dm9000.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/of.h>
  31. #include <linux/of_net.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/dm9000.h>
  34. #include <linux/delay.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/irq.h>
  37. #include <linux/slab.h>
  38. #include <linux/regulator/consumer.h>
  39. #include <linux/gpio.h>
  40. #include <linux/of_gpio.h>
  41. #include <asm/delay.h>
  42. #include <asm/irq.h>
  43. #include <asm/io.h>
  44. #include "dm9000.h"
  45. /* Board/System/Debug information/definition ---------------- */
  46. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  47. #define CARDNAME "dm9000"
  48. #define DRV_VERSION "1.31"
  49. /*
  50. * Transmit timeout, default 5 seconds.
  51. */
  52. static int watchdog = 5000;
  53. module_param(watchdog, int, 0400);
  54. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  55. /*
  56. * Debug messages level
  57. */
  58. static int debug;
  59. module_param(debug, int, 0644);
  60. MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  61. /* DM9000 register address locking.
  62. *
  63. * The DM9000 uses an address register to control where data written
  64. * to the data register goes. This means that the address register
  65. * must be preserved over interrupts or similar calls.
  66. *
  67. * During interrupt and other critical calls, a spinlock is used to
  68. * protect the system, but the calls themselves save the address
  69. * in the address register in case they are interrupting another
  70. * access to the device.
  71. *
  72. * For general accesses a lock is provided so that calls which are
  73. * allowed to sleep are serialised so that the address register does
  74. * not need to be saved. This lock also serves to serialise access
  75. * to the EEPROM and PHY access registers which are shared between
  76. * these two devices.
  77. */
  78. /* The driver supports the original DM9000E, and now the two newer
  79. * devices, DM9000A and DM9000B.
  80. */
  81. enum dm9000_type {
  82. TYPE_DM9000E, /* original DM9000 */
  83. TYPE_DM9000A,
  84. TYPE_DM9000B
  85. };
  86. /* Structure/enum declaration ------------------------------- */
  87. struct board_info {
  88. void __iomem *io_addr; /* Register I/O base address */
  89. void __iomem *io_data; /* Data I/O address */
  90. u16 irq; /* IRQ */
  91. u16 tx_pkt_cnt;
  92. u16 queue_pkt_len;
  93. u16 queue_start_addr;
  94. u16 queue_ip_summed;
  95. u16 dbug_cnt;
  96. u8 io_mode; /* 0:word, 2:byte */
  97. u8 phy_addr;
  98. u8 imr_all;
  99. unsigned int flags;
  100. unsigned int in_timeout:1;
  101. unsigned int in_suspend:1;
  102. unsigned int wake_supported:1;
  103. enum dm9000_type type;
  104. void (*inblk)(void __iomem *port, void *data, int length);
  105. void (*outblk)(void __iomem *port, void *data, int length);
  106. void (*dumpblk)(void __iomem *port, int length);
  107. struct device *dev; /* parent device */
  108. struct resource *addr_res; /* resources found */
  109. struct resource *data_res;
  110. struct resource *addr_req; /* resources requested */
  111. struct resource *data_req;
  112. int irq_wake;
  113. struct mutex addr_lock; /* phy and eeprom access lock */
  114. struct delayed_work phy_poll;
  115. struct net_device *ndev;
  116. spinlock_t lock;
  117. struct mii_if_info mii;
  118. u32 msg_enable;
  119. u32 wake_state;
  120. int ip_summed;
  121. };
  122. /* debug code */
  123. #define dm9000_dbg(db, lev, msg...) do { \
  124. if ((lev) < debug) { \
  125. dev_dbg(db->dev, msg); \
  126. } \
  127. } while (0)
  128. static inline struct board_info *to_dm9000_board(struct net_device *dev)
  129. {
  130. return netdev_priv(dev);
  131. }
  132. /* DM9000 network board routine ---------------------------- */
  133. /*
  134. * Read a byte from I/O port
  135. */
  136. static u8
  137. ior(struct board_info *db, int reg)
  138. {
  139. writeb(reg, db->io_addr);
  140. return readb(db->io_data);
  141. }
  142. /*
  143. * Write a byte to I/O port
  144. */
  145. static void
  146. iow(struct board_info *db, int reg, int value)
  147. {
  148. writeb(reg, db->io_addr);
  149. writeb(value, db->io_data);
  150. }
  151. static void
  152. dm9000_reset(struct board_info *db)
  153. {
  154. dev_dbg(db->dev, "resetting device\n");
  155. /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
  156. * The essential point is that we have to do a double reset, and the
  157. * instruction is to set LBK into MAC internal loopback mode.
  158. */
  159. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  160. udelay(100); /* Application note says at least 20 us */
  161. if (ior(db, DM9000_NCR) & 1)
  162. dev_err(db->dev, "dm9000 did not respond to first reset\n");
  163. iow(db, DM9000_NCR, 0);
  164. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  165. udelay(100);
  166. if (ior(db, DM9000_NCR) & 1)
  167. dev_err(db->dev, "dm9000 did not respond to second reset\n");
  168. }
  169. /* routines for sending block to chip */
  170. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  171. {
  172. iowrite8_rep(reg, data, count);
  173. }
  174. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  175. {
  176. iowrite16_rep(reg, data, (count+1) >> 1);
  177. }
  178. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  179. {
  180. iowrite32_rep(reg, data, (count+3) >> 2);
  181. }
  182. /* input block from chip to memory */
  183. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  184. {
  185. ioread8_rep(reg, data, count);
  186. }
  187. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  188. {
  189. ioread16_rep(reg, data, (count+1) >> 1);
  190. }
  191. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  192. {
  193. ioread32_rep(reg, data, (count+3) >> 2);
  194. }
  195. /* dump block from chip to null */
  196. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  197. {
  198. int i;
  199. int tmp;
  200. for (i = 0; i < count; i++)
  201. tmp = readb(reg);
  202. }
  203. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  204. {
  205. int i;
  206. int tmp;
  207. count = (count + 1) >> 1;
  208. for (i = 0; i < count; i++)
  209. tmp = readw(reg);
  210. }
  211. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  212. {
  213. int i;
  214. int tmp;
  215. count = (count + 3) >> 2;
  216. for (i = 0; i < count; i++)
  217. tmp = readl(reg);
  218. }
  219. /*
  220. * Sleep, either by using msleep() or if we are suspending, then
  221. * use mdelay() to sleep.
  222. */
  223. static void dm9000_msleep(struct board_info *db, unsigned int ms)
  224. {
  225. if (db->in_suspend || db->in_timeout)
  226. mdelay(ms);
  227. else
  228. msleep(ms);
  229. }
  230. /* Read a word from phyxcer */
  231. static int
  232. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  233. {
  234. struct board_info *db = netdev_priv(dev);
  235. unsigned long flags;
  236. unsigned int reg_save;
  237. int ret;
  238. mutex_lock(&db->addr_lock);
  239. spin_lock_irqsave(&db->lock, flags);
  240. /* Save previous register address */
  241. reg_save = readb(db->io_addr);
  242. /* Fill the phyxcer register into REG_0C */
  243. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  244. /* Issue phyxcer read command */
  245. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
  246. writeb(reg_save, db->io_addr);
  247. spin_unlock_irqrestore(&db->lock, flags);
  248. dm9000_msleep(db, 1); /* Wait read complete */
  249. spin_lock_irqsave(&db->lock, flags);
  250. reg_save = readb(db->io_addr);
  251. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  252. /* The read data keeps on REG_0D & REG_0E */
  253. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  254. /* restore the previous address */
  255. writeb(reg_save, db->io_addr);
  256. spin_unlock_irqrestore(&db->lock, flags);
  257. mutex_unlock(&db->addr_lock);
  258. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  259. return ret;
  260. }
  261. /* Write a word to phyxcer */
  262. static void
  263. dm9000_phy_write(struct net_device *dev,
  264. int phyaddr_unused, int reg, int value)
  265. {
  266. struct board_info *db = netdev_priv(dev);
  267. unsigned long flags;
  268. unsigned long reg_save;
  269. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  270. if (!db->in_timeout)
  271. mutex_lock(&db->addr_lock);
  272. spin_lock_irqsave(&db->lock, flags);
  273. /* Save previous register address */
  274. reg_save = readb(db->io_addr);
  275. /* Fill the phyxcer register into REG_0C */
  276. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  277. /* Fill the written data into REG_0D & REG_0E */
  278. iow(db, DM9000_EPDRL, value);
  279. iow(db, DM9000_EPDRH, value >> 8);
  280. /* Issue phyxcer write command */
  281. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
  282. writeb(reg_save, db->io_addr);
  283. spin_unlock_irqrestore(&db->lock, flags);
  284. dm9000_msleep(db, 1); /* Wait write complete */
  285. spin_lock_irqsave(&db->lock, flags);
  286. reg_save = readb(db->io_addr);
  287. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  288. /* restore the previous address */
  289. writeb(reg_save, db->io_addr);
  290. spin_unlock_irqrestore(&db->lock, flags);
  291. if (!db->in_timeout)
  292. mutex_unlock(&db->addr_lock);
  293. }
  294. /* dm9000_set_io
  295. *
  296. * select the specified set of io routines to use with the
  297. * device
  298. */
  299. static void dm9000_set_io(struct board_info *db, int byte_width)
  300. {
  301. /* use the size of the data resource to work out what IO
  302. * routines we want to use
  303. */
  304. switch (byte_width) {
  305. case 1:
  306. db->dumpblk = dm9000_dumpblk_8bit;
  307. db->outblk = dm9000_outblk_8bit;
  308. db->inblk = dm9000_inblk_8bit;
  309. break;
  310. case 3:
  311. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  312. case 2:
  313. db->dumpblk = dm9000_dumpblk_16bit;
  314. db->outblk = dm9000_outblk_16bit;
  315. db->inblk = dm9000_inblk_16bit;
  316. break;
  317. case 4:
  318. default:
  319. db->dumpblk = dm9000_dumpblk_32bit;
  320. db->outblk = dm9000_outblk_32bit;
  321. db->inblk = dm9000_inblk_32bit;
  322. break;
  323. }
  324. }
  325. static void dm9000_schedule_poll(struct board_info *db)
  326. {
  327. if (db->type == TYPE_DM9000E)
  328. schedule_delayed_work(&db->phy_poll, HZ * 2);
  329. }
  330. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  331. {
  332. struct board_info *dm = to_dm9000_board(dev);
  333. if (!netif_running(dev))
  334. return -EINVAL;
  335. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  336. }
  337. static unsigned int
  338. dm9000_read_locked(struct board_info *db, int reg)
  339. {
  340. unsigned long flags;
  341. unsigned int ret;
  342. spin_lock_irqsave(&db->lock, flags);
  343. ret = ior(db, reg);
  344. spin_unlock_irqrestore(&db->lock, flags);
  345. return ret;
  346. }
  347. static int dm9000_wait_eeprom(struct board_info *db)
  348. {
  349. unsigned int status;
  350. int timeout = 8; /* wait max 8msec */
  351. /* The DM9000 data sheets say we should be able to
  352. * poll the ERRE bit in EPCR to wait for the EEPROM
  353. * operation. From testing several chips, this bit
  354. * does not seem to work.
  355. *
  356. * We attempt to use the bit, but fall back to the
  357. * timeout (which is why we do not return an error
  358. * on expiry) to say that the EEPROM operation has
  359. * completed.
  360. */
  361. while (1) {
  362. status = dm9000_read_locked(db, DM9000_EPCR);
  363. if ((status & EPCR_ERRE) == 0)
  364. break;
  365. msleep(1);
  366. if (timeout-- < 0) {
  367. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  368. break;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Read a word data from EEPROM
  375. */
  376. static void
  377. dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
  378. {
  379. unsigned long flags;
  380. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  381. to[0] = 0xff;
  382. to[1] = 0xff;
  383. return;
  384. }
  385. mutex_lock(&db->addr_lock);
  386. spin_lock_irqsave(&db->lock, flags);
  387. iow(db, DM9000_EPAR, offset);
  388. iow(db, DM9000_EPCR, EPCR_ERPRR);
  389. spin_unlock_irqrestore(&db->lock, flags);
  390. dm9000_wait_eeprom(db);
  391. /* delay for at-least 150uS */
  392. msleep(1);
  393. spin_lock_irqsave(&db->lock, flags);
  394. iow(db, DM9000_EPCR, 0x0);
  395. to[0] = ior(db, DM9000_EPDRL);
  396. to[1] = ior(db, DM9000_EPDRH);
  397. spin_unlock_irqrestore(&db->lock, flags);
  398. mutex_unlock(&db->addr_lock);
  399. }
  400. /*
  401. * Write a word data to SROM
  402. */
  403. static void
  404. dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
  405. {
  406. unsigned long flags;
  407. if (db->flags & DM9000_PLATF_NO_EEPROM)
  408. return;
  409. mutex_lock(&db->addr_lock);
  410. spin_lock_irqsave(&db->lock, flags);
  411. iow(db, DM9000_EPAR, offset);
  412. iow(db, DM9000_EPDRH, data[1]);
  413. iow(db, DM9000_EPDRL, data[0]);
  414. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  415. spin_unlock_irqrestore(&db->lock, flags);
  416. dm9000_wait_eeprom(db);
  417. mdelay(1); /* wait at least 150uS to clear */
  418. spin_lock_irqsave(&db->lock, flags);
  419. iow(db, DM9000_EPCR, 0);
  420. spin_unlock_irqrestore(&db->lock, flags);
  421. mutex_unlock(&db->addr_lock);
  422. }
  423. /* ethtool ops */
  424. static void dm9000_get_drvinfo(struct net_device *dev,
  425. struct ethtool_drvinfo *info)
  426. {
  427. struct board_info *dm = to_dm9000_board(dev);
  428. strlcpy(info->driver, CARDNAME, sizeof(info->driver));
  429. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  430. strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
  431. sizeof(info->bus_info));
  432. }
  433. static u32 dm9000_get_msglevel(struct net_device *dev)
  434. {
  435. struct board_info *dm = to_dm9000_board(dev);
  436. return dm->msg_enable;
  437. }
  438. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  439. {
  440. struct board_info *dm = to_dm9000_board(dev);
  441. dm->msg_enable = value;
  442. }
  443. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  444. {
  445. struct board_info *dm = to_dm9000_board(dev);
  446. mii_ethtool_gset(&dm->mii, cmd);
  447. return 0;
  448. }
  449. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  450. {
  451. struct board_info *dm = to_dm9000_board(dev);
  452. return mii_ethtool_sset(&dm->mii, cmd);
  453. }
  454. static int dm9000_nway_reset(struct net_device *dev)
  455. {
  456. struct board_info *dm = to_dm9000_board(dev);
  457. return mii_nway_restart(&dm->mii);
  458. }
  459. static int dm9000_set_features(struct net_device *dev,
  460. netdev_features_t features)
  461. {
  462. struct board_info *dm = to_dm9000_board(dev);
  463. netdev_features_t changed = dev->features ^ features;
  464. unsigned long flags;
  465. if (!(changed & NETIF_F_RXCSUM))
  466. return 0;
  467. spin_lock_irqsave(&dm->lock, flags);
  468. iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  469. spin_unlock_irqrestore(&dm->lock, flags);
  470. return 0;
  471. }
  472. static u32 dm9000_get_link(struct net_device *dev)
  473. {
  474. struct board_info *dm = to_dm9000_board(dev);
  475. u32 ret;
  476. if (dm->flags & DM9000_PLATF_EXT_PHY)
  477. ret = mii_link_ok(&dm->mii);
  478. else
  479. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  480. return ret;
  481. }
  482. #define DM_EEPROM_MAGIC (0x444D394B)
  483. static int dm9000_get_eeprom_len(struct net_device *dev)
  484. {
  485. return 128;
  486. }
  487. static int dm9000_get_eeprom(struct net_device *dev,
  488. struct ethtool_eeprom *ee, u8 *data)
  489. {
  490. struct board_info *dm = to_dm9000_board(dev);
  491. int offset = ee->offset;
  492. int len = ee->len;
  493. int i;
  494. /* EEPROM access is aligned to two bytes */
  495. if ((len & 1) != 0 || (offset & 1) != 0)
  496. return -EINVAL;
  497. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  498. return -ENOENT;
  499. ee->magic = DM_EEPROM_MAGIC;
  500. for (i = 0; i < len; i += 2)
  501. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  502. return 0;
  503. }
  504. static int dm9000_set_eeprom(struct net_device *dev,
  505. struct ethtool_eeprom *ee, u8 *data)
  506. {
  507. struct board_info *dm = to_dm9000_board(dev);
  508. int offset = ee->offset;
  509. int len = ee->len;
  510. int done;
  511. /* EEPROM access is aligned to two bytes */
  512. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  513. return -ENOENT;
  514. if (ee->magic != DM_EEPROM_MAGIC)
  515. return -EINVAL;
  516. while (len > 0) {
  517. if (len & 1 || offset & 1) {
  518. int which = offset & 1;
  519. u8 tmp[2];
  520. dm9000_read_eeprom(dm, offset / 2, tmp);
  521. tmp[which] = *data;
  522. dm9000_write_eeprom(dm, offset / 2, tmp);
  523. done = 1;
  524. } else {
  525. dm9000_write_eeprom(dm, offset / 2, data);
  526. done = 2;
  527. }
  528. data += done;
  529. offset += done;
  530. len -= done;
  531. }
  532. return 0;
  533. }
  534. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  535. {
  536. struct board_info *dm = to_dm9000_board(dev);
  537. memset(w, 0, sizeof(struct ethtool_wolinfo));
  538. /* note, we could probably support wake-phy too */
  539. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  540. w->wolopts = dm->wake_state;
  541. }
  542. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  543. {
  544. struct board_info *dm = to_dm9000_board(dev);
  545. unsigned long flags;
  546. u32 opts = w->wolopts;
  547. u32 wcr = 0;
  548. if (!dm->wake_supported)
  549. return -EOPNOTSUPP;
  550. if (opts & ~WAKE_MAGIC)
  551. return -EINVAL;
  552. if (opts & WAKE_MAGIC)
  553. wcr |= WCR_MAGICEN;
  554. mutex_lock(&dm->addr_lock);
  555. spin_lock_irqsave(&dm->lock, flags);
  556. iow(dm, DM9000_WCR, wcr);
  557. spin_unlock_irqrestore(&dm->lock, flags);
  558. mutex_unlock(&dm->addr_lock);
  559. if (dm->wake_state != opts) {
  560. /* change in wol state, update IRQ state */
  561. if (!dm->wake_state)
  562. irq_set_irq_wake(dm->irq_wake, 1);
  563. else if (dm->wake_state && !opts)
  564. irq_set_irq_wake(dm->irq_wake, 0);
  565. }
  566. dm->wake_state = opts;
  567. return 0;
  568. }
  569. static const struct ethtool_ops dm9000_ethtool_ops = {
  570. .get_drvinfo = dm9000_get_drvinfo,
  571. .get_settings = dm9000_get_settings,
  572. .set_settings = dm9000_set_settings,
  573. .get_msglevel = dm9000_get_msglevel,
  574. .set_msglevel = dm9000_set_msglevel,
  575. .nway_reset = dm9000_nway_reset,
  576. .get_link = dm9000_get_link,
  577. .get_wol = dm9000_get_wol,
  578. .set_wol = dm9000_set_wol,
  579. .get_eeprom_len = dm9000_get_eeprom_len,
  580. .get_eeprom = dm9000_get_eeprom,
  581. .set_eeprom = dm9000_set_eeprom,
  582. };
  583. static void dm9000_show_carrier(struct board_info *db,
  584. unsigned carrier, unsigned nsr)
  585. {
  586. int lpa;
  587. struct net_device *ndev = db->ndev;
  588. struct mii_if_info *mii = &db->mii;
  589. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  590. if (carrier) {
  591. lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
  592. dev_info(db->dev,
  593. "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
  594. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  595. (ncr & NCR_FDX) ? "full" : "half", lpa);
  596. } else {
  597. dev_info(db->dev, "%s: link down\n", ndev->name);
  598. }
  599. }
  600. static void
  601. dm9000_poll_work(struct work_struct *w)
  602. {
  603. struct delayed_work *dw = to_delayed_work(w);
  604. struct board_info *db = container_of(dw, struct board_info, phy_poll);
  605. struct net_device *ndev = db->ndev;
  606. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  607. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  608. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  609. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  610. unsigned new_carrier;
  611. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  612. if (old_carrier != new_carrier) {
  613. if (netif_msg_link(db))
  614. dm9000_show_carrier(db, new_carrier, nsr);
  615. if (!new_carrier)
  616. netif_carrier_off(ndev);
  617. else
  618. netif_carrier_on(ndev);
  619. }
  620. } else
  621. mii_check_media(&db->mii, netif_msg_link(db), 0);
  622. if (netif_running(ndev))
  623. dm9000_schedule_poll(db);
  624. }
  625. /* dm9000_release_board
  626. *
  627. * release a board, and any mapped resources
  628. */
  629. static void
  630. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  631. {
  632. /* unmap our resources */
  633. iounmap(db->io_addr);
  634. iounmap(db->io_data);
  635. /* release the resources */
  636. if (db->data_req)
  637. release_resource(db->data_req);
  638. kfree(db->data_req);
  639. if (db->addr_req)
  640. release_resource(db->addr_req);
  641. kfree(db->addr_req);
  642. }
  643. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  644. {
  645. switch (type) {
  646. case TYPE_DM9000E: return 'e';
  647. case TYPE_DM9000A: return 'a';
  648. case TYPE_DM9000B: return 'b';
  649. }
  650. return '?';
  651. }
  652. /*
  653. * Set DM9000 multicast address
  654. */
  655. static void
  656. dm9000_hash_table_unlocked(struct net_device *dev)
  657. {
  658. struct board_info *db = netdev_priv(dev);
  659. struct netdev_hw_addr *ha;
  660. int i, oft;
  661. u32 hash_val;
  662. u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
  663. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  664. dm9000_dbg(db, 1, "entering %s\n", __func__);
  665. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  666. iow(db, oft, dev->dev_addr[i]);
  667. if (dev->flags & IFF_PROMISC)
  668. rcr |= RCR_PRMSC;
  669. if (dev->flags & IFF_ALLMULTI)
  670. rcr |= RCR_ALL;
  671. /* the multicast address in Hash Table : 64 bits */
  672. netdev_for_each_mc_addr(ha, dev) {
  673. hash_val = ether_crc_le(6, ha->addr) & 0x3f;
  674. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  675. }
  676. /* Write the hash table to MAC MD table */
  677. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  678. iow(db, oft++, hash_table[i]);
  679. iow(db, oft++, hash_table[i] >> 8);
  680. }
  681. iow(db, DM9000_RCR, rcr);
  682. }
  683. static void
  684. dm9000_hash_table(struct net_device *dev)
  685. {
  686. struct board_info *db = netdev_priv(dev);
  687. unsigned long flags;
  688. spin_lock_irqsave(&db->lock, flags);
  689. dm9000_hash_table_unlocked(dev);
  690. spin_unlock_irqrestore(&db->lock, flags);
  691. }
  692. static void
  693. dm9000_mask_interrupts(struct board_info *db)
  694. {
  695. iow(db, DM9000_IMR, IMR_PAR);
  696. }
  697. static void
  698. dm9000_unmask_interrupts(struct board_info *db)
  699. {
  700. iow(db, DM9000_IMR, db->imr_all);
  701. }
  702. /*
  703. * Initialize dm9000 board
  704. */
  705. static void
  706. dm9000_init_dm9000(struct net_device *dev)
  707. {
  708. struct board_info *db = netdev_priv(dev);
  709. unsigned int imr;
  710. unsigned int ncr;
  711. dm9000_dbg(db, 1, "entering %s\n", __func__);
  712. dm9000_reset(db);
  713. dm9000_mask_interrupts(db);
  714. /* I/O mode */
  715. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  716. /* Checksum mode */
  717. if (dev->hw_features & NETIF_F_RXCSUM)
  718. iow(db, DM9000_RCSR,
  719. (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  720. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  721. iow(db, DM9000_GPR, 0);
  722. /* If we are dealing with DM9000B, some extra steps are required: a
  723. * manual phy reset, and setting init params.
  724. */
  725. if (db->type == TYPE_DM9000B) {
  726. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
  727. dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
  728. }
  729. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  730. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  731. * up dumping the wake events if we disable this. There is already
  732. * a wake-mask in DM9000_WCR */
  733. if (db->wake_supported)
  734. ncr |= NCR_WAKEEN;
  735. iow(db, DM9000_NCR, ncr);
  736. /* Program operating register */
  737. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  738. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  739. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  740. iow(db, DM9000_SMCR, 0); /* Special Mode */
  741. /* clear TX status */
  742. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  743. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  744. /* Set address filter table */
  745. dm9000_hash_table_unlocked(dev);
  746. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  747. if (db->type != TYPE_DM9000E)
  748. imr |= IMR_LNKCHNG;
  749. db->imr_all = imr;
  750. /* Init Driver variable */
  751. db->tx_pkt_cnt = 0;
  752. db->queue_pkt_len = 0;
  753. netif_trans_update(dev);
  754. }
  755. /* Our watchdog timed out. Called by the networking layer */
  756. static void dm9000_timeout(struct net_device *dev)
  757. {
  758. struct board_info *db = netdev_priv(dev);
  759. u8 reg_save;
  760. unsigned long flags;
  761. /* Save previous register address */
  762. spin_lock_irqsave(&db->lock, flags);
  763. db->in_timeout = 1;
  764. reg_save = readb(db->io_addr);
  765. netif_stop_queue(dev);
  766. dm9000_init_dm9000(dev);
  767. dm9000_unmask_interrupts(db);
  768. /* We can accept TX packets again */
  769. netif_trans_update(dev); /* prevent tx timeout */
  770. netif_wake_queue(dev);
  771. /* Restore previous register address */
  772. writeb(reg_save, db->io_addr);
  773. db->in_timeout = 0;
  774. spin_unlock_irqrestore(&db->lock, flags);
  775. }
  776. static void dm9000_send_packet(struct net_device *dev,
  777. int ip_summed,
  778. u16 pkt_len)
  779. {
  780. struct board_info *dm = to_dm9000_board(dev);
  781. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  782. if (dm->ip_summed != ip_summed) {
  783. if (ip_summed == CHECKSUM_NONE)
  784. iow(dm, DM9000_TCCR, 0);
  785. else
  786. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  787. dm->ip_summed = ip_summed;
  788. }
  789. /* Set TX length to DM9000 */
  790. iow(dm, DM9000_TXPLL, pkt_len);
  791. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  792. /* Issue TX polling command */
  793. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  794. }
  795. /*
  796. * Hardware start transmission.
  797. * Send a packet to media from the upper layer.
  798. */
  799. static int
  800. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  801. {
  802. unsigned long flags;
  803. struct board_info *db = netdev_priv(dev);
  804. dm9000_dbg(db, 3, "%s:\n", __func__);
  805. if (db->tx_pkt_cnt > 1)
  806. return NETDEV_TX_BUSY;
  807. spin_lock_irqsave(&db->lock, flags);
  808. /* Move data to DM9000 TX RAM */
  809. writeb(DM9000_MWCMD, db->io_addr);
  810. (db->outblk)(db->io_data, skb->data, skb->len);
  811. dev->stats.tx_bytes += skb->len;
  812. db->tx_pkt_cnt++;
  813. /* TX control: First packet immediately send, second packet queue */
  814. if (db->tx_pkt_cnt == 1) {
  815. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  816. } else {
  817. /* Second packet */
  818. db->queue_pkt_len = skb->len;
  819. db->queue_ip_summed = skb->ip_summed;
  820. netif_stop_queue(dev);
  821. }
  822. spin_unlock_irqrestore(&db->lock, flags);
  823. /* free this SKB */
  824. dev_consume_skb_any(skb);
  825. return NETDEV_TX_OK;
  826. }
  827. /*
  828. * DM9000 interrupt handler
  829. * receive the packet to upper layer, free the transmitted packet
  830. */
  831. static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
  832. {
  833. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  834. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  835. /* One packet sent complete */
  836. db->tx_pkt_cnt--;
  837. dev->stats.tx_packets++;
  838. if (netif_msg_tx_done(db))
  839. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  840. /* Queue packet check & send */
  841. if (db->tx_pkt_cnt > 0)
  842. dm9000_send_packet(dev, db->queue_ip_summed,
  843. db->queue_pkt_len);
  844. netif_wake_queue(dev);
  845. }
  846. }
  847. struct dm9000_rxhdr {
  848. u8 RxPktReady;
  849. u8 RxStatus;
  850. __le16 RxLen;
  851. } __packed;
  852. /*
  853. * Received a packet and pass to upper layer
  854. */
  855. static void
  856. dm9000_rx(struct net_device *dev)
  857. {
  858. struct board_info *db = netdev_priv(dev);
  859. struct dm9000_rxhdr rxhdr;
  860. struct sk_buff *skb;
  861. u8 rxbyte, *rdptr;
  862. bool GoodPacket;
  863. int RxLen;
  864. /* Check packet ready or not */
  865. do {
  866. ior(db, DM9000_MRCMDX); /* Dummy read */
  867. /* Get most updated data */
  868. rxbyte = readb(db->io_data);
  869. /* Status check: this byte must be 0 or 1 */
  870. if (rxbyte & DM9000_PKT_ERR) {
  871. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  872. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  873. return;
  874. }
  875. if (!(rxbyte & DM9000_PKT_RDY))
  876. return;
  877. /* A packet ready now & Get status/length */
  878. GoodPacket = true;
  879. writeb(DM9000_MRCMD, db->io_addr);
  880. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  881. RxLen = le16_to_cpu(rxhdr.RxLen);
  882. if (netif_msg_rx_status(db))
  883. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  884. rxhdr.RxStatus, RxLen);
  885. /* Packet Status check */
  886. if (RxLen < 0x40) {
  887. GoodPacket = false;
  888. if (netif_msg_rx_err(db))
  889. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  890. }
  891. if (RxLen > DM9000_PKT_MAX) {
  892. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  893. }
  894. /* rxhdr.RxStatus is identical to RSR register. */
  895. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  896. RSR_PLE | RSR_RWTO |
  897. RSR_LCS | RSR_RF)) {
  898. GoodPacket = false;
  899. if (rxhdr.RxStatus & RSR_FOE) {
  900. if (netif_msg_rx_err(db))
  901. dev_dbg(db->dev, "fifo error\n");
  902. dev->stats.rx_fifo_errors++;
  903. }
  904. if (rxhdr.RxStatus & RSR_CE) {
  905. if (netif_msg_rx_err(db))
  906. dev_dbg(db->dev, "crc error\n");
  907. dev->stats.rx_crc_errors++;
  908. }
  909. if (rxhdr.RxStatus & RSR_RF) {
  910. if (netif_msg_rx_err(db))
  911. dev_dbg(db->dev, "length error\n");
  912. dev->stats.rx_length_errors++;
  913. }
  914. }
  915. /* Move data from DM9000 */
  916. if (GoodPacket &&
  917. ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
  918. skb_reserve(skb, 2);
  919. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  920. /* Read received packet from RX SRAM */
  921. (db->inblk)(db->io_data, rdptr, RxLen);
  922. dev->stats.rx_bytes += RxLen;
  923. /* Pass to upper layer */
  924. skb->protocol = eth_type_trans(skb, dev);
  925. if (dev->features & NETIF_F_RXCSUM) {
  926. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  927. skb->ip_summed = CHECKSUM_UNNECESSARY;
  928. else
  929. skb_checksum_none_assert(skb);
  930. }
  931. netif_rx(skb);
  932. dev->stats.rx_packets++;
  933. } else {
  934. /* need to dump the packet's data */
  935. (db->dumpblk)(db->io_data, RxLen);
  936. }
  937. } while (rxbyte & DM9000_PKT_RDY);
  938. }
  939. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  940. {
  941. struct net_device *dev = dev_id;
  942. struct board_info *db = netdev_priv(dev);
  943. int int_status;
  944. unsigned long flags;
  945. u8 reg_save;
  946. dm9000_dbg(db, 3, "entering %s\n", __func__);
  947. /* A real interrupt coming */
  948. /* holders of db->lock must always block IRQs */
  949. spin_lock_irqsave(&db->lock, flags);
  950. /* Save previous register address */
  951. reg_save = readb(db->io_addr);
  952. dm9000_mask_interrupts(db);
  953. /* Got DM9000 interrupt status */
  954. int_status = ior(db, DM9000_ISR); /* Got ISR */
  955. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  956. if (netif_msg_intr(db))
  957. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  958. /* Received the coming packet */
  959. if (int_status & ISR_PRS)
  960. dm9000_rx(dev);
  961. /* Transmit Interrupt check */
  962. if (int_status & ISR_PTS)
  963. dm9000_tx_done(dev, db);
  964. if (db->type != TYPE_DM9000E) {
  965. if (int_status & ISR_LNKCHNG) {
  966. /* fire a link-change request */
  967. schedule_delayed_work(&db->phy_poll, 1);
  968. }
  969. }
  970. dm9000_unmask_interrupts(db);
  971. /* Restore previous register address */
  972. writeb(reg_save, db->io_addr);
  973. spin_unlock_irqrestore(&db->lock, flags);
  974. return IRQ_HANDLED;
  975. }
  976. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  977. {
  978. struct net_device *dev = dev_id;
  979. struct board_info *db = netdev_priv(dev);
  980. unsigned long flags;
  981. unsigned nsr, wcr;
  982. spin_lock_irqsave(&db->lock, flags);
  983. nsr = ior(db, DM9000_NSR);
  984. wcr = ior(db, DM9000_WCR);
  985. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  986. if (nsr & NSR_WAKEST) {
  987. /* clear, so we can avoid */
  988. iow(db, DM9000_NSR, NSR_WAKEST);
  989. if (wcr & WCR_LINKST)
  990. dev_info(db->dev, "wake by link status change\n");
  991. if (wcr & WCR_SAMPLEST)
  992. dev_info(db->dev, "wake by sample packet\n");
  993. if (wcr & WCR_MAGICST)
  994. dev_info(db->dev, "wake by magic packet\n");
  995. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  996. dev_err(db->dev, "wake signalled with no reason? "
  997. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  998. }
  999. spin_unlock_irqrestore(&db->lock, flags);
  1000. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  1001. }
  1002. #ifdef CONFIG_NET_POLL_CONTROLLER
  1003. /*
  1004. *Used by netconsole
  1005. */
  1006. static void dm9000_poll_controller(struct net_device *dev)
  1007. {
  1008. disable_irq(dev->irq);
  1009. dm9000_interrupt(dev->irq, dev);
  1010. enable_irq(dev->irq);
  1011. }
  1012. #endif
  1013. /*
  1014. * Open the interface.
  1015. * The interface is opened whenever "ifconfig" actives it.
  1016. */
  1017. static int
  1018. dm9000_open(struct net_device *dev)
  1019. {
  1020. struct board_info *db = netdev_priv(dev);
  1021. unsigned int irq_flags = irq_get_trigger_type(dev->irq);
  1022. if (netif_msg_ifup(db))
  1023. dev_dbg(db->dev, "enabling %s\n", dev->name);
  1024. /* If there is no IRQ type specified, tell the user that this is a
  1025. * problem
  1026. */
  1027. if (irq_flags == IRQF_TRIGGER_NONE)
  1028. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  1029. irq_flags |= IRQF_SHARED;
  1030. /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
  1031. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  1032. mdelay(1); /* delay needs by DM9000B */
  1033. /* Initialize DM9000 board */
  1034. dm9000_init_dm9000(dev);
  1035. if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
  1036. return -EAGAIN;
  1037. /* Now that we have an interrupt handler hooked up we can unmask
  1038. * our interrupts
  1039. */
  1040. dm9000_unmask_interrupts(db);
  1041. /* Init driver variable */
  1042. db->dbug_cnt = 0;
  1043. mii_check_media(&db->mii, netif_msg_link(db), 1);
  1044. netif_start_queue(dev);
  1045. /* Poll initial link status */
  1046. schedule_delayed_work(&db->phy_poll, 1);
  1047. return 0;
  1048. }
  1049. static void
  1050. dm9000_shutdown(struct net_device *dev)
  1051. {
  1052. struct board_info *db = netdev_priv(dev);
  1053. /* RESET device */
  1054. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1055. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1056. dm9000_mask_interrupts(db);
  1057. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1058. }
  1059. /*
  1060. * Stop the interface.
  1061. * The interface is stopped when it is brought.
  1062. */
  1063. static int
  1064. dm9000_stop(struct net_device *ndev)
  1065. {
  1066. struct board_info *db = netdev_priv(ndev);
  1067. if (netif_msg_ifdown(db))
  1068. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1069. cancel_delayed_work_sync(&db->phy_poll);
  1070. netif_stop_queue(ndev);
  1071. netif_carrier_off(ndev);
  1072. /* free interrupt */
  1073. free_irq(ndev->irq, ndev);
  1074. dm9000_shutdown(ndev);
  1075. return 0;
  1076. }
  1077. static const struct net_device_ops dm9000_netdev_ops = {
  1078. .ndo_open = dm9000_open,
  1079. .ndo_stop = dm9000_stop,
  1080. .ndo_start_xmit = dm9000_start_xmit,
  1081. .ndo_tx_timeout = dm9000_timeout,
  1082. .ndo_set_rx_mode = dm9000_hash_table,
  1083. .ndo_do_ioctl = dm9000_ioctl,
  1084. .ndo_change_mtu = eth_change_mtu,
  1085. .ndo_set_features = dm9000_set_features,
  1086. .ndo_validate_addr = eth_validate_addr,
  1087. .ndo_set_mac_address = eth_mac_addr,
  1088. #ifdef CONFIG_NET_POLL_CONTROLLER
  1089. .ndo_poll_controller = dm9000_poll_controller,
  1090. #endif
  1091. };
  1092. static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
  1093. {
  1094. struct dm9000_plat_data *pdata;
  1095. struct device_node *np = dev->of_node;
  1096. const void *mac_addr;
  1097. if (!IS_ENABLED(CONFIG_OF) || !np)
  1098. return ERR_PTR(-ENXIO);
  1099. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  1100. if (!pdata)
  1101. return ERR_PTR(-ENOMEM);
  1102. if (of_find_property(np, "davicom,ext-phy", NULL))
  1103. pdata->flags |= DM9000_PLATF_EXT_PHY;
  1104. if (of_find_property(np, "davicom,no-eeprom", NULL))
  1105. pdata->flags |= DM9000_PLATF_NO_EEPROM;
  1106. mac_addr = of_get_mac_address(np);
  1107. if (mac_addr)
  1108. memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
  1109. return pdata;
  1110. }
  1111. /*
  1112. * Search DM9000 board, allocate space and register it
  1113. */
  1114. static int
  1115. dm9000_probe(struct platform_device *pdev)
  1116. {
  1117. struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
  1118. struct board_info *db; /* Point a board information structure */
  1119. struct net_device *ndev;
  1120. struct device *dev = &pdev->dev;
  1121. const unsigned char *mac_src;
  1122. int ret = 0;
  1123. int iosize;
  1124. int i;
  1125. u32 id_val;
  1126. int reset_gpios;
  1127. enum of_gpio_flags flags;
  1128. struct regulator *power;
  1129. bool inv_mac_addr = false;
  1130. power = devm_regulator_get(dev, "vcc");
  1131. if (IS_ERR(power)) {
  1132. if (PTR_ERR(power) == -EPROBE_DEFER)
  1133. return -EPROBE_DEFER;
  1134. dev_dbg(dev, "no regulator provided\n");
  1135. } else {
  1136. ret = regulator_enable(power);
  1137. if (ret != 0) {
  1138. dev_err(dev,
  1139. "Failed to enable power regulator: %d\n", ret);
  1140. return ret;
  1141. }
  1142. dev_dbg(dev, "regulator enabled\n");
  1143. }
  1144. reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
  1145. &flags);
  1146. if (gpio_is_valid(reset_gpios)) {
  1147. ret = devm_gpio_request_one(dev, reset_gpios, flags,
  1148. "dm9000_reset");
  1149. if (ret) {
  1150. dev_err(dev, "failed to request reset gpio %d: %d\n",
  1151. reset_gpios, ret);
  1152. return -ENODEV;
  1153. }
  1154. /* According to manual PWRST# Low Period Min 1ms */
  1155. msleep(2);
  1156. gpio_set_value(reset_gpios, 1);
  1157. /* Needs 3ms to read eeprom when PWRST is deasserted */
  1158. msleep(4);
  1159. }
  1160. if (!pdata) {
  1161. pdata = dm9000_parse_dt(&pdev->dev);
  1162. if (IS_ERR(pdata))
  1163. return PTR_ERR(pdata);
  1164. }
  1165. /* Init network device */
  1166. ndev = alloc_etherdev(sizeof(struct board_info));
  1167. if (!ndev)
  1168. return -ENOMEM;
  1169. SET_NETDEV_DEV(ndev, &pdev->dev);
  1170. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1171. /* setup board info structure */
  1172. db = netdev_priv(ndev);
  1173. db->dev = &pdev->dev;
  1174. db->ndev = ndev;
  1175. spin_lock_init(&db->lock);
  1176. mutex_init(&db->addr_lock);
  1177. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1178. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1179. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1180. if (!db->addr_res || !db->data_res) {
  1181. dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
  1182. db->addr_res, db->data_res);
  1183. ret = -ENOENT;
  1184. goto out;
  1185. }
  1186. ndev->irq = platform_get_irq(pdev, 0);
  1187. if (ndev->irq < 0) {
  1188. dev_err(db->dev, "interrupt resource unavailable: %d\n",
  1189. ndev->irq);
  1190. ret = ndev->irq;
  1191. goto out;
  1192. }
  1193. db->irq_wake = platform_get_irq(pdev, 1);
  1194. if (db->irq_wake >= 0) {
  1195. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1196. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1197. IRQF_SHARED, dev_name(db->dev), ndev);
  1198. if (ret) {
  1199. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1200. } else {
  1201. /* test to see if irq is really wakeup capable */
  1202. ret = irq_set_irq_wake(db->irq_wake, 1);
  1203. if (ret) {
  1204. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1205. db->irq_wake, ret);
  1206. ret = 0;
  1207. } else {
  1208. irq_set_irq_wake(db->irq_wake, 0);
  1209. db->wake_supported = 1;
  1210. }
  1211. }
  1212. }
  1213. iosize = resource_size(db->addr_res);
  1214. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1215. pdev->name);
  1216. if (db->addr_req == NULL) {
  1217. dev_err(db->dev, "cannot claim address reg area\n");
  1218. ret = -EIO;
  1219. goto out;
  1220. }
  1221. db->io_addr = ioremap(db->addr_res->start, iosize);
  1222. if (db->io_addr == NULL) {
  1223. dev_err(db->dev, "failed to ioremap address reg\n");
  1224. ret = -EINVAL;
  1225. goto out;
  1226. }
  1227. iosize = resource_size(db->data_res);
  1228. db->data_req = request_mem_region(db->data_res->start, iosize,
  1229. pdev->name);
  1230. if (db->data_req == NULL) {
  1231. dev_err(db->dev, "cannot claim data reg area\n");
  1232. ret = -EIO;
  1233. goto out;
  1234. }
  1235. db->io_data = ioremap(db->data_res->start, iosize);
  1236. if (db->io_data == NULL) {
  1237. dev_err(db->dev, "failed to ioremap data reg\n");
  1238. ret = -EINVAL;
  1239. goto out;
  1240. }
  1241. /* fill in parameters for net-dev structure */
  1242. ndev->base_addr = (unsigned long)db->io_addr;
  1243. /* ensure at least we have a default set of IO routines */
  1244. dm9000_set_io(db, iosize);
  1245. /* check to see if anything is being over-ridden */
  1246. if (pdata != NULL) {
  1247. /* check to see if the driver wants to over-ride the
  1248. * default IO width */
  1249. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1250. dm9000_set_io(db, 1);
  1251. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1252. dm9000_set_io(db, 2);
  1253. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1254. dm9000_set_io(db, 4);
  1255. /* check to see if there are any IO routine
  1256. * over-rides */
  1257. if (pdata->inblk != NULL)
  1258. db->inblk = pdata->inblk;
  1259. if (pdata->outblk != NULL)
  1260. db->outblk = pdata->outblk;
  1261. if (pdata->dumpblk != NULL)
  1262. db->dumpblk = pdata->dumpblk;
  1263. db->flags = pdata->flags;
  1264. }
  1265. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1266. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1267. #endif
  1268. dm9000_reset(db);
  1269. /* try multiple times, DM9000 sometimes gets the read wrong */
  1270. for (i = 0; i < 8; i++) {
  1271. id_val = ior(db, DM9000_VIDL);
  1272. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1273. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1274. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1275. if (id_val == DM9000_ID)
  1276. break;
  1277. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1278. }
  1279. if (id_val != DM9000_ID) {
  1280. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1281. ret = -ENODEV;
  1282. goto out;
  1283. }
  1284. /* Identify what type of DM9000 we are working on */
  1285. id_val = ior(db, DM9000_CHIPR);
  1286. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1287. switch (id_val) {
  1288. case CHIPR_DM9000A:
  1289. db->type = TYPE_DM9000A;
  1290. break;
  1291. case CHIPR_DM9000B:
  1292. db->type = TYPE_DM9000B;
  1293. break;
  1294. default:
  1295. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1296. db->type = TYPE_DM9000E;
  1297. }
  1298. /* dm9000a/b are capable of hardware checksum offload */
  1299. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1300. ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
  1301. ndev->features |= ndev->hw_features;
  1302. }
  1303. /* from this point we assume that we have found a DM9000 */
  1304. ndev->netdev_ops = &dm9000_netdev_ops;
  1305. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1306. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1307. db->msg_enable = NETIF_MSG_LINK;
  1308. db->mii.phy_id_mask = 0x1f;
  1309. db->mii.reg_num_mask = 0x1f;
  1310. db->mii.force_media = 0;
  1311. db->mii.full_duplex = 0;
  1312. db->mii.dev = ndev;
  1313. db->mii.mdio_read = dm9000_phy_read;
  1314. db->mii.mdio_write = dm9000_phy_write;
  1315. mac_src = "eeprom";
  1316. /* try reading the node address from the attached EEPROM */
  1317. for (i = 0; i < 6; i += 2)
  1318. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1319. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1320. mac_src = "platform data";
  1321. memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
  1322. }
  1323. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1324. /* try reading from mac */
  1325. mac_src = "chip";
  1326. for (i = 0; i < 6; i++)
  1327. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1328. }
  1329. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1330. inv_mac_addr = true;
  1331. eth_hw_addr_random(ndev);
  1332. mac_src = "random";
  1333. }
  1334. platform_set_drvdata(pdev, ndev);
  1335. ret = register_netdev(ndev);
  1336. if (ret == 0) {
  1337. if (inv_mac_addr)
  1338. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
  1339. ndev->name);
  1340. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1341. ndev->name, dm9000_type_to_char(db->type),
  1342. db->io_addr, db->io_data, ndev->irq,
  1343. ndev->dev_addr, mac_src);
  1344. }
  1345. return 0;
  1346. out:
  1347. dev_err(db->dev, "not found (%d).\n", ret);
  1348. dm9000_release_board(pdev, db);
  1349. free_netdev(ndev);
  1350. return ret;
  1351. }
  1352. static int
  1353. dm9000_drv_suspend(struct device *dev)
  1354. {
  1355. struct platform_device *pdev = to_platform_device(dev);
  1356. struct net_device *ndev = platform_get_drvdata(pdev);
  1357. struct board_info *db;
  1358. if (ndev) {
  1359. db = netdev_priv(ndev);
  1360. db->in_suspend = 1;
  1361. if (!netif_running(ndev))
  1362. return 0;
  1363. netif_device_detach(ndev);
  1364. /* only shutdown if not using WoL */
  1365. if (!db->wake_state)
  1366. dm9000_shutdown(ndev);
  1367. }
  1368. return 0;
  1369. }
  1370. static int
  1371. dm9000_drv_resume(struct device *dev)
  1372. {
  1373. struct platform_device *pdev = to_platform_device(dev);
  1374. struct net_device *ndev = platform_get_drvdata(pdev);
  1375. struct board_info *db = netdev_priv(ndev);
  1376. if (ndev) {
  1377. if (netif_running(ndev)) {
  1378. /* reset if we were not in wake mode to ensure if
  1379. * the device was powered off it is in a known state */
  1380. if (!db->wake_state) {
  1381. dm9000_init_dm9000(ndev);
  1382. dm9000_unmask_interrupts(db);
  1383. }
  1384. netif_device_attach(ndev);
  1385. }
  1386. db->in_suspend = 0;
  1387. }
  1388. return 0;
  1389. }
  1390. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1391. .suspend = dm9000_drv_suspend,
  1392. .resume = dm9000_drv_resume,
  1393. };
  1394. static int
  1395. dm9000_drv_remove(struct platform_device *pdev)
  1396. {
  1397. struct net_device *ndev = platform_get_drvdata(pdev);
  1398. unregister_netdev(ndev);
  1399. dm9000_release_board(pdev, netdev_priv(ndev));
  1400. free_netdev(ndev); /* free device structure */
  1401. dev_dbg(&pdev->dev, "released and freed device\n");
  1402. return 0;
  1403. }
  1404. #ifdef CONFIG_OF
  1405. static const struct of_device_id dm9000_of_matches[] = {
  1406. { .compatible = "davicom,dm9000", },
  1407. { /* sentinel */ }
  1408. };
  1409. MODULE_DEVICE_TABLE(of, dm9000_of_matches);
  1410. #endif
  1411. static struct platform_driver dm9000_driver = {
  1412. .driver = {
  1413. .name = "dm9000",
  1414. .pm = &dm9000_drv_pm_ops,
  1415. .of_match_table = of_match_ptr(dm9000_of_matches),
  1416. },
  1417. .probe = dm9000_probe,
  1418. .remove = dm9000_drv_remove,
  1419. };
  1420. module_platform_driver(dm9000_driver);
  1421. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1422. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1423. MODULE_LICENSE("GPL");
  1424. MODULE_ALIAS("platform:dm9000");