspi_cdram = MSPI_CDRAM_CONT_BIT;
  647. mspi_cdram |= (~(1 << spi->chip_select) &
  648. MSPI_CDRAM_PCS);
  649. mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
  650. MSPI_CDRAM_BITSE_BIT);
  651. write_cdram_slot(qspi, slot, mspi_cdram);
  652. tstatus = update_qspi_trans_byte_count(qspi, &tp,
  653. TRANS_STATUS_BREAK_TX);
  654. slot++;
  655. }
  656. if (!slot) {
  657. dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
  658. goto done;
  659. }
  660. dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
  661. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  662. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
  663. if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
  664. mspi_cdram = read_cdram_slot(qspi, slot - 1) &
  665. ~MSPI_CDRAM_CONT_BIT;
  666. write_cdram_slot(qspi, slot - 1, mspi_cdram);
  667. }
  668. if (has_bspi(qspi))
  669. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
  670. /* Must flush previous writes before starting MSPI operation */
  671. mb();
  672. /* Set cont | spe | spifie */
  673. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
  674. done:
  675. return slot;
  676. }
  677. static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
  678. struct spi_flash_read_message *msg)
  679. {
  680. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  681. u32 addr = 0, len, len_words;
  682. int ret = 0;
  683. unsigned long timeo = msecs_to_jiffies(100);
  684. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  685. if (bcm_qspi_bspi_ver_three(qspi))
  686. if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
  687. return -EIO;
  688. bcm_qspi_chip_select(qspi, spi->chip_select);
  689. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  690. /*
  691. * when using flex mode mode we need to send
  692. * the upper address byte to bspi
  693. */
  694. if (bcm_qspi_bspi_ver_three(qspi) == false) {
  695. addr = msg->from & 0xff000000;
  696. bcm_qspi_write(qspi, BSPI,
  697. BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
  698. }
  699. if (!qspi->xfer_mode.flex_mode)
  700. addr = msg->from;
  701. else
  702. addr = msg->from & 0x00ffffff;
  703. /* set BSPI RAF buffer max read length */
  704. len = msg->len;
  705. if (len > BSPI_READ_LENGTH)
  706. len = BSPI_READ_LENGTH;
  707. if (bcm_qspi_bspi_ver_three(qspi) == true)
  708. addr = (addr + 0xc00000) & 0xffffff;
  709. reinit_completion(&qspi->bspi_done);
  710. bcm_qspi_enable_bspi(qspi);
  711. len_words = (len + 3) >> 2;
  712. qspi->bspi_rf_msg = msg;
  713. qspi->bspi_rf_msg_status = 0;
  714. qspi->bspi_rf_msg_idx = 0;
  715. qspi->bspi_rf_msg_len = len;
  716. dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
  717. bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
  718. bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
  719. bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
  720. if (qspi->soc_intc) {
  721. /*
  722. * clear soc MSPI and BSPI interrupts and enable
  723. * BSPI interrupts.
  724. */
  725. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
  726. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
  727. }
  728. /* Must flush previous writes before starting BSPI operation */
  729. mb();
  730. bcm_qspi_bspi_lr_start(qspi);
  731. if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
  732. dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
  733. ret = -ETIMEDOUT;
  734. } else {
  735. /* set the return length for the caller */
  736. msg->retlen = len;
  737. }
  738. return ret;
  739. }
  740. static int bcm_qspi_flash_read(struct spi_device *spi,
  741. struct spi_flash_read_message *msg)
  742. {
  743. struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
  744. int ret = 0;
  745. bool mspi_read = false;
  746. u32 io_width, addrlen, addr, len;
  747. u_char *buf;
  748. buf = msg->buf;
  749. addr = msg->from;
  750. len = msg->len;
  751. if (bcm_qspi_bspi_ver_three(qspi) == true) {
  752. /*
  753. * The address coming into this function is a raw flash offset.
  754. * But for BSPI <= V3, we need to convert it to a remapped BSPI
  755. * address. If it crosses a 4MB boundary, just revert back to
  756. * using MSPI.
  757. */
  758. addr = (addr + 0xc00000) & 0xffffff;
  759. if ((~ADDR_4MB_MASK & addr) ^
  760. (~ADDR_4MB_MASK & (addr + len - 1)))
  761. mspi_read = true;
  762. }
  763. /* non-aligned and very short transfers are handled by MSPI */
  764. if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
  765. len < 4)
  766. mspi_read = true;
  767. if (mspi_read)
  768. /* this will make the m25p80 read to fallback to mspi read */
  769. return -EAGAIN;
  770. io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
  771. addrlen = msg->addr_width;
  772. ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
  773. if (!ret)
  774. ret = bcm_qspi_bspi_flash_read(spi, msg);
  775. return ret;
  776. }
  777. static int bcm_qspi_transfer_one(struct spi_master *master,
  778. struct spi_device *spi,
  779. struct spi_transfer *trans)
  780. {
  781. struct bcm_qspi *qspi = spi_master_get_devdata(master);
  782. int slots;
  783. unsigned long timeo = msecs_to_jiffies(100);
  784. bcm_qspi_chip_select(qspi, spi->chip_select);
  785. qspi->trans_pos.trans = trans;
  786. qspi->trans_pos.byte = 0;
  787. while (qspi->trans_pos.byte < trans->len) {
  788. reinit_completion(&qspi->mspi_done);
  789. slots = write_to_hw(qspi, spi);
  790. if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
  791. dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
  792. return -ETIMEDOUT;
  793. }
  794. read_from_hw(qspi, slots);
  795. }
  796. return 0;
  797. }
  798. static void bcm_qspi_cleanup(struct spi_device *spi)
  799. {
  800. struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
  801. kfree(xp);
  802. }
  803. static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
  804. {
  805. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  806. struct bcm_qspi *qspi = qspi_dev_id->dev;
  807. u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
  808. if (status & MSPI_MSPI_STATUS_SPIF) {
  809. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  810. /* clear interrupt */
  811. status &= ~MSPI_MSPI_STATUS_SPIF;
  812. bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
  813. if (qspi->soc_intc)
  814. soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
  815. complete(&qspi->mspi_done);
  816. return IRQ_HANDLED;
  817. }
  818. return IRQ_NONE;
  819. }
  820. static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
  821. {
  822. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  823. struct bcm_qspi *qspi = qspi_dev_id->dev;
  824. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  825. u32 status = qspi_dev_id->irqp->mask;
  826. if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
  827. bcm_qspi_bspi_lr_data_read(qspi);
  828. if (qspi->bspi_rf_msg_len == 0) {
  829. qspi->bspi_rf_msg = NULL;
  830. if (qspi->soc_intc) {
  831. /* disable soc BSPI interrupt */
  832. soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
  833. false);
  834. /* indicate done */
  835. status = INTR_BSPI_LR_SESSION_DONE_MASK;
  836. }
  837. if (qspi->bspi_rf_msg_status)
  838. bcm_qspi_bspi_lr_clear(qspi);
  839. else
  840. bcm_qspi_bspi_flush_prefetch_buffers(qspi);
  841. }
  842. if (qspi->soc_intc)
  843. /* clear soc BSPI interrupt */
  844. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
  845. }
  846. status &= INTR_BSPI_LR_SESSION_DONE_MASK;
  847. if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
  848. complete(&qspi->bspi_done);
  849. return IRQ_HANDLED;
  850. }
  851. static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
  852. {
  853. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  854. struct bcm_qspi *qspi = qspi_dev_id->dev;
  855. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  856. dev_err(&qspi->pdev->dev, "BSPI INT error\n");
  857. qspi->bspi_rf_msg_status = -EIO;
  858. if (qspi->soc_intc)
  859. /* clear soc interrupt */
  860. soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
  861. complete(&qspi->bspi_done);
  862. return IRQ_HANDLED;
  863. }
  864. static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
  865. {
  866. struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
  867. struct bcm_qspi *qspi = qspi_dev_id->dev;
  868. struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
  869. irqreturn_t ret = IRQ_NONE;
  870. if (soc_intc) {
  871. u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
  872. if (status & MSPI_DONE)
  873. ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
  874. else if (status & BSPI_DONE)
  875. ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
  876. else if (status & BSPI_ERR)
  877. ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
  878. }
  879. return ret;
  880. }
  881. static const struct bcm_qspi_irq qspi_irq_tab[] = {
  882. {
  883. .irq_name = "spi_lr_fullness_reached",
  884. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  885. .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
  886. },
  887. {
  888. .irq_name = "spi_lr_session_aborted",
  889. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  890. .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
  891. },
  892. {
  893. .irq_name = "spi_lr_impatient",
  894. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  895. .mask = INTR_BSPI_LR_IMPATIENT_MASK,
  896. },
  897. {
  898. .irq_name = "spi_lr_session_done",
  899. .irq_handler = bcm_qspi_bspi_lr_l2_isr,
  900. .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
  901. },
  902. #ifdef QSPI_INT_DEBUG
  903. /* this interrupt is for debug purposes only, dont request irq */
  904. {
  905. .irq_name = "spi_lr_overread",
  906. .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
  907. .mask = INTR_BSPI_LR_OVERREAD_MASK,
  908. },
  909. #endif
  910. {
  911. .irq_name = "mspi_done",
  912. .irq_handler = bcm_qspi_mspi_l2_isr,
  913. .mask = INTR_MSPI_DONE_MASK,
  914. },
  915. {
  916. .irq_name = "mspi_halted",
  917. .irq_handler = bcm_qspi_mspi_l2_isr,
  918. .mask = INTR_MSPI_HALTED_MASK,
  919. },
  920. {
  921. /* single muxed L1 interrupt source */
  922. .irq_name = "spi_l1_intr",
  923. .irq_handler = bcm_qspi_l1_isr,
  924. .irq_source = MUXED_L1,
  925. .mask = QSPI_INTERRUPTS_ALL,
  926. },
  927. };
  928. static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
  929. {
  930. u32 val = 0;
  931. val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
  932. qspi->bspi_maj_rev = (val >> 8) & 0xff;
  933. qspi->bspi_min_rev = val & 0xff;
  934. if (!(bcm_qspi_bspi_ver_three(qspi))) {
  935. /* Force mapping of BSPI address -> flash offset */
  936. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
  937. bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
  938. }
  939. qspi->bspi_enabled = 1;
  940. bcm_qspi_disable_bspi(qspi);
  941. bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
  942. bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
  943. }
  944. static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
  945. {
  946. struct bcm_qspi_parms parms;
  947. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
  948. bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
  949. bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
  950. bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
  951. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
  952. parms.mode = SPI_MODE_3;
  953. parms.bits_per_word = 8;
  954. parms.speed_hz = qspi->max_speed_hz;
  955. bcm_qspi_hw_set_parms(qspi, &parms);
  956. if (has_bspi(qspi))
  957. bcm_qspi_bspi_init(qspi);
  958. }
  959. static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
  960. {
  961. bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
  962. if (has_bspi(qspi))
  963. bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
  964. }
  965. static const struct of_device_id bcm_qspi_of_match[] = {
  966. { .compatible = "brcm,spi-bcm-qspi" },
  967. {},
  968. };
  969. MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
  970. int bcm_qspi_probe(struct platform_device *pdev,
  971. struct bcm_qspi_soc_intc *soc_intc)
  972. {
  973. struct device *dev = &pdev->dev;
  974. struct bcm_qspi *qspi;
  975. struct spi_master *master;
  976. struct resource *res;
  977. int irq, ret = 0, num_ints = 0;
  978. u32 val;
  979. const char *name = NULL;
  980. int num_irqs = ARRAY_SIZE(qspi_irq_tab);
  981. /* We only support device-tree instantiation */
  982. if (!dev->of_node)
  983. return -ENODEV;
  984. if (!of_match_node(bcm_qspi_of_match, dev->of_node))
  985. return -ENODEV;
  986. master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
  987. if (!master) {
  988. dev_err(dev, "error allocating spi_master\n");
  989. return -ENOMEM;
  990. }
  991. qspi = spi_master_get_devdata(master);
  992. qspi->pdev = pdev;
  993. qspi->trans_pos.trans = NULL;
  994. qspi->trans_pos.byte = 0;
  995. qspi->master = master;
  996. master->bus_num = -1;
  997. master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
  998. master->setup = bcm_qspi_setup;
  999. master->transfer_one = bcm_qspi_transfer_one;
  1000. master->spi_flash_read = bcm_qspi_flash_read;
  1001. master->cleanup = bcm_qspi_cleanup;
  1002. master->dev.of_node = dev->of_node;
  1003. master->num_chipselect = NUM_CHIPSELECT;
  1004. qspi->big_endian = of_device_is_big_endian(dev->of_node);
  1005. if (!of_property_read_u32(dev->of_node, "num-cs", &val))
  1006. master->num_chipselect = val;
  1007. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
  1008. if (!res)
  1009. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1010. "mspi");
  1011. if (res) {
  1012. qspi->base[MSPI] = devm_ioremap_resource(dev, res);
  1013. if (IS_ERR(qspi->base[MSPI])) {
  1014. ret = PTR_ERR(qspi->base[MSPI]);
  1015. goto qspi_probe_err;
  1016. }
  1017. } else {
  1018. goto qspi_probe_err;
  1019. }
  1020. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
  1021. if (res) {
  1022. qspi->base[BSPI] = devm_ioremap_resource(dev, res);
  1023. if (IS_ERR(qspi->base[BSPI])) {
  1024. ret = PTR_ERR(qspi->base[BSPI]);
  1025. goto qspi_probe_err;
  1026. }
  1027. qspi->bspi_mode = true;
  1028. } else {
  1029. qspi->bspi_mode = false;
  1030. }
  1031. dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
  1032. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
  1033. if (res) {
  1034. qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res);
  1035. if (IS_ERR(qspi->base[CHIP_SELECT])) {
  1036. ret = PTR_ERR(qspi->base[CHIP_SELECT]);
  1037. goto qspi_probe_err;
  1038. }
  1039. }
  1040. qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
  1041. GFP_KERNEL);
  1042. if (!qspi->dev_ids) {
  1043. ret = -ENOMEM;
  1044. goto qspi_probe_err;
  1045. }
  1046. for (val = 0; val < num_irqs; val++) {
  1047. irq = -1;
  1048. name = qspi_irq_tab[val].irq_name;
  1049. if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
  1050. /* get the l2 interrupts */
  1051. irq = platform_get_irq_byname(pdev, name);
  1052. } else if (!num_ints && soc_intc) {
  1053. /* all mspi, bspi intrs muxed to one L1 intr */
  1054. irq = platform_get_irq(pdev, 0);
  1055. }
  1056. if (irq >= 0) {
  1057. ret = devm_request_irq(&pdev->dev, irq,
  1058. qspi_irq_tab[val].irq_handler, 0,
  1059. name,
  1060. &qspi->dev_ids[val]);
  1061. if (ret < 0) {
  1062. dev_err(&pdev->dev, "IRQ %s not found\n", name);
  1063. goto qspi_probe_err;
  1064. }
  1065. qspi->dev_ids[val].dev = qspi;
  1066. qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
  1067. num_ints++;
  1068. dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
  1069. qspi_irq_tab[val].irq_name,
  1070. irq);
  1071. }
  1072. }
  1073. if (!num_ints) {
  1074. dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
  1075. ret = -EINVAL;
  1076. goto qspi_probe_err;
  1077. }
  1078. /*
  1079. * Some SoCs integrate spi controller (e.g., its interrupt bits)
  1080. * in specific ways
  1081. */
  1082. if (soc_intc) {
  1083. qspi->soc_intc = soc_intc;
  1084. soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
  1085. } else {
  1086. qspi->soc_intc = NULL;
  1087. }
  1088. qspi->clk = devm_clk_get(&pdev->dev, NULL);
  1089. if (IS_ERR(qspi->clk)) {
  1090. dev_warn(dev, "unable to get clock\n");
  1091. ret = PTR_ERR(qspi->clk);
  1092. goto qspi_probe_err;
  1093. }
  1094. ret = clk_prepare_enable(qspi->clk);
  1095. if (ret) {
  1096. dev_err(dev, "failed to prepare clock\n");
  1097. goto qspi_probe_err;
  1098. }
  1099. qspi->base_clk = clk_get_rate(qspi->clk);
  1100. qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
  1101. bcm_qspi_hw_init(qspi);
  1102. init_completion(&qspi->mspi_done);
  1103. init_completion(&qspi->bspi_done);
  1104. qspi->curr_cs = -1;
  1105. platform_set_drvdata(pdev, qspi);
  1106. qspi->xfer_mode.width = -1;
  1107. qspi->xfer_mode.addrlen = -1;
  1108. qspi->xfer_mode.hp = -1;
  1109. ret = devm_spi_register_master(&pdev->dev, master);
  1110. if (ret < 0) {
  1111. dev_err(dev, "can't register master\n");
  1112. goto qspi_reg_err;
  1113. }
  1114. return 0;
  1115. qspi_reg_err:
  1116. bcm_qspi_hw_uninit(qspi);
  1117. clk_disable_unprepare(qspi->clk);
  1118. qspi_probe_err:
  1119. spi_master_put(master);
  1120. kfree(qspi->dev_ids);
  1121. return ret;
  1122. }
  1123. /* probe function to be called by SoC specific platform driver probe */
  1124. EXPORT_SYMBOL_GPL(bcm_qspi_probe);
  1125. int bcm_qspi_remove(struct platform_device *pdev)
  1126. {
  1127. struct bcm_qspi *qspi = platform_get_drvdata(pdev);
  1128. platform_set_drvdata(pdev, NULL);
  1129. bcm_qspi_hw_uninit(qspi);
  1130. clk_disable_unprepare(qspi->clk);
  1131. kfree(qspi->dev_ids);
  1132. spi_unregister_master(qspi->master);
  1133. return 0;
  1134. }
  1135. /* function to be called by SoC specific platform driver remove() */
  1136. EXPORT_SYMBOL_GPL(bcm_qspi_remove);
  1137. static int __maybe_unused bcm_qspi_suspend(struct device *dev)
  1138. {
  1139. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1140. spi_master_suspend(qspi->master);
  1141. clk_disable(qspi->clk);
  1142. bcm_qspi_hw_uninit(qspi);
  1143. return 0;
  1144. };
  1145. static int __maybe_unused bcm_qspi_resume(struct device *dev)
  1146. {
  1147. struct bcm_qspi *qspi = dev_get_drvdata(dev);
  1148. int ret = 0;
  1149. bcm_qspi_hw_init(qspi);
  1150. bcm_qspi_chip_select(qspi, qspi->curr_cs);
  1151. if (qspi->soc_intc)
  1152. /* enable MSPI interrupt */
  1153. qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
  1154. true);
  1155. ret = clk_enable(qspi->clk);
  1156. if (!ret)
  1157. spi_master_resume(qspi->master);
  1158. return ret;
  1159. }
  1160. SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
  1161. /* pm_ops to be called by SoC specific platform driver */
  1162. EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
  1163. MODULE_AUTHOR("Kamal Dasu");
  1164. MODULE_DESCRIPTION("Broadcom QSPI driver");
  1165. MODULE_LICENSE("GPL v2");
  1166. MODULE_ALIAS("platform:" DRIVER_NAME);