bnx2.c 217 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867
  1. /* bnx2.c: QLogic bnx2 network driver.
  2. *
  3. * Copyright (c) 2004-2014 Broadcom Corporation
  4. * Copyright (c) 2014-2015 QLogic Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation.
  9. *
  10. * Written by: Michael Chan (mchan@broadcom.com)
  11. */
  12. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/stringify.h>
  16. #include <linux/kernel.h>
  17. #include <linux/timer.h>
  18. #include <linux/errno.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/pci.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/bitops.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <linux/delay.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/page.h>
  34. #include <linux/time.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/mii.h>
  37. #include <linux/if.h>
  38. #include <linux/if_vlan.h>
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/aer.h>
  49. #include <linux/crash_dump.h>
  50. #if IS_ENABLED(CONFIG_CNIC)
  51. #define BCM_CNIC 1
  52. #include "cnic_if.h"
  53. #endif
  54. #include "bnx2.h"
  55. #include "bnx2_fw.h"
  56. #define DRV_MODULE_NAME "bnx2"
  57. #define DRV_MODULE_VERSION "2.2.6"
  58. #define DRV_MODULE_RELDATE "January 29, 2014"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] =
  68. "QLogic " DRV_MODULE_NAME " Gigabit Ethernet Driver v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("QLogic BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, S_IRUGO);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static const struct pci_device_id bnx2_pci_tbl[] = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static void bnx2_init_napi(struct bnx2 *bp);
  233. static void bnx2_del_napi(struct bnx2 *bp);
  234. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  235. {
  236. u32 diff;
  237. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  238. barrier();
  239. /* The ring uses 256 indices for 255 entries, one of them
  240. * needs to be skipped.
  241. */
  242. diff = txr->tx_prod - txr->tx_cons;
  243. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  244. diff &= 0xffff;
  245. if (diff == BNX2_TX_DESC_CNT)
  246. diff = BNX2_MAX_TX_DESC_CNT;
  247. }
  248. return bp->tx_ring_size - diff;
  249. }
  250. static u32
  251. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  252. {
  253. unsigned long flags;
  254. u32 val;
  255. spin_lock_irqsave(&bp->indirect_lock, flags);
  256. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  257. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  258. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  259. return val;
  260. }
  261. static void
  262. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  263. {
  264. unsigned long flags;
  265. spin_lock_irqsave(&bp->indirect_lock, flags);
  266. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  267. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  268. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  269. }
  270. static void
  271. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  272. {
  273. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  274. }
  275. static u32
  276. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  277. {
  278. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  279. }
  280. static void
  281. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  282. {
  283. unsigned long flags;
  284. offset += cid_addr;
  285. spin_lock_irqsave(&bp->indirect_lock, flags);
  286. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  287. int i;
  288. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  289. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  290. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  291. for (i = 0; i < 5; i++) {
  292. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  293. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  294. break;
  295. udelay(5);
  296. }
  297. } else {
  298. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  299. BNX2_WR(bp, BNX2_CTX_DATA, val);
  300. }
  301. spin_unlock_irqrestore(&bp->indirect_lock, flags);
  302. }
  303. #ifdef BCM_CNIC
  304. static int
  305. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  306. {
  307. struct bnx2 *bp = netdev_priv(dev);
  308. struct drv_ctl_io *io = &info->data.io;
  309. switch (info->cmd) {
  310. case DRV_CTL_IO_WR_CMD:
  311. bnx2_reg_wr_ind(bp, io->offset, io->data);
  312. break;
  313. case DRV_CTL_IO_RD_CMD:
  314. io->data = bnx2_reg_rd_ind(bp, io->offset);
  315. break;
  316. case DRV_CTL_CTX_WR_CMD:
  317. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  318. break;
  319. default:
  320. return -EINVAL;
  321. }
  322. return 0;
  323. }
  324. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  325. {
  326. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  327. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  328. int sb_id;
  329. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  330. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  331. bnapi->cnic_present = 0;
  332. sb_id = bp->irq_nvecs;
  333. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  334. } else {
  335. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  336. bnapi->cnic_tag = bnapi->last_status_idx;
  337. bnapi->cnic_present = 1;
  338. sb_id = 0;
  339. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  340. }
  341. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  342. cp->irq_arr[0].status_blk = (void *)
  343. ((unsigned long) bnapi->status_blk.msi +
  344. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  345. cp->irq_arr[0].status_blk_num = sb_id;
  346. cp->num_irq = 1;
  347. }
  348. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  349. void *data)
  350. {
  351. struct bnx2 *bp = netdev_priv(dev);
  352. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  353. if (ops == NULL)
  354. return -EINVAL;
  355. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  356. return -EBUSY;
  357. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  358. return -ENODEV;
  359. bp->cnic_data = data;
  360. rcu_assign_pointer(bp->cnic_ops, ops);
  361. cp->num_irq = 0;
  362. cp->drv_state = CNIC_DRV_STATE_REGD;
  363. bnx2_setup_cnic_irq_info(bp);
  364. return 0;
  365. }
  366. static int bnx2_unregister_cnic(struct net_device *dev)
  367. {
  368. struct bnx2 *bp = netdev_priv(dev);
  369. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  370. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  371. mutex_lock(&bp->cnic_lock);
  372. cp->drv_state = 0;
  373. bnapi->cnic_present = 0;
  374. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  375. mutex_unlock(&bp->cnic_lock);
  376. synchronize_rcu();
  377. return 0;
  378. }
  379. static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  380. {
  381. struct bnx2 *bp = netdev_priv(dev);
  382. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  383. if (!cp->max_iscsi_conn)
  384. return NULL;
  385. cp->drv_owner = THIS_MODULE;
  386. cp->chip_id = bp->chip_id;
  387. cp->pdev = bp->pdev;
  388. cp->io_base = bp->regview;
  389. cp->drv_ctl = bnx2_drv_ctl;
  390. cp->drv_register_cnic = bnx2_register_cnic;
  391. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  392. return cp;
  393. }
  394. static void
  395. bnx2_cnic_stop(struct bnx2 *bp)
  396. {
  397. struct cnic_ops *c_ops;
  398. struct cnic_ctl_info info;
  399. mutex_lock(&bp->cnic_lock);
  400. c_ops = rcu_dereference_protected(bp->cnic_ops,
  401. lockdep_is_held(&bp->cnic_lock));
  402. if (c_ops) {
  403. info.cmd = CNIC_CTL_STOP_CMD;
  404. c_ops->cnic_ctl(bp->cnic_data, &info);
  405. }
  406. mutex_unlock(&bp->cnic_lock);
  407. }
  408. static void
  409. bnx2_cnic_start(struct bnx2 *bp)
  410. {
  411. struct cnic_ops *c_ops;
  412. struct cnic_ctl_info info;
  413. mutex_lock(&bp->cnic_lock);
  414. c_ops = rcu_dereference_protected(bp->cnic_ops,
  415. lockdep_is_held(&bp->cnic_lock));
  416. if (c_ops) {
  417. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  418. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  419. bnapi->cnic_tag = bnapi->last_status_idx;
  420. }
  421. info.cmd = CNIC_CTL_START_CMD;
  422. c_ops->cnic_ctl(bp->cnic_data, &info);
  423. }
  424. mutex_unlock(&bp->cnic_lock);
  425. }
  426. #else
  427. static void
  428. bnx2_cnic_stop(struct bnx2 *bp)
  429. {
  430. }
  431. static void
  432. bnx2_cnic_start(struct bnx2 *bp)
  433. {
  434. }
  435. #endif
  436. static int
  437. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  438. {
  439. u32 val1;
  440. int i, ret;
  441. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  442. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  443. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  444. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  445. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  446. udelay(40);
  447. }
  448. val1 = (bp->phy_addr << 21) | (reg << 16) |
  449. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  450. BNX2_EMAC_MDIO_COMM_START_BUSY;
  451. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  452. for (i = 0; i < 50; i++) {
  453. udelay(10);
  454. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  455. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  456. udelay(5);
  457. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  458. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  459. break;
  460. }
  461. }
  462. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  463. *val = 0x0;
  464. ret = -EBUSY;
  465. }
  466. else {
  467. *val = val1;
  468. ret = 0;
  469. }
  470. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  471. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  472. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  473. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  474. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. udelay(40);
  476. }
  477. return ret;
  478. }
  479. static int
  480. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  481. {
  482. u32 val1;
  483. int i, ret;
  484. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  485. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  486. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  487. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  488. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  489. udelay(40);
  490. }
  491. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  492. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  493. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  494. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  495. for (i = 0; i < 50; i++) {
  496. udelay(10);
  497. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  498. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  499. udelay(5);
  500. break;
  501. }
  502. }
  503. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  504. ret = -EBUSY;
  505. else
  506. ret = 0;
  507. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  508. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  509. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  510. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  511. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  512. udelay(40);
  513. }
  514. return ret;
  515. }
  516. static void
  517. bnx2_disable_int(struct bnx2 *bp)
  518. {
  519. int i;
  520. struct bnx2_napi *bnapi;
  521. for (i = 0; i < bp->irq_nvecs; i++) {
  522. bnapi = &bp->bnx2_napi[i];
  523. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  524. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  525. }
  526. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  527. }
  528. static void
  529. bnx2_enable_int(struct bnx2 *bp)
  530. {
  531. int i;
  532. struct bnx2_napi *bnapi;
  533. for (i = 0; i < bp->irq_nvecs; i++) {
  534. bnapi = &bp->bnx2_napi[i];
  535. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  536. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  537. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  538. bnapi->last_status_idx);
  539. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  540. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  541. bnapi->last_status_idx);
  542. }
  543. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  544. }
  545. static void
  546. bnx2_disable_int_sync(struct bnx2 *bp)
  547. {
  548. int i;
  549. atomic_inc(&bp->intr_sem);
  550. if (!netif_running(bp->dev))
  551. return;
  552. bnx2_disable_int(bp);
  553. for (i = 0; i < bp->irq_nvecs; i++)
  554. synchronize_irq(bp->irq_tbl[i].vector);
  555. }
  556. static void
  557. bnx2_napi_disable(struct bnx2 *bp)
  558. {
  559. int i;
  560. for (i = 0; i < bp->irq_nvecs; i++)
  561. napi_disable(&bp->bnx2_napi[i].napi);
  562. }
  563. static void
  564. bnx2_napi_enable(struct bnx2 *bp)
  565. {
  566. int i;
  567. for (i = 0; i < bp->irq_nvecs; i++)
  568. napi_enable(&bp->bnx2_napi[i].napi);
  569. }
  570. static void
  571. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  572. {
  573. if (stop_cnic)
  574. bnx2_cnic_stop(bp);
  575. if (netif_running(bp->dev)) {
  576. bnx2_napi_disable(bp);
  577. netif_tx_disable(bp->dev);
  578. }
  579. bnx2_disable_int_sync(bp);
  580. netif_carrier_off(bp->dev); /* prevent tx timeout */
  581. }
  582. static void
  583. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  584. {
  585. if (atomic_dec_and_test(&bp->intr_sem)) {
  586. if (netif_running(bp->dev)) {
  587. netif_tx_wake_all_queues(bp->dev);
  588. spin_lock_bh(&bp->phy_lock);
  589. if (bp->link_up)
  590. netif_carrier_on(bp->dev);
  591. spin_unlock_bh(&bp->phy_lock);
  592. bnx2_napi_enable(bp);
  593. bnx2_enable_int(bp);
  594. if (start_cnic)
  595. bnx2_cnic_start(bp);
  596. }
  597. }
  598. }
  599. static void
  600. bnx2_free_tx_mem(struct bnx2 *bp)
  601. {
  602. int i;
  603. for (i = 0; i < bp->num_tx_rings; i++) {
  604. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  605. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  606. if (txr->tx_desc_ring) {
  607. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  608. txr->tx_desc_ring,
  609. txr->tx_desc_mapping);
  610. txr->tx_desc_ring = NULL;
  611. }
  612. kfree(txr->tx_buf_ring);
  613. txr->tx_buf_ring = NULL;
  614. }
  615. }
  616. static void
  617. bnx2_free_rx_mem(struct bnx2 *bp)
  618. {
  619. int i;
  620. for (i = 0; i < bp->num_rx_rings; i++) {
  621. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  622. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  623. int j;
  624. for (j = 0; j < bp->rx_max_ring; j++) {
  625. if (rxr->rx_desc_ring[j])
  626. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  627. rxr->rx_desc_ring[j],
  628. rxr->rx_desc_mapping[j]);
  629. rxr->rx_desc_ring[j] = NULL;
  630. }
  631. vfree(rxr->rx_buf_ring);
  632. rxr->rx_buf_ring = NULL;
  633. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  634. if (rxr->rx_pg_desc_ring[j])
  635. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  636. rxr->rx_pg_desc_ring[j],
  637. rxr->rx_pg_desc_mapping[j]);
  638. rxr->rx_pg_desc_ring[j] = NULL;
  639. }
  640. vfree(rxr->rx_pg_ring);
  641. rxr->rx_pg_ring = NULL;
  642. }
  643. }
  644. static int
  645. bnx2_alloc_tx_mem(struct bnx2 *bp)
  646. {
  647. int i;
  648. for (i = 0; i < bp->num_tx_rings; i++) {
  649. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  650. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  651. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  652. if (txr->tx_buf_ring == NULL)
  653. return -ENOMEM;
  654. txr->tx_desc_ring =
  655. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  656. &txr->tx_desc_mapping, GFP_KERNEL);
  657. if (txr->tx_desc_ring == NULL)
  658. return -ENOMEM;
  659. }
  660. return 0;
  661. }
  662. static int
  663. bnx2_alloc_rx_mem(struct bnx2 *bp)
  664. {
  665. int i;
  666. for (i = 0; i < bp->num_rx_rings; i++) {
  667. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  668. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  669. int j;
  670. rxr->rx_buf_ring =
  671. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  672. if (rxr->rx_buf_ring == NULL)
  673. return -ENOMEM;
  674. for (j = 0; j < bp->rx_max_ring; j++) {
  675. rxr->rx_desc_ring[j] =
  676. dma_alloc_coherent(&bp->pdev->dev,
  677. RXBD_RING_SIZE,
  678. &rxr->rx_desc_mapping[j],
  679. GFP_KERNEL);
  680. if (rxr->rx_desc_ring[j] == NULL)
  681. return -ENOMEM;
  682. }
  683. if (bp->rx_pg_ring_size) {
  684. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  685. bp->rx_max_pg_ring);
  686. if (rxr->rx_pg_ring == NULL)
  687. return -ENOMEM;
  688. }
  689. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  690. rxr->rx_pg_desc_ring[j] =
  691. dma_alloc_coherent(&bp->pdev->dev,
  692. RXBD_RING_SIZE,
  693. &rxr->rx_pg_desc_mapping[j],
  694. GFP_KERNEL);
  695. if (rxr->rx_pg_desc_ring[j] == NULL)
  696. return -ENOMEM;
  697. }
  698. }
  699. return 0;
  700. }
  701. static void
  702. bnx2_free_stats_blk(struct net_device *dev)
  703. {
  704. struct bnx2 *bp = netdev_priv(dev);
  705. if (bp->status_blk) {
  706. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  707. bp->status_blk,
  708. bp->status_blk_mapping);
  709. bp->status_blk = NULL;
  710. bp->stats_blk = NULL;
  711. }
  712. }
  713. static int
  714. bnx2_alloc_stats_blk(struct net_device *dev)
  715. {
  716. int status_blk_size;
  717. void *status_blk;
  718. struct bnx2 *bp = netdev_priv(dev);
  719. /* Combine status and statistics blocks into one allocation. */
  720. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  721. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  722. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  723. BNX2_SBLK_MSIX_ALIGN_SIZE);
  724. bp->status_stats_size = status_blk_size +
  725. sizeof(struct statistics_block);
  726. status_blk = dma_zalloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  727. &bp->status_blk_mapping, GFP_KERNEL);
  728. if (status_blk == NULL)
  729. return -ENOMEM;
  730. bp->status_blk = status_blk;
  731. bp->stats_blk = status_blk + status_blk_size;
  732. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  733. return 0;
  734. }
  735. static void
  736. bnx2_free_mem(struct bnx2 *bp)
  737. {
  738. int i;
  739. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  740. bnx2_free_tx_mem(bp);
  741. bnx2_free_rx_mem(bp);
  742. for (i = 0; i < bp->ctx_pages; i++) {
  743. if (bp->ctx_blk[i]) {
  744. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  745. bp->ctx_blk[i],
  746. bp->ctx_blk_mapping[i]);
  747. bp->ctx_blk[i] = NULL;
  748. }
  749. }
  750. if (bnapi->status_blk.msi)
  751. bnapi->status_blk.msi = NULL;
  752. }
  753. static int
  754. bnx2_alloc_mem(struct bnx2 *bp)
  755. {
  756. int i, err;
  757. struct bnx2_napi *bnapi;
  758. bnapi = &bp->bnx2_napi[0];
  759. bnapi->status_blk.msi = bp->status_blk;
  760. bnapi->hw_tx_cons_ptr =
  761. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  762. bnapi->hw_rx_cons_ptr =
  763. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  764. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  765. for (i = 1; i < bp->irq_nvecs; i++) {
  766. struct status_block_msix *sblk;
  767. bnapi = &bp->bnx2_napi[i];
  768. sblk = (bp->status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  769. bnapi->status_blk.msix = sblk;
  770. bnapi->hw_tx_cons_ptr =
  771. &sblk->status_tx_quick_consumer_index;
  772. bnapi->hw_rx_cons_ptr =
  773. &sblk->status_rx_quick_consumer_index;
  774. bnapi->int_num = i << 24;
  775. }
  776. }
  777. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  778. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  779. if (bp->ctx_pages == 0)
  780. bp->ctx_pages = 1;
  781. for (i = 0; i < bp->ctx_pages; i++) {
  782. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  783. BNX2_PAGE_SIZE,
  784. &bp->ctx_blk_mapping[i],
  785. GFP_KERNEL);
  786. if (bp->ctx_blk[i] == NULL)
  787. goto alloc_mem_err;
  788. }
  789. }
  790. err = bnx2_alloc_rx_mem(bp);
  791. if (err)
  792. goto alloc_mem_err;
  793. err = bnx2_alloc_tx_mem(bp);
  794. if (err)
  795. goto alloc_mem_err;
  796. return 0;
  797. alloc_mem_err:
  798. bnx2_free_mem(bp);
  799. return -ENOMEM;
  800. }
  801. static void
  802. bnx2_report_fw_link(struct bnx2 *bp)
  803. {
  804. u32 fw_link_status = 0;
  805. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  806. return;
  807. if (bp->link_up) {
  808. u32 bmsr;
  809. switch (bp->line_speed) {
  810. case SPEED_10:
  811. if (bp->duplex == DUPLEX_HALF)
  812. fw_link_status = BNX2_LINK_STATUS_10HALF;
  813. else
  814. fw_link_status = BNX2_LINK_STATUS_10FULL;
  815. break;
  816. case SPEED_100:
  817. if (bp->duplex == DUPLEX_HALF)
  818. fw_link_status = BNX2_LINK_STATUS_100HALF;
  819. else
  820. fw_link_status = BNX2_LINK_STATUS_100FULL;
  821. break;
  822. case SPEED_1000:
  823. if (bp->duplex == DUPLEX_HALF)
  824. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  825. else
  826. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  827. break;
  828. case SPEED_2500:
  829. if (bp->duplex == DUPLEX_HALF)
  830. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  831. else
  832. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  833. break;
  834. }
  835. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  836. if (bp->autoneg) {
  837. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  838. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  839. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  840. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  841. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  842. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  843. else
  844. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  845. }
  846. }
  847. else
  848. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  849. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  850. }
  851. static char *
  852. bnx2_xceiver_str(struct bnx2 *bp)
  853. {
  854. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  855. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  856. "Copper");
  857. }
  858. static void
  859. bnx2_report_link(struct bnx2 *bp)
  860. {
  861. if (bp->link_up) {
  862. netif_carrier_on(bp->dev);
  863. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  864. bnx2_xceiver_str(bp),
  865. bp->line_speed,
  866. bp->duplex == DUPLEX_FULL ? "full" : "half");
  867. if (bp->flow_ctrl) {
  868. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  869. pr_cont(", receive ");
  870. if (bp->flow_ctrl & FLOW_CTRL_TX)
  871. pr_cont("& transmit ");
  872. }
  873. else {
  874. pr_cont(", transmit ");
  875. }
  876. pr_cont("flow control ON");
  877. }
  878. pr_cont("\n");
  879. } else {
  880. netif_carrier_off(bp->dev);
  881. netdev_err(bp->dev, "NIC %s Link is Down\n",
  882. bnx2_xceiver_str(bp));
  883. }
  884. bnx2_report_fw_link(bp);
  885. }
  886. static void
  887. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  888. {
  889. u32 local_adv, remote_adv;
  890. bp->flow_ctrl = 0;
  891. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  892. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  893. if (bp->duplex == DUPLEX_FULL) {
  894. bp->flow_ctrl = bp->req_flow_ctrl;
  895. }
  896. return;
  897. }
  898. if (bp->duplex != DUPLEX_FULL) {
  899. return;
  900. }
  901. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  902. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  903. u32 val;
  904. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  905. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  906. bp->flow_ctrl |= FLOW_CTRL_TX;
  907. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  908. bp->flow_ctrl |= FLOW_CTRL_RX;
  909. return;
  910. }
  911. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  912. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  913. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  914. u32 new_local_adv = 0;
  915. u32 new_remote_adv = 0;
  916. if (local_adv & ADVERTISE_1000XPAUSE)
  917. new_local_adv |= ADVERTISE_PAUSE_CAP;
  918. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  919. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  920. if (remote_adv & ADVERTISE_1000XPAUSE)
  921. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  922. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  923. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  924. local_adv = new_local_adv;
  925. remote_adv = new_remote_adv;
  926. }
  927. /* See Table 28B-3 of 802.3ab-1999 spec. */
  928. if (local_adv & ADVERTISE_PAUSE_CAP) {
  929. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  930. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  931. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  932. }
  933. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  934. bp->flow_ctrl = FLOW_CTRL_RX;
  935. }
  936. }
  937. else {
  938. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  939. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  940. }
  941. }
  942. }
  943. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  944. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  945. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  946. bp->flow_ctrl = FLOW_CTRL_TX;
  947. }
  948. }
  949. }
  950. static int
  951. bnx2_5709s_linkup(struct bnx2 *bp)
  952. {
  953. u32 val, speed;
  954. bp->link_up = 1;
  955. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  956. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  957. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  958. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  959. bp->line_speed = bp->req_line_speed;
  960. bp->duplex = bp->req_duplex;
  961. return 0;
  962. }
  963. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  964. switch (speed) {
  965. case MII_BNX2_GP_TOP_AN_SPEED_10:
  966. bp->line_speed = SPEED_10;
  967. break;
  968. case MII_BNX2_GP_TOP_AN_SPEED_100:
  969. bp->line_speed = SPEED_100;
  970. break;
  971. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  972. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  973. bp->line_speed = SPEED_1000;
  974. break;
  975. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  976. bp->line_speed = SPEED_2500;
  977. break;
  978. }
  979. if (val & MII_BNX2_GP_TOP_AN_FD)
  980. bp->duplex = DUPLEX_FULL;
  981. else
  982. bp->duplex = DUPLEX_HALF;
  983. return 0;
  984. }
  985. static int
  986. bnx2_5708s_linkup(struct bnx2 *bp)
  987. {
  988. u32 val;
  989. bp->link_up = 1;
  990. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  991. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  992. case BCM5708S_1000X_STAT1_SPEED_10:
  993. bp->line_speed = SPEED_10;
  994. break;
  995. case BCM5708S_1000X_STAT1_SPEED_100:
  996. bp->line_speed = SPEED_100;
  997. break;
  998. case BCM5708S_1000X_STAT1_SPEED_1G:
  999. bp->line_speed = SPEED_1000;
  1000. break;
  1001. case BCM5708S_1000X_STAT1_SPEED_2G5:
  1002. bp->line_speed = SPEED_2500;
  1003. break;
  1004. }
  1005. if (val & BCM5708S_1000X_STAT1_FD)
  1006. bp->duplex = DUPLEX_FULL;
  1007. else
  1008. bp->duplex = DUPLEX_HALF;
  1009. return 0;
  1010. }
  1011. static int
  1012. bnx2_5706s_linkup(struct bnx2 *bp)
  1013. {
  1014. u32 bmcr, local_adv, remote_adv, common;
  1015. bp->link_up = 1;
  1016. bp->line_speed = SPEED_1000;
  1017. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1018. if (bmcr & BMCR_FULLDPLX) {
  1019. bp->duplex = DUPLEX_FULL;
  1020. }
  1021. else {
  1022. bp->duplex = DUPLEX_HALF;
  1023. }
  1024. if (!(bmcr & BMCR_ANENABLE)) {
  1025. return 0;
  1026. }
  1027. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1028. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1029. common = local_adv & remote_adv;
  1030. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1031. if (common & ADVERTISE_1000XFULL) {
  1032. bp->duplex = DUPLEX_FULL;
  1033. }
  1034. else {
  1035. bp->duplex = DUPLEX_HALF;
  1036. }
  1037. }
  1038. return 0;
  1039. }
  1040. static int
  1041. bnx2_copper_linkup(struct bnx2 *bp)
  1042. {
  1043. u32 bmcr;
  1044. bp->phy_flags &= ~BNX2_PHY_FLAG_MDIX;
  1045. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1046. if (bmcr & BMCR_ANENABLE) {
  1047. u32 local_adv, remote_adv, common;
  1048. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1049. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1050. common = local_adv & (remote_adv >> 2);
  1051. if (common & ADVERTISE_1000FULL) {
  1052. bp->line_speed = SPEED_1000;
  1053. bp->duplex = DUPLEX_FULL;
  1054. }
  1055. else if (common & ADVERTISE_1000HALF) {
  1056. bp->line_speed = SPEED_1000;
  1057. bp->duplex = DUPLEX_HALF;
  1058. }
  1059. else {
  1060. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1061. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1062. common = local_adv & remote_adv;
  1063. if (common & ADVERTISE_100FULL) {
  1064. bp->line_speed = SPEED_100;
  1065. bp->duplex = DUPLEX_FULL;
  1066. }
  1067. else if (common & ADVERTISE_100HALF) {
  1068. bp->line_speed = SPEED_100;
  1069. bp->duplex = DUPLEX_HALF;
  1070. }
  1071. else if (common & ADVERTISE_10FULL) {
  1072. bp->line_speed = SPEED_10;
  1073. bp->duplex = DUPLEX_FULL;
  1074. }
  1075. else if (common & ADVERTISE_10HALF) {
  1076. bp->line_speed = SPEED_10;
  1077. bp->duplex = DUPLEX_HALF;
  1078. }
  1079. else {
  1080. bp->line_speed = 0;
  1081. bp->link_up = 0;
  1082. }
  1083. }
  1084. }
  1085. else {
  1086. if (bmcr & BMCR_SPEED100) {
  1087. bp->line_speed = SPEED_100;
  1088. }
  1089. else {
  1090. bp->line_speed = SPEED_10;
  1091. }
  1092. if (bmcr & BMCR_FULLDPLX) {
  1093. bp->duplex = DUPLEX_FULL;
  1094. }
  1095. else {
  1096. bp->duplex = DUPLEX_HALF;
  1097. }
  1098. }
  1099. if (bp->link_up) {
  1100. u32 ext_status;
  1101. bnx2_read_phy(bp, MII_BNX2_EXT_STATUS, &ext_status);
  1102. if (ext_status & EXT_STATUS_MDIX)
  1103. bp->phy_flags |= BNX2_PHY_FLAG_MDIX;
  1104. }
  1105. return 0;
  1106. }
  1107. static void
  1108. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1109. {
  1110. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1111. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1112. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1113. val |= 0x02 << 8;
  1114. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1115. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1116. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1117. }
  1118. static void
  1119. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1120. {
  1121. int i;
  1122. u32 cid;
  1123. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1124. if (i == 1)
  1125. cid = RX_RSS_CID;
  1126. bnx2_init_rx_context(bp, cid);
  1127. }
  1128. }
  1129. static void
  1130. bnx2_set_mac_link(struct bnx2 *bp)
  1131. {
  1132. u32 val;
  1133. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1134. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1135. (bp->duplex == DUPLEX_HALF)) {
  1136. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1137. }
  1138. /* Configure the EMAC mode register. */
  1139. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1140. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1141. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1142. BNX2_EMAC_MODE_25G_MODE);
  1143. if (bp->link_up) {
  1144. switch (bp->line_speed) {
  1145. case SPEED_10:
  1146. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1147. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1148. break;
  1149. }
  1150. /* fall through */
  1151. case SPEED_100:
  1152. val |= BNX2_EMAC_MODE_PORT_MII;
  1153. break;
  1154. case SPEED_2500:
  1155. val |= BNX2_EMAC_MODE_25G_MODE;
  1156. /* fall through */
  1157. case SPEED_1000:
  1158. val |= BNX2_EMAC_MODE_PORT_GMII;
  1159. break;
  1160. }
  1161. }
  1162. else {
  1163. val |= BNX2_EMAC_MODE_PORT_GMII;
  1164. }
  1165. /* Set the MAC to operate in the appropriate duplex mode. */
  1166. if (bp->duplex == DUPLEX_HALF)
  1167. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1168. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1169. /* Enable/disable rx PAUSE. */
  1170. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1171. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1172. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1173. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1174. /* Enable/disable tx PAUSE. */
  1175. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1176. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1177. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1178. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1179. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1180. /* Acknowledge the interrupt. */
  1181. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1182. bnx2_init_all_rx_contexts(bp);
  1183. }
  1184. static void
  1185. bnx2_enable_bmsr1(struct bnx2 *bp)
  1186. {
  1187. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1188. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1189. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1190. MII_BNX2_BLK_ADDR_GP_STATUS);
  1191. }
  1192. static void
  1193. bnx2_disable_bmsr1(struct bnx2 *bp)
  1194. {
  1195. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1196. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1197. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1198. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1199. }
  1200. static int
  1201. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1202. {
  1203. u32 up1;
  1204. int ret = 1;
  1205. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1206. return 0;
  1207. if (bp->autoneg & AUTONEG_SPEED)
  1208. bp->advertising |= ADVERTISED_2500baseX_Full;
  1209. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1210. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1211. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1212. if (!(up1 & BCM5708S_UP1_2G5)) {
  1213. up1 |= BCM5708S_UP1_2G5;
  1214. bnx2_write_phy(bp, bp->mii_up1, up1);
  1215. ret = 0;
  1216. }
  1217. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1219. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1220. return ret;
  1221. }
  1222. static int
  1223. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1224. {
  1225. u32 up1;
  1226. int ret = 0;
  1227. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1228. return 0;
  1229. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1230. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1231. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1232. if (up1 & BCM5708S_UP1_2G5) {
  1233. up1 &= ~BCM5708S_UP1_2G5;
  1234. bnx2_write_phy(bp, bp->mii_up1, up1);
  1235. ret = 1;
  1236. }
  1237. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1238. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1239. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1240. return ret;
  1241. }
  1242. static void
  1243. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1244. {
  1245. u32 uninitialized_var(bmcr);
  1246. int err;
  1247. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1248. return;
  1249. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1250. u32 val;
  1251. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1252. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1253. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1254. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1255. val |= MII_BNX2_SD_MISC1_FORCE |
  1256. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1257. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1258. }
  1259. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1260. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1261. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1262. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1263. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1264. if (!err)
  1265. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1266. } else {
  1267. return;
  1268. }
  1269. if (err)
  1270. return;
  1271. if (bp->autoneg & AUTONEG_SPEED) {
  1272. bmcr &= ~BMCR_ANENABLE;
  1273. if (bp->req_duplex == DUPLEX_FULL)
  1274. bmcr |= BMCR_FULLDPLX;
  1275. }
  1276. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1277. }
  1278. static void
  1279. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1280. {
  1281. u32 uninitialized_var(bmcr);
  1282. int err;
  1283. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1284. return;
  1285. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1286. u32 val;
  1287. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1288. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1289. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1290. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1291. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1292. }
  1293. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1294. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1295. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1296. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1297. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1298. if (!err)
  1299. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1300. } else {
  1301. return;
  1302. }
  1303. if (err)
  1304. return;
  1305. if (bp->autoneg & AUTONEG_SPEED)
  1306. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1307. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1308. }
  1309. static void
  1310. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1311. {
  1312. u32 val;
  1313. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1314. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1315. if (start)
  1316. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1317. else
  1318. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1319. }
  1320. static int
  1321. bnx2_set_link(struct bnx2 *bp)
  1322. {
  1323. u32 bmsr;
  1324. u8 link_up;
  1325. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1326. bp->link_up = 1;
  1327. return 0;
  1328. }
  1329. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1330. return 0;
  1331. link_up = bp->link_up;
  1332. bnx2_enable_bmsr1(bp);
  1333. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1334. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1335. bnx2_disable_bmsr1(bp);
  1336. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1337. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1338. u32 val, an_dbg;
  1339. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1340. bnx2_5706s_force_link_dn(bp, 0);
  1341. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1342. }
  1343. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1344. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1345. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1346. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1347. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1348. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1349. bmsr |= BMSR_LSTATUS;
  1350. else
  1351. bmsr &= ~BMSR_LSTATUS;
  1352. }
  1353. if (bmsr & BMSR_LSTATUS) {
  1354. bp->link_up = 1;
  1355. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1356. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1357. bnx2_5706s_linkup(bp);
  1358. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1359. bnx2_5708s_linkup(bp);
  1360. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1361. bnx2_5709s_linkup(bp);
  1362. }
  1363. else {
  1364. bnx2_copper_linkup(bp);
  1365. }
  1366. bnx2_resolve_flow_ctrl(bp);
  1367. }
  1368. else {
  1369. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1370. (bp->autoneg & AUTONEG_SPEED))
  1371. bnx2_disable_forced_2g5(bp);
  1372. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1373. u32 bmcr;
  1374. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1375. bmcr |= BMCR_ANENABLE;
  1376. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1377. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1378. }
  1379. bp->link_up = 0;
  1380. }
  1381. if (bp->link_up != link_up) {
  1382. bnx2_report_link(bp);
  1383. }
  1384. bnx2_set_mac_link(bp);
  1385. return 0;
  1386. }
  1387. static int
  1388. bnx2_reset_phy(struct bnx2 *bp)
  1389. {
  1390. int i;
  1391. u32 reg;
  1392. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1393. #define PHY_RESET_MAX_WAIT 100
  1394. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1395. udelay(10);
  1396. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1397. if (!(reg & BMCR_RESET)) {
  1398. udelay(20);
  1399. break;
  1400. }
  1401. }
  1402. if (i == PHY_RESET_MAX_WAIT) {
  1403. return -EBUSY;
  1404. }
  1405. return 0;
  1406. }
  1407. static u32
  1408. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1409. {
  1410. u32 adv = 0;
  1411. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1412. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1413. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1414. adv = ADVERTISE_1000XPAUSE;
  1415. }
  1416. else {
  1417. adv = ADVERTISE_PAUSE_CAP;
  1418. }
  1419. }
  1420. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1421. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1422. adv = ADVERTISE_1000XPSE_ASYM;
  1423. }
  1424. else {
  1425. adv = ADVERTISE_PAUSE_ASYM;
  1426. }
  1427. }
  1428. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1429. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1430. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1431. }
  1432. else {
  1433. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1434. }
  1435. }
  1436. return adv;
  1437. }
  1438. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1439. static int
  1440. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1441. __releases(&bp->phy_lock)
  1442. __acquires(&bp->phy_lock)
  1443. {
  1444. u32 speed_arg = 0, pause_adv;
  1445. pause_adv = bnx2_phy_get_pause_adv(bp);
  1446. if (bp->autoneg & AUTONEG_SPEED) {
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1448. if (bp->advertising & ADVERTISED_10baseT_Half)
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1450. if (bp->advertising & ADVERTISED_10baseT_Full)
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1452. if (bp->advertising & ADVERTISED_100baseT_Half)
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1454. if (bp->advertising & ADVERTISED_100baseT_Full)
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1456. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1458. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1459. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1460. } else {
  1461. if (bp->req_line_speed == SPEED_2500)
  1462. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1463. else if (bp->req_line_speed == SPEED_1000)
  1464. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1465. else if (bp->req_line_speed == SPEED_100) {
  1466. if (bp->req_duplex == DUPLEX_FULL)
  1467. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1468. else
  1469. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1470. } else if (bp->req_line_speed == SPEED_10) {
  1471. if (bp->req_duplex == DUPLEX_FULL)
  1472. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1473. else
  1474. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1475. }
  1476. }
  1477. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1478. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1479. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1480. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1481. if (port == PORT_TP)
  1482. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1483. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1484. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1485. spin_unlock_bh(&bp->phy_lock);
  1486. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1487. spin_lock_bh(&bp->phy_lock);
  1488. return 0;
  1489. }
  1490. static int
  1491. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1492. __releases(&bp->phy_lock)
  1493. __acquires(&bp->phy_lock)
  1494. {
  1495. u32 adv, bmcr;
  1496. u32 new_adv = 0;
  1497. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1498. return bnx2_setup_remote_phy(bp, port);
  1499. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1500. u32 new_bmcr;
  1501. int force_link_down = 0;
  1502. if (bp->req_line_speed == SPEED_2500) {
  1503. if (!bnx2_test_and_enable_2g5(bp))
  1504. force_link_down = 1;
  1505. } else if (bp->req_line_speed == SPEED_1000) {
  1506. if (bnx2_test_and_disable_2g5(bp))
  1507. force_link_down = 1;
  1508. }
  1509. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1510. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1511. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1512. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1513. new_bmcr |= BMCR_SPEED1000;
  1514. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1515. if (bp->req_line_speed == SPEED_2500)
  1516. bnx2_enable_forced_2g5(bp);
  1517. else if (bp->req_line_speed == SPEED_1000) {
  1518. bnx2_disable_forced_2g5(bp);
  1519. new_bmcr &= ~0x2000;
  1520. }
  1521. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1522. if (bp->req_line_speed == SPEED_2500)
  1523. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1524. else
  1525. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1526. }
  1527. if (bp->req_duplex == DUPLEX_FULL) {
  1528. adv |= ADVERTISE_1000XFULL;
  1529. new_bmcr |= BMCR_FULLDPLX;
  1530. }
  1531. else {
  1532. adv |= ADVERTISE_1000XHALF;
  1533. new_bmcr &= ~BMCR_FULLDPLX;
  1534. }
  1535. if ((new_bmcr != bmcr) || (force_link_down)) {
  1536. /* Force a link down visible on the other side */
  1537. if (bp->link_up) {
  1538. bnx2_write_phy(bp, bp->mii_adv, adv &
  1539. ~(ADVERTISE_1000XFULL |
  1540. ADVERTISE_1000XHALF));
  1541. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1542. BMCR_ANRESTART | BMCR_ANENABLE);
  1543. bp->link_up = 0;
  1544. netif_carrier_off(bp->dev);
  1545. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1546. bnx2_report_link(bp);
  1547. }
  1548. bnx2_write_phy(bp, bp->mii_adv, adv);
  1549. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1550. } else {
  1551. bnx2_resolve_flow_ctrl(bp);
  1552. bnx2_set_mac_link(bp);
  1553. }
  1554. return 0;
  1555. }
  1556. bnx2_test_and_enable_2g5(bp);
  1557. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1558. new_adv |= ADVERTISE_1000XFULL;
  1559. new_adv |= bnx2_phy_get_pause_adv(bp);
  1560. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1561. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1562. bp->serdes_an_pending = 0;
  1563. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1564. /* Force a link down visible on the other side */
  1565. if (bp->link_up) {
  1566. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1567. spin_unlock_bh(&bp->phy_lock);
  1568. msleep(20);
  1569. spin_lock_bh(&bp->phy_lock);
  1570. }
  1571. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1572. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1573. BMCR_ANENABLE);
  1574. /* Speed up link-up time when the link partner
  1575. * does not autonegotiate which is very common
  1576. * in blade servers. Some blade servers use
  1577. * IPMI for kerboard input and it's important
  1578. * to minimize link disruptions. Autoneg. involves
  1579. * exchanging base pages plus 3 next pages and
  1580. * normally completes in about 120 msec.
  1581. */
  1582. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1583. bp->serdes_an_pending = 1;
  1584. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1585. } else {
  1586. bnx2_resolve_flow_ctrl(bp);
  1587. bnx2_set_mac_link(bp);
  1588. }
  1589. return 0;
  1590. }
  1591. #define ETHTOOL_ALL_FIBRE_SPEED \
  1592. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1593. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1594. (ADVERTISED_1000baseT_Full)
  1595. #define ETHTOOL_ALL_COPPER_SPEED \
  1596. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1597. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1598. ADVERTISED_1000baseT_Full)
  1599. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1600. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1601. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1602. static void
  1603. bnx2_set_default_remote_link(struct bnx2 *bp)
  1604. {
  1605. u32 link;
  1606. if (bp->phy_port == PORT_TP)
  1607. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1608. else
  1609. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1610. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1611. bp->req_line_speed = 0;
  1612. bp->autoneg |= AUTONEG_SPEED;
  1613. bp->advertising = ADVERTISED_Autoneg;
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1615. bp->advertising |= ADVERTISED_10baseT_Half;
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1617. bp->advertising |= ADVERTISED_10baseT_Full;
  1618. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1619. bp->advertising |= ADVERTISED_100baseT_Half;
  1620. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1621. bp->advertising |= ADVERTISED_100baseT_Full;
  1622. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1623. bp->advertising |= ADVERTISED_1000baseT_Full;
  1624. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1625. bp->advertising |= ADVERTISED_2500baseX_Full;
  1626. } else {
  1627. bp->autoneg = 0;
  1628. bp->advertising = 0;
  1629. bp->req_duplex = DUPLEX_FULL;
  1630. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1631. bp->req_line_speed = SPEED_10;
  1632. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1633. bp->req_duplex = DUPLEX_HALF;
  1634. }
  1635. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1636. bp->req_line_speed = SPEED_100;
  1637. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1638. bp->req_duplex = DUPLEX_HALF;
  1639. }
  1640. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1641. bp->req_line_speed = SPEED_1000;
  1642. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1643. bp->req_line_speed = SPEED_2500;
  1644. }
  1645. }
  1646. static void
  1647. bnx2_set_default_link(struct bnx2 *bp)
  1648. {
  1649. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1650. bnx2_set_default_remote_link(bp);
  1651. return;
  1652. }
  1653. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1654. bp->req_line_speed = 0;
  1655. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1656. u32 reg;
  1657. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1658. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1659. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1660. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1661. bp->autoneg = 0;
  1662. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1663. bp->req_duplex = DUPLEX_FULL;
  1664. }
  1665. } else
  1666. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1667. }
  1668. static void
  1669. bnx2_send_heart_beat(struct bnx2 *bp)
  1670. {
  1671. u32 msg;
  1672. u32 addr;
  1673. spin_lock(&bp->indirect_lock);
  1674. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1675. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1676. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1677. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1678. spin_unlock(&bp->indirect_lock);
  1679. }
  1680. static void
  1681. bnx2_remote_phy_event(struct bnx2 *bp)
  1682. {
  1683. u32 msg;
  1684. u8 link_up = bp->link_up;
  1685. u8 old_port;
  1686. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1687. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1688. bnx2_send_heart_beat(bp);
  1689. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1690. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1691. bp->link_up = 0;
  1692. else {
  1693. u32 speed;
  1694. bp->link_up = 1;
  1695. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1696. bp->duplex = DUPLEX_FULL;
  1697. switch (speed) {
  1698. case BNX2_LINK_STATUS_10HALF:
  1699. bp->duplex = DUPLEX_HALF;
  1700. /* fall through */
  1701. case BNX2_LINK_STATUS_10FULL:
  1702. bp->line_speed = SPEED_10;
  1703. break;
  1704. case BNX2_LINK_STATUS_100HALF:
  1705. bp->duplex = DUPLEX_HALF;
  1706. /* fall through */
  1707. case BNX2_LINK_STATUS_100BASE_T4:
  1708. case BNX2_LINK_STATUS_100FULL:
  1709. bp->line_speed = SPEED_100;
  1710. break;
  1711. case BNX2_LINK_STATUS_1000HALF:
  1712. bp->duplex = DUPLEX_HALF;
  1713. /* fall through */
  1714. case BNX2_LINK_STATUS_1000FULL:
  1715. bp->line_speed = SPEED_1000;
  1716. break;
  1717. case BNX2_LINK_STATUS_2500HALF:
  1718. bp->duplex = DUPLEX_HALF;
  1719. /* fall through */
  1720. case BNX2_LINK_STATUS_2500FULL:
  1721. bp->line_speed = SPEED_2500;
  1722. break;
  1723. default:
  1724. bp->line_speed = 0;
  1725. break;
  1726. }
  1727. bp->flow_ctrl = 0;
  1728. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1729. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1730. if (bp->duplex == DUPLEX_FULL)
  1731. bp->flow_ctrl = bp->req_flow_ctrl;
  1732. } else {
  1733. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1734. bp->flow_ctrl |= FLOW_CTRL_TX;
  1735. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1736. bp->flow_ctrl |= FLOW_CTRL_RX;
  1737. }
  1738. old_port = bp->phy_port;
  1739. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1740. bp->phy_port = PORT_FIBRE;
  1741. else
  1742. bp->phy_port = PORT_TP;
  1743. if (old_port != bp->phy_port)
  1744. bnx2_set_default_link(bp);
  1745. }
  1746. if (bp->link_up != link_up)
  1747. bnx2_report_link(bp);
  1748. bnx2_set_mac_link(bp);
  1749. }
  1750. static int
  1751. bnx2_set_remote_link(struct bnx2 *bp)
  1752. {
  1753. u32 evt_code;
  1754. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1755. switch (evt_code) {
  1756. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1757. bnx2_remote_phy_event(bp);
  1758. break;
  1759. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1760. default:
  1761. bnx2_send_heart_beat(bp);
  1762. break;
  1763. }
  1764. return 0;
  1765. }
  1766. static int
  1767. bnx2_setup_copper_phy(struct bnx2 *bp)
  1768. __releases(&bp->phy_lock)
  1769. __acquires(&bp->phy_lock)
  1770. {
  1771. u32 bmcr, adv_reg, new_adv = 0;
  1772. u32 new_bmcr;
  1773. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1774. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1775. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1776. ADVERTISE_PAUSE_ASYM);
  1777. new_adv = ADVERTISE_CSMA | ethtool_adv_to_mii_adv_t(bp->advertising);
  1778. if (bp->autoneg & AUTONEG_SPEED) {
  1779. u32 adv1000_reg;
  1780. u32 new_adv1000 = 0;
  1781. new_adv |= bnx2_phy_get_pause_adv(bp);
  1782. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1783. adv1000_reg &= PHY_ALL_1000_SPEED;
  1784. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1785. if ((adv1000_reg != new_adv1000) ||
  1786. (adv_reg != new_adv) ||
  1787. ((bmcr & BMCR_ANENABLE) == 0)) {
  1788. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1789. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1790. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1791. BMCR_ANENABLE);
  1792. }
  1793. else if (bp->link_up) {
  1794. /* Flow ctrl may have changed from auto to forced */
  1795. /* or vice-versa. */
  1796. bnx2_resolve_flow_ctrl(bp);
  1797. bnx2_set_mac_link(bp);
  1798. }
  1799. return 0;
  1800. }
  1801. /* advertise nothing when forcing speed */
  1802. if (adv_reg != new_adv)
  1803. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1804. new_bmcr = 0;
  1805. if (bp->req_line_speed == SPEED_100) {
  1806. new_bmcr |= BMCR_SPEED100;
  1807. }
  1808. if (bp->req_duplex == DUPLEX_FULL) {
  1809. new_bmcr |= BMCR_FULLDPLX;
  1810. }
  1811. if (new_bmcr != bmcr) {
  1812. u32 bmsr;
  1813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1814. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1815. if (bmsr & BMSR_LSTATUS) {
  1816. /* Force link down */
  1817. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1818. spin_unlock_bh(&bp->phy_lock);
  1819. msleep(50);
  1820. spin_lock_bh(&bp->phy_lock);
  1821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1822. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1823. }
  1824. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1825. /* Normally, the new speed is setup after the link has
  1826. * gone down and up again. In some cases, link will not go
  1827. * down so we need to set up the new speed here.
  1828. */
  1829. if (bmsr & BMSR_LSTATUS) {
  1830. bp->line_speed = bp->req_line_speed;
  1831. bp->duplex = bp->req_duplex;
  1832. bnx2_resolve_flow_ctrl(bp);
  1833. bnx2_set_mac_link(bp);
  1834. }
  1835. } else {
  1836. bnx2_resolve_flow_ctrl(bp);
  1837. bnx2_set_mac_link(bp);
  1838. }
  1839. return 0;
  1840. }
  1841. static int
  1842. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1843. __releases(&bp->phy_lock)
  1844. __acquires(&bp->phy_lock)
  1845. {
  1846. if (bp->loopback == MAC_LOOPBACK)
  1847. return 0;
  1848. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1849. return bnx2_setup_serdes_phy(bp, port);
  1850. }
  1851. else {
  1852. return bnx2_setup_copper_phy(bp);
  1853. }
  1854. }
  1855. static int
  1856. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1857. {
  1858. u32 val;
  1859. bp->mii_bmcr = MII_BMCR + 0x10;
  1860. bp->mii_bmsr = MII_BMSR + 0x10;
  1861. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1862. bp->mii_adv = MII_ADVERTISE + 0x10;
  1863. bp->mii_lpa = MII_LPA + 0x10;
  1864. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1865. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1866. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1868. if (reset_phy)
  1869. bnx2_reset_phy(bp);
  1870. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1871. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1872. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1873. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1874. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1875. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1876. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1877. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1878. val |= BCM5708S_UP1_2G5;
  1879. else
  1880. val &= ~BCM5708S_UP1_2G5;
  1881. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1882. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1883. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1884. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1885. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1886. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1887. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1888. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1889. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1890. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1891. return 0;
  1892. }
  1893. static int
  1894. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1895. {
  1896. u32 val;
  1897. if (reset_phy)
  1898. bnx2_reset_phy(bp);
  1899. bp->mii_up1 = BCM5708S_UP1;
  1900. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1901. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1902. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1903. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1904. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1905. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1906. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1907. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1908. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1909. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1910. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1911. val |= BCM5708S_UP1_2G5;
  1912. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1913. }
  1914. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1915. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1916. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1917. /* increase tx signal amplitude */
  1918. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1919. BCM5708S_BLK_ADDR_TX_MISC);
  1920. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1921. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1922. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1923. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1924. }
  1925. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1926. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1927. if (val) {
  1928. u32 is_backplane;
  1929. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1930. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1931. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1932. BCM5708S_BLK_ADDR_TX_MISC);
  1933. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1934. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1935. BCM5708S_BLK_ADDR_DIG);
  1936. }
  1937. }
  1938. return 0;
  1939. }
  1940. static int
  1941. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1942. {
  1943. if (reset_phy)
  1944. bnx2_reset_phy(bp);
  1945. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1946. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1947. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1948. if (bp->dev->mtu > 1500) {
  1949. u32 val;
  1950. /* Set extended packet length bit */
  1951. bnx2_write_phy(bp, 0x18, 0x7);
  1952. bnx2_read_phy(bp, 0x18, &val);
  1953. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1954. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1955. bnx2_read_phy(bp, 0x1c, &val);
  1956. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1957. }
  1958. else {
  1959. u32 val;
  1960. bnx2_write_phy(bp, 0x18, 0x7);
  1961. bnx2_read_phy(bp, 0x18, &val);
  1962. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1963. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1964. bnx2_read_phy(bp, 0x1c, &val);
  1965. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1966. }
  1967. return 0;
  1968. }
  1969. static int
  1970. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1971. {
  1972. u32 val;
  1973. if (reset_phy)
  1974. bnx2_reset_phy(bp);
  1975. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1976. bnx2_write_phy(bp, 0x18, 0x0c00);
  1977. bnx2_write_phy(bp, 0x17, 0x000a);
  1978. bnx2_write_phy(bp, 0x15, 0x310b);
  1979. bnx2_write_phy(bp, 0x17, 0x201f);
  1980. bnx2_write_phy(bp, 0x15, 0x9506);
  1981. bnx2_write_phy(bp, 0x17, 0x401f);
  1982. bnx2_write_phy(bp, 0x15, 0x14e2);
  1983. bnx2_write_phy(bp, 0x18, 0x0400);
  1984. }
  1985. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1986. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1987. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1988. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1989. val &= ~(1 << 8);
  1990. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1991. }
  1992. if (bp->dev->mtu > 1500) {
  1993. /* Set extended packet length bit */
  1994. bnx2_write_phy(bp, 0x18, 0x7);
  1995. bnx2_read_phy(bp, 0x18, &val);
  1996. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1997. bnx2_read_phy(bp, 0x10, &val);
  1998. bnx2_write_phy(bp, 0x10, val | 0x1);
  1999. }
  2000. else {
  2001. bnx2_write_phy(bp, 0x18, 0x7);
  2002. bnx2_read_phy(bp, 0x18, &val);
  2003. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  2004. bnx2_read_phy(bp, 0x10, &val);
  2005. bnx2_write_phy(bp, 0x10, val & ~0x1);
  2006. }
  2007. /* ethernet@wirespeed */
  2008. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, AUX_CTL_MISC_CTL);
  2009. bnx2_read_phy(bp, MII_BNX2_AUX_CTL, &val);
  2010. val |= AUX_CTL_MISC_CTL_WR | AUX_CTL_MISC_CTL_WIRESPEED;
  2011. /* auto-mdix */
  2012. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2013. val |= AUX_CTL_MISC_CTL_AUTOMDIX;
  2014. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, val);
  2015. return 0;
  2016. }
  2017. static int
  2018. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  2019. __releases(&bp->phy_lock)
  2020. __acquires(&bp->phy_lock)
  2021. {
  2022. u32 val;
  2023. int rc = 0;
  2024. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2025. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2026. bp->mii_bmcr = MII_BMCR;
  2027. bp->mii_bmsr = MII_BMSR;
  2028. bp->mii_bmsr1 = MII_BMSR;
  2029. bp->mii_adv = MII_ADVERTISE;
  2030. bp->mii_lpa = MII_LPA;
  2031. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2032. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2033. goto setup_phy;
  2034. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2035. bp->phy_id = val << 16;
  2036. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2037. bp->phy_id |= val & 0xffff;
  2038. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2039. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2040. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2041. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2042. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2043. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2044. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2045. }
  2046. else {
  2047. rc = bnx2_init_copper_phy(bp, reset_phy);
  2048. }
  2049. setup_phy:
  2050. if (!rc)
  2051. rc = bnx2_setup_phy(bp, bp->phy_port);
  2052. return rc;
  2053. }
  2054. static int
  2055. bnx2_set_mac_loopback(struct bnx2 *bp)
  2056. {
  2057. u32 mac_mode;
  2058. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2059. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2060. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2061. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2062. bp->link_up = 1;
  2063. return 0;
  2064. }
  2065. static int bnx2_test_link(struct bnx2 *);
  2066. static int
  2067. bnx2_set_phy_loopback(struct bnx2 *bp)
  2068. {
  2069. u32 mac_mode;
  2070. int rc, i;
  2071. spin_lock_bh(&bp->phy_lock);
  2072. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2073. BMCR_SPEED1000);
  2074. spin_unlock_bh(&bp->phy_lock);
  2075. if (rc)
  2076. return rc;
  2077. for (i = 0; i < 10; i++) {
  2078. if (bnx2_test_link(bp) == 0)
  2079. break;
  2080. msleep(100);
  2081. }
  2082. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2083. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2084. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2085. BNX2_EMAC_MODE_25G_MODE);
  2086. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2087. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2088. bp->link_up = 1;
  2089. return 0;
  2090. }
  2091. static void
  2092. bnx2_dump_mcp_state(struct bnx2 *bp)
  2093. {
  2094. struct net_device *dev = bp->dev;
  2095. u32 mcp_p0, mcp_p1;
  2096. netdev_err(dev, "<--- start MCP states dump --->\n");
  2097. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2098. mcp_p0 = BNX2_MCP_STATE_P0;
  2099. mcp_p1 = BNX2_MCP_STATE_P1;
  2100. } else {
  2101. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2102. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2103. }
  2104. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2105. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2106. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2107. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2108. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2109. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2110. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2111. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2112. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2113. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2114. netdev_err(dev, "DEBUG: shmem states:\n");
  2115. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2116. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2117. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2118. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2119. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2120. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2121. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2122. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2123. pr_cont(" condition[%08x]\n",
  2124. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2125. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2126. DP_SHMEM_LINE(bp, 0x3cc);
  2127. DP_SHMEM_LINE(bp, 0x3dc);
  2128. DP_SHMEM_LINE(bp, 0x3ec);
  2129. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2130. netdev_err(dev, "<--- end MCP states dump --->\n");
  2131. }
  2132. static int
  2133. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2134. {
  2135. int i;
  2136. u32 val;
  2137. bp->fw_wr_seq++;
  2138. msg_data |= bp->fw_wr_seq;
  2139. bp->fw_last_msg = msg_data;
  2140. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2141. if (!ack)
  2142. return 0;
  2143. /* wait for an acknowledgement. */
  2144. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2145. msleep(10);
  2146. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2147. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2148. break;
  2149. }
  2150. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2151. return 0;
  2152. /* If we timed out, inform the firmware that this is the case. */
  2153. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2154. msg_data &= ~BNX2_DRV_MSG_CODE;
  2155. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2156. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2157. if (!silent) {
  2158. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2159. bnx2_dump_mcp_state(bp);
  2160. }
  2161. return -EBUSY;
  2162. }
  2163. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2164. return -EIO;
  2165. return 0;
  2166. }
  2167. static int
  2168. bnx2_init_5709_context(struct bnx2 *bp)
  2169. {
  2170. int i, ret = 0;
  2171. u32 val;
  2172. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2173. val |= (BNX2_PAGE_BITS - 8) << 16;
  2174. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2175. for (i = 0; i < 10; i++) {
  2176. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2177. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2178. break;
  2179. udelay(2);
  2180. }
  2181. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2182. return -EBUSY;
  2183. for (i = 0; i < bp->ctx_pages; i++) {
  2184. int j;
  2185. if (bp->ctx_blk[i])
  2186. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2187. else
  2188. return -ENOMEM;
  2189. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2190. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2191. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2192. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2193. (u64) bp->ctx_blk_mapping[i] >> 32);
  2194. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2195. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2196. for (j = 0; j < 10; j++) {
  2197. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2198. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2199. break;
  2200. udelay(5);
  2201. }
  2202. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2203. ret = -EBUSY;
  2204. break;
  2205. }
  2206. }
  2207. return ret;
  2208. }
  2209. static void
  2210. bnx2_init_context(struct bnx2 *bp)
  2211. {
  2212. u32 vcid;
  2213. vcid = 96;
  2214. while (vcid) {
  2215. u32 vcid_addr, pcid_addr, offset;
  2216. int i;
  2217. vcid--;
  2218. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2219. u32 new_vcid;
  2220. vcid_addr = GET_PCID_ADDR(vcid);
  2221. if (vcid & 0x8) {
  2222. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2223. }
  2224. else {
  2225. new_vcid = vcid;
  2226. }
  2227. pcid_addr = GET_PCID_ADDR(new_vcid);
  2228. }
  2229. else {
  2230. vcid_addr = GET_CID_ADDR(vcid);
  2231. pcid_addr = vcid_addr;
  2232. }
  2233. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2234. vcid_addr += (i << PHY_CTX_SHIFT);
  2235. pcid_addr += (i << PHY_CTX_SHIFT);
  2236. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2237. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2238. /* Zero out the context. */
  2239. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2240. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2241. }
  2242. }
  2243. }
  2244. static int
  2245. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2246. {
  2247. u16 *good_mbuf;
  2248. u32 good_mbuf_cnt;
  2249. u32 val;
  2250. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2251. if (good_mbuf == NULL)
  2252. return -ENOMEM;
  2253. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2254. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2255. good_mbuf_cnt = 0;
  2256. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2257. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2258. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2259. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2260. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2261. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2262. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2263. /* The addresses with Bit 9 set are bad memory blocks. */
  2264. if (!(val & (1 << 9))) {
  2265. good_mbuf[good_mbuf_cnt] = (u16) val;
  2266. good_mbuf_cnt++;
  2267. }
  2268. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2269. }
  2270. /* Free the good ones back to the mbuf pool thus discarding
  2271. * all the bad ones. */
  2272. while (good_mbuf_cnt) {
  2273. good_mbuf_cnt--;
  2274. val = good_mbuf[good_mbuf_cnt];
  2275. val = (val << 9) | val | 1;
  2276. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2277. }
  2278. kfree(good_mbuf);
  2279. return 0;
  2280. }
  2281. static void
  2282. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2283. {
  2284. u32 val;
  2285. val = (mac_addr[0] << 8) | mac_addr[1];
  2286. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2287. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2288. (mac_addr[4] << 8) | mac_addr[5];
  2289. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2290. }
  2291. static inline int
  2292. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2293. {
  2294. dma_addr_t mapping;
  2295. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2296. struct bnx2_rx_bd *rxbd =
  2297. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2298. struct page *page = alloc_page(gfp);
  2299. if (!page)
  2300. return -ENOMEM;
  2301. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2302. PCI_DMA_FROMDEVICE);
  2303. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2304. __free_page(page);
  2305. return -EIO;
  2306. }
  2307. rx_pg->page = page;
  2308. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2309. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2310. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2311. return 0;
  2312. }
  2313. static void
  2314. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2315. {
  2316. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2317. struct page *page = rx_pg->page;
  2318. if (!page)
  2319. return;
  2320. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2321. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2322. __free_page(page);
  2323. rx_pg->page = NULL;
  2324. }
  2325. static inline int
  2326. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2327. {
  2328. u8 *data;
  2329. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2330. dma_addr_t mapping;
  2331. struct bnx2_rx_bd *rxbd =
  2332. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2333. data = kmalloc(bp->rx_buf_size, gfp);
  2334. if (!data)
  2335. return -ENOMEM;
  2336. mapping = dma_map_single(&bp->pdev->dev,
  2337. get_l2_fhdr(data),
  2338. bp->rx_buf_use_size,
  2339. PCI_DMA_FROMDEVICE);
  2340. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2341. kfree(data);
  2342. return -EIO;
  2343. }
  2344. rx_buf->data = data;
  2345. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2346. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2347. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2348. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2349. return 0;
  2350. }
  2351. static int
  2352. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2353. {
  2354. struct status_block *sblk = bnapi->status_blk.msi;
  2355. u32 new_link_state, old_link_state;
  2356. int is_set = 1;
  2357. new_link_state = sblk->status_attn_bits & event;
  2358. old_link_state = sblk->status_attn_bits_ack & event;
  2359. if (new_link_state != old_link_state) {
  2360. if (new_link_state)
  2361. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2362. else
  2363. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2364. } else
  2365. is_set = 0;
  2366. return is_set;
  2367. }
  2368. static void
  2369. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2370. {
  2371. spin_lock(&bp->phy_lock);
  2372. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2373. bnx2_set_link(bp);
  2374. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2375. bnx2_set_remote_link(bp);
  2376. spin_unlock(&bp->phy_lock);
  2377. }
  2378. static inline u16
  2379. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2380. {
  2381. u16 cons;
  2382. /* Tell compiler that status block fields can change. */
  2383. barrier();
  2384. cons = *bnapi->hw_tx_cons_ptr;
  2385. barrier();
  2386. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2387. cons++;
  2388. return cons;
  2389. }
  2390. static int
  2391. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2392. {
  2393. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2394. u16 hw_cons, sw_cons, sw_ring_cons;
  2395. int tx_pkt = 0, index;
  2396. unsigned int tx_bytes = 0;
  2397. struct netdev_queue *txq;
  2398. index = (bnapi - bp->bnx2_napi);
  2399. txq = netdev_get_tx_queue(bp->dev, index);
  2400. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2401. sw_cons = txr->tx_cons;
  2402. while (sw_cons != hw_cons) {
  2403. struct bnx2_sw_tx_bd *tx_buf;
  2404. struct sk_buff *skb;
  2405. int i, last;
  2406. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2407. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2408. skb = tx_buf->skb;
  2409. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2410. prefetch(&skb->end);
  2411. /* partial BD completions possible with TSO packets */
  2412. if (tx_buf->is_gso) {
  2413. u16 last_idx, last_ring_idx;
  2414. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2415. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2416. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2417. last_idx++;
  2418. }
  2419. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2420. break;
  2421. }
  2422. }
  2423. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2424. skb_headlen(skb), PCI_DMA_TODEVICE);
  2425. tx_buf->skb = NULL;
  2426. last = tx_buf->nr_frags;
  2427. for (i = 0; i < last; i++) {
  2428. struct bnx2_sw_tx_bd *tx_buf;
  2429. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2430. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2431. dma_unmap_page(&bp->pdev->dev,
  2432. dma_unmap_addr(tx_buf, mapping),
  2433. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2434. PCI_DMA_TODEVICE);
  2435. }
  2436. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2437. tx_bytes += skb->len;
  2438. dev_kfree_skb_any(skb);
  2439. tx_pkt++;
  2440. if (tx_pkt == budget)
  2441. break;
  2442. if (hw_cons == sw_cons)
  2443. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2444. }
  2445. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2446. txr->hw_tx_cons = hw_cons;
  2447. txr->tx_cons = sw_cons;
  2448. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2449. * before checking for netif_tx_queue_stopped(). Without the
  2450. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2451. * will miss it and cause the queue to be stopped forever.
  2452. */
  2453. smp_mb();
  2454. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2455. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2456. __netif_tx_lock(txq, smp_processor_id());
  2457. if ((netif_tx_queue_stopped(txq)) &&
  2458. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2459. netif_tx_wake_queue(txq);
  2460. __netif_tx_unlock(txq);
  2461. }
  2462. return tx_pkt;
  2463. }
  2464. static void
  2465. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2466. struct sk_buff *skb, int count)
  2467. {
  2468. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2469. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2470. int i;
  2471. u16 hw_prod, prod;
  2472. u16 cons = rxr->rx_pg_cons;
  2473. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2474. /* The caller was unable to allocate a new page to replace the
  2475. * last one in the frags array, so we need to recycle that page
  2476. * and then free the skb.
  2477. */
  2478. if (skb) {
  2479. struct page *page;
  2480. struct skb_shared_info *shinfo;
  2481. shinfo = skb_shinfo(skb);
  2482. shinfo->nr_frags--;
  2483. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2484. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2485. cons_rx_pg->page = page;
  2486. dev_kfree_skb(skb);
  2487. }
  2488. hw_prod = rxr->rx_pg_prod;
  2489. for (i = 0; i < count; i++) {
  2490. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2491. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2492. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2493. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2494. [BNX2_RX_IDX(cons)];
  2495. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2496. [BNX2_RX_IDX(prod)];
  2497. if (prod != cons) {
  2498. prod_rx_pg->page = cons_rx_pg->page;
  2499. cons_rx_pg->page = NULL;
  2500. dma_unmap_addr_set(prod_rx_pg, mapping,
  2501. dma_unmap_addr(cons_rx_pg, mapping));
  2502. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2503. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2504. }
  2505. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2506. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2507. }
  2508. rxr->rx_pg_prod = hw_prod;
  2509. rxr->rx_pg_cons = cons;
  2510. }
  2511. static inline void
  2512. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2513. u8 *data, u16 cons, u16 prod)
  2514. {
  2515. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2516. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2517. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2518. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2519. dma_sync_single_for_device(&bp->pdev->dev,
  2520. dma_unmap_addr(cons_rx_buf, mapping),
  2521. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2522. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2523. prod_rx_buf->data = data;
  2524. if (cons == prod)
  2525. return;
  2526. dma_unmap_addr_set(prod_rx_buf, mapping,
  2527. dma_unmap_addr(cons_rx_buf, mapping));
  2528. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2529. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2530. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2531. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2532. }
  2533. static struct sk_buff *
  2534. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2535. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2536. u32 ring_idx)
  2537. {
  2538. int err;
  2539. u16 prod = ring_idx & 0xffff;
  2540. struct sk_buff *skb;
  2541. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2542. if (unlikely(err)) {
  2543. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2544. error:
  2545. if (hdr_len) {
  2546. unsigned int raw_len = len + 4;
  2547. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2548. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2549. }
  2550. return NULL;
  2551. }
  2552. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2553. PCI_DMA_FROMDEVICE);
  2554. skb = build_skb(data, 0);
  2555. if (!skb) {
  2556. kfree(data);
  2557. goto error;
  2558. }
  2559. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2560. if (hdr_len == 0) {
  2561. skb_put(skb, len);
  2562. return skb;
  2563. } else {
  2564. unsigned int i, frag_len, frag_size, pages;
  2565. struct bnx2_sw_pg *rx_pg;
  2566. u16 pg_cons = rxr->rx_pg_cons;
  2567. u16 pg_prod = rxr->rx_pg_prod;
  2568. frag_size = len + 4 - hdr_len;
  2569. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2570. skb_put(skb, hdr_len);
  2571. for (i = 0; i < pages; i++) {
  2572. dma_addr_t mapping_old;
  2573. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2574. if (unlikely(frag_len <= 4)) {
  2575. unsigned int tail = 4 - frag_len;
  2576. rxr->rx_pg_cons = pg_cons;
  2577. rxr->rx_pg_prod = pg_prod;
  2578. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2579. pages - i);
  2580. skb->len -= tail;
  2581. if (i == 0) {
  2582. skb->tail -= tail;
  2583. } else {
  2584. skb_frag_t *frag =
  2585. &skb_shinfo(skb)->frags[i - 1];
  2586. skb_frag_size_sub(frag, tail);
  2587. skb->data_len -= tail;
  2588. }
  2589. return skb;
  2590. }
  2591. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2592. /* Don't unmap yet. If we're unable to allocate a new
  2593. * page, we need to recycle the page and the DMA addr.
  2594. */
  2595. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2596. if (i == pages - 1)
  2597. frag_len -= 4;
  2598. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2599. rx_pg->page = NULL;
  2600. err = bnx2_alloc_rx_page(bp, rxr,
  2601. BNX2_RX_PG_RING_IDX(pg_prod),
  2602. GFP_ATOMIC);
  2603. if (unlikely(err)) {
  2604. rxr->rx_pg_cons = pg_cons;
  2605. rxr->rx_pg_prod = pg_prod;
  2606. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2607. pages - i);
  2608. return NULL;
  2609. }
  2610. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2611. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2612. frag_size -= frag_len;
  2613. skb->data_len += frag_len;
  2614. skb->truesize += PAGE_SIZE;
  2615. skb->len += frag_len;
  2616. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2617. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2618. }
  2619. rxr->rx_pg_prod = pg_prod;
  2620. rxr->rx_pg_cons = pg_cons;
  2621. }
  2622. return skb;
  2623. }
  2624. static inline u16
  2625. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2626. {
  2627. u16 cons;
  2628. /* Tell compiler that status block fields can change. */
  2629. barrier();
  2630. cons = *bnapi->hw_rx_cons_ptr;
  2631. barrier();
  2632. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2633. cons++;
  2634. return cons;
  2635. }
  2636. static int
  2637. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2638. {
  2639. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2640. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2641. struct l2_fhdr *rx_hdr;
  2642. int rx_pkt = 0, pg_ring_used = 0;
  2643. if (budget <= 0)
  2644. return rx_pkt;
  2645. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2646. sw_cons = rxr->rx_cons;
  2647. sw_prod = rxr->rx_prod;
  2648. /* Memory barrier necessary as speculative reads of the rx
  2649. * buffer can be ahead of the index in the status block
  2650. */
  2651. rmb();
  2652. while (sw_cons != hw_cons) {
  2653. unsigned int len, hdr_len;
  2654. u32 status;
  2655. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2656. struct sk_buff *skb;
  2657. dma_addr_t dma_addr;
  2658. u8 *data;
  2659. u16 next_ring_idx;
  2660. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2661. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2662. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2663. data = rx_buf->data;
  2664. rx_buf->data = NULL;
  2665. rx_hdr = get_l2_fhdr(data);
  2666. prefetch(rx_hdr);
  2667. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2668. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2669. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2670. PCI_DMA_FROMDEVICE);
  2671. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2672. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2673. prefetch(get_l2_fhdr(next_rx_buf->data));
  2674. len = rx_hdr->l2_fhdr_pkt_len;
  2675. status = rx_hdr->l2_fhdr_status;
  2676. hdr_len = 0;
  2677. if (status & L2_FHDR_STATUS_SPLIT) {
  2678. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2679. pg_ring_used = 1;
  2680. } else if (len > bp->rx_jumbo_thresh) {
  2681. hdr_len = bp->rx_jumbo_thresh;
  2682. pg_ring_used = 1;
  2683. }
  2684. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2685. L2_FHDR_ERRORS_PHY_DECODE |
  2686. L2_FHDR_ERRORS_ALIGNMENT |
  2687. L2_FHDR_ERRORS_TOO_SHORT |
  2688. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2689. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2690. sw_ring_prod);
  2691. if (pg_ring_used) {
  2692. int pages;
  2693. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2694. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2695. }
  2696. goto next_rx;
  2697. }
  2698. len -= 4;
  2699. if (len <= bp->rx_copy_thresh) {
  2700. skb = netdev_alloc_skb(bp->dev, len + 6);
  2701. if (skb == NULL) {
  2702. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2703. sw_ring_prod);
  2704. goto next_rx;
  2705. }
  2706. /* aligned copy */
  2707. memcpy(skb->data,
  2708. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2709. len + 6);
  2710. skb_reserve(skb, 6);
  2711. skb_put(skb, len);
  2712. bnx2_reuse_rx_data(bp, rxr, data,
  2713. sw_ring_cons, sw_ring_prod);
  2714. } else {
  2715. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2716. (sw_ring_cons << 16) | sw_ring_prod);
  2717. if (!skb)
  2718. goto next_rx;
  2719. }
  2720. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2721. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2722. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
  2723. skb->protocol = eth_type_trans(skb, bp->dev);
  2724. if (len > (bp->dev->mtu + ETH_HLEN) &&
  2725. skb->protocol != htons(0x8100) &&
  2726. skb->protocol != htons(ETH_P_8021AD)) {
  2727. dev_kfree_skb(skb);
  2728. goto next_rx;
  2729. }
  2730. skb_checksum_none_assert(skb);
  2731. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2732. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2733. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2734. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2735. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2736. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2737. }
  2738. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2739. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2740. L2_FHDR_STATUS_USE_RXHASH))
  2741. skb_set_hash(skb, rx_hdr->l2_fhdr_hash,
  2742. PKT_HASH_TYPE_L3);
  2743. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2744. napi_gro_receive(&bnapi->napi, skb);
  2745. rx_pkt++;
  2746. next_rx:
  2747. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2748. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2749. if ((rx_pkt == budget))
  2750. break;
  2751. /* Refresh hw_cons to see if there is new work */
  2752. if (sw_cons == hw_cons) {
  2753. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2754. rmb();
  2755. }
  2756. }
  2757. rxr->rx_cons = sw_cons;
  2758. rxr->rx_prod = sw_prod;
  2759. if (pg_ring_used)
  2760. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2761. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2762. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2763. mmiowb();
  2764. return rx_pkt;
  2765. }
  2766. /* MSI ISR - The only difference between this and the INTx ISR
  2767. * is that the MSI interrupt is always serviced.
  2768. */
  2769. static irqreturn_t
  2770. bnx2_msi(int irq, void *dev_instance)
  2771. {
  2772. struct bnx2_napi *bnapi = dev_instance;
  2773. struct bnx2 *bp = bnapi->bp;
  2774. prefetch(bnapi->status_blk.msi);
  2775. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2776. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2777. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2778. /* Return here if interrupt is disabled. */
  2779. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2780. return IRQ_HANDLED;
  2781. napi_schedule(&bnapi->napi);
  2782. return IRQ_HANDLED;
  2783. }
  2784. static irqreturn_t
  2785. bnx2_msi_1shot(int irq, void *dev_instance)
  2786. {
  2787. struct bnx2_napi *bnapi = dev_instance;
  2788. struct bnx2 *bp = bnapi->bp;
  2789. prefetch(bnapi->status_blk.msi);
  2790. /* Return here if interrupt is disabled. */
  2791. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2792. return IRQ_HANDLED;
  2793. napi_schedule(&bnapi->napi);
  2794. return IRQ_HANDLED;
  2795. }
  2796. static irqreturn_t
  2797. bnx2_interrupt(int irq, void *dev_instance)
  2798. {
  2799. struct bnx2_napi *bnapi = dev_instance;
  2800. struct bnx2 *bp = bnapi->bp;
  2801. struct status_block *sblk = bnapi->status_blk.msi;
  2802. /* When using INTx, it is possible for the interrupt to arrive
  2803. * at the CPU before the status block posted prior to the
  2804. * interrupt. Reading a register will flush the status block.
  2805. * When using MSI, the MSI message will always complete after
  2806. * the status block write.
  2807. */
  2808. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2809. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2810. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2811. return IRQ_NONE;
  2812. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2813. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2814. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2815. /* Read back to deassert IRQ immediately to avoid too many
  2816. * spurious interrupts.
  2817. */
  2818. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2819. /* Return here if interrupt is shared and is disabled. */
  2820. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2821. return IRQ_HANDLED;
  2822. if (napi_schedule_prep(&bnapi->napi)) {
  2823. bnapi->last_status_idx = sblk->status_idx;
  2824. __napi_schedule(&bnapi->napi);
  2825. }
  2826. return IRQ_HANDLED;
  2827. }
  2828. static inline int
  2829. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2830. {
  2831. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2832. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2833. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2834. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2835. return 1;
  2836. return 0;
  2837. }
  2838. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2839. STATUS_ATTN_BITS_TIMER_ABORT)
  2840. static inline int
  2841. bnx2_has_work(struct bnx2_napi *bnapi)
  2842. {
  2843. struct status_block *sblk = bnapi->status_blk.msi;
  2844. if (bnx2_has_fast_work(bnapi))
  2845. return 1;
  2846. #ifdef BCM_CNIC
  2847. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2848. return 1;
  2849. #endif
  2850. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2851. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2852. return 1;
  2853. return 0;
  2854. }
  2855. static void
  2856. bnx2_chk_missed_msi(struct bnx2 *bp)
  2857. {
  2858. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2859. u32 msi_ctrl;
  2860. if (bnx2_has_work(bnapi)) {
  2861. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2862. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2863. return;
  2864. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2865. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2866. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2867. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2868. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2869. }
  2870. }
  2871. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2872. }
  2873. #ifdef BCM_CNIC
  2874. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2875. {
  2876. struct cnic_ops *c_ops;
  2877. if (!bnapi->cnic_present)
  2878. return;
  2879. rcu_read_lock();
  2880. c_ops = rcu_dereference(bp->cnic_ops);
  2881. if (c_ops)
  2882. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2883. bnapi->status_blk.msi);
  2884. rcu_read_unlock();
  2885. }
  2886. #endif
  2887. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2888. {
  2889. struct status_block *sblk = bnapi->status_blk.msi;
  2890. u32 status_attn_bits = sblk->status_attn_bits;
  2891. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2892. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2893. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2894. bnx2_phy_int(bp, bnapi);
  2895. /* This is needed to take care of transient status
  2896. * during link changes.
  2897. */
  2898. BNX2_WR(bp, BNX2_HC_COMMAND,
  2899. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2900. BNX2_RD(bp, BNX2_HC_COMMAND);
  2901. }
  2902. }
  2903. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2904. int work_done, int budget)
  2905. {
  2906. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2907. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2908. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2909. bnx2_tx_int(bp, bnapi, 0);
  2910. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2911. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2912. return work_done;
  2913. }
  2914. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2915. {
  2916. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2917. struct bnx2 *bp = bnapi->bp;
  2918. int work_done = 0;
  2919. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2920. while (1) {
  2921. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2922. if (unlikely(work_done >= budget))
  2923. break;
  2924. bnapi->last_status_idx = sblk->status_idx;
  2925. /* status idx must be read before checking for more work. */
  2926. rmb();
  2927. if (likely(!bnx2_has_fast_work(bnapi))) {
  2928. napi_complete(napi);
  2929. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2930. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2931. bnapi->last_status_idx);
  2932. break;
  2933. }
  2934. }
  2935. return work_done;
  2936. }
  2937. static int bnx2_poll(struct napi_struct *napi, int budget)
  2938. {
  2939. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2940. struct bnx2 *bp = bnapi->bp;
  2941. int work_done = 0;
  2942. struct status_block *sblk = bnapi->status_blk.msi;
  2943. while (1) {
  2944. bnx2_poll_link(bp, bnapi);
  2945. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2946. #ifdef BCM_CNIC
  2947. bnx2_poll_cnic(bp, bnapi);
  2948. #endif
  2949. /* bnapi->last_status_idx is used below to tell the hw how
  2950. * much work has been processed, so we must read it before
  2951. * checking for more work.
  2952. */
  2953. bnapi->last_status_idx = sblk->status_idx;
  2954. if (unlikely(work_done >= budget))
  2955. break;
  2956. rmb();
  2957. if (likely(!bnx2_has_work(bnapi))) {
  2958. napi_complete(napi);
  2959. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2960. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2961. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2962. bnapi->last_status_idx);
  2963. break;
  2964. }
  2965. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2966. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2967. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2968. bnapi->last_status_idx);
  2969. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2970. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2971. bnapi->last_status_idx);
  2972. break;
  2973. }
  2974. }
  2975. return work_done;
  2976. }
  2977. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2978. * from set_multicast.
  2979. */
  2980. static void
  2981. bnx2_set_rx_mode(struct net_device *dev)
  2982. {
  2983. struct bnx2 *bp = netdev_priv(dev);
  2984. u32 rx_mode, sort_mode;
  2985. struct netdev_hw_addr *ha;
  2986. int i;
  2987. if (!netif_running(dev))
  2988. return;
  2989. spin_lock_bh(&bp->phy_lock);
  2990. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2991. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2992. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2993. if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  2994. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2995. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2996. if (dev->flags & IFF_PROMISC) {
  2997. /* Promiscuous mode. */
  2998. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2999. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3000. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3001. }
  3002. else if (dev->flags & IFF_ALLMULTI) {
  3003. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3004. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3005. 0xffffffff);
  3006. }
  3007. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  3008. }
  3009. else {
  3010. /* Accept one or more multicast(s). */
  3011. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  3012. u32 regidx;
  3013. u32 bit;
  3014. u32 crc;
  3015. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  3016. netdev_for_each_mc_addr(ha, dev) {
  3017. crc = ether_crc_le(ETH_ALEN, ha->addr);
  3018. bit = crc & 0xff;
  3019. regidx = (bit & 0xe0) >> 5;
  3020. bit &= 0x1f;
  3021. mc_filter[regidx] |= (1 << bit);
  3022. }
  3023. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3024. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3025. mc_filter[i]);
  3026. }
  3027. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  3028. }
  3029. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  3030. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  3031. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3032. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3033. } else if (!(dev->flags & IFF_PROMISC)) {
  3034. /* Add all entries into to the match filter list */
  3035. i = 0;
  3036. netdev_for_each_uc_addr(ha, dev) {
  3037. bnx2_set_mac_addr(bp, ha->addr,
  3038. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3039. sort_mode |= (1 <<
  3040. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3041. i++;
  3042. }
  3043. }
  3044. if (rx_mode != bp->rx_mode) {
  3045. bp->rx_mode = rx_mode;
  3046. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3047. }
  3048. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3049. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3050. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3051. spin_unlock_bh(&bp->phy_lock);
  3052. }
  3053. static int
  3054. check_fw_section(const struct firmware *fw,
  3055. const struct bnx2_fw_file_section *section,
  3056. u32 alignment, bool non_empty)
  3057. {
  3058. u32 offset = be32_to_cpu(section->offset);
  3059. u32 len = be32_to_cpu(section->len);
  3060. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3061. return -EINVAL;
  3062. if ((non_empty && len == 0) || len > fw->size - offset ||
  3063. len & (alignment - 1))
  3064. return -EINVAL;
  3065. return 0;
  3066. }
  3067. static int
  3068. check_mips_fw_entry(const struct firmware *fw,
  3069. const struct bnx2_mips_fw_file_entry *entry)
  3070. {
  3071. if (check_fw_section(fw, &entry->text, 4, true) ||
  3072. check_fw_section(fw, &entry->data, 4, false) ||
  3073. check_fw_section(fw, &entry->rodata, 4, false))
  3074. return -EINVAL;
  3075. return 0;
  3076. }
  3077. static void bnx2_release_firmware(struct bnx2 *bp)
  3078. {
  3079. if (bp->rv2p_firmware) {
  3080. release_firmware(bp->mips_firmware);
  3081. release_firmware(bp->rv2p_firmware);
  3082. bp->rv2p_firmware = NULL;
  3083. }
  3084. }
  3085. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3086. {
  3087. const char *mips_fw_file, *rv2p_fw_file;
  3088. const struct bnx2_mips_fw_file *mips_fw;
  3089. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3090. int rc;
  3091. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3092. mips_fw_file = FW_MIPS_FILE_09;
  3093. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3094. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3095. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3096. else
  3097. rv2p_fw_file = FW_RV2P_FILE_09;
  3098. } else {
  3099. mips_fw_file = FW_MIPS_FILE_06;
  3100. rv2p_fw_file = FW_RV2P_FILE_06;
  3101. }
  3102. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3103. if (rc) {
  3104. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3105. goto out;
  3106. }
  3107. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3108. if (rc) {
  3109. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3110. goto err_release_mips_firmware;
  3111. }
  3112. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3113. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3114. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3115. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3116. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3117. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3118. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3119. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3120. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3121. rc = -EINVAL;
  3122. goto err_release_firmware;
  3123. }
  3124. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3125. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3126. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3127. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3128. rc = -EINVAL;
  3129. goto err_release_firmware;
  3130. }
  3131. out:
  3132. return rc;
  3133. err_release_firmware:
  3134. release_firmware(bp->rv2p_firmware);
  3135. bp->rv2p_firmware = NULL;
  3136. err_release_mips_firmware:
  3137. release_firmware(bp->mips_firmware);
  3138. goto out;
  3139. }
  3140. static int bnx2_request_firmware(struct bnx2 *bp)
  3141. {
  3142. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3143. }
  3144. static u32
  3145. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3146. {
  3147. switch (idx) {
  3148. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3149. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3150. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3151. break;
  3152. }
  3153. return rv2p_code;
  3154. }
  3155. static int
  3156. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3157. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3158. {
  3159. u32 rv2p_code_len, file_offset;
  3160. __be32 *rv2p_code;
  3161. int i;
  3162. u32 val, cmd, addr;
  3163. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3164. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3165. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3166. if (rv2p_proc == RV2P_PROC1) {
  3167. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3168. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3169. } else {
  3170. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3171. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3172. }
  3173. for (i = 0; i < rv2p_code_len; i += 8) {
  3174. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3175. rv2p_code++;
  3176. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3177. rv2p_code++;
  3178. val = (i / 8) | cmd;
  3179. BNX2_WR(bp, addr, val);
  3180. }
  3181. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3182. for (i = 0; i < 8; i++) {
  3183. u32 loc, code;
  3184. loc = be32_to_cpu(fw_entry->fixup[i]);
  3185. if (loc && ((loc * 4) < rv2p_code_len)) {
  3186. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3187. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3188. code = be32_to_cpu(*(rv2p_code + loc));
  3189. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3190. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3191. val = (loc / 2) | cmd;
  3192. BNX2_WR(bp, addr, val);
  3193. }
  3194. }
  3195. /* Reset the processor, un-stall is done later. */
  3196. if (rv2p_proc == RV2P_PROC1) {
  3197. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3198. }
  3199. else {
  3200. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3201. }
  3202. return 0;
  3203. }
  3204. static int
  3205. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3206. const struct bnx2_mips_fw_file_entry *fw_entry)
  3207. {
  3208. u32 addr, len, file_offset;
  3209. __be32 *data;
  3210. u32 offset;
  3211. u32 val;
  3212. /* Halt the CPU. */
  3213. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3214. val |= cpu_reg->mode_value_halt;
  3215. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3216. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3217. /* Load the Text area. */
  3218. addr = be32_to_cpu(fw_entry->text.addr);
  3219. len = be32_to_cpu(fw_entry->text.len);
  3220. file_offset = be32_to_cpu(fw_entry->text.offset);
  3221. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3222. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3223. if (len) {
  3224. int j;
  3225. for (j = 0; j < (len / 4); j++, offset += 4)
  3226. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3227. }
  3228. /* Load the Data area. */
  3229. addr = be32_to_cpu(fw_entry->data.addr);
  3230. len = be32_to_cpu(fw_entry->data.len);
  3231. file_offset = be32_to_cpu(fw_entry->data.offset);
  3232. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3233. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3234. if (len) {
  3235. int j;
  3236. for (j = 0; j < (len / 4); j++, offset += 4)
  3237. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3238. }
  3239. /* Load the Read-Only area. */
  3240. addr = be32_to_cpu(fw_entry->rodata.addr);
  3241. len = be32_to_cpu(fw_entry->rodata.len);
  3242. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3243. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3244. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3245. if (len) {
  3246. int j;
  3247. for (j = 0; j < (len / 4); j++, offset += 4)
  3248. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3249. }
  3250. /* Clear the pre-fetch instruction. */
  3251. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3252. val = be32_to_cpu(fw_entry->start_addr);
  3253. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3254. /* Start the CPU. */
  3255. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3256. val &= ~cpu_reg->mode_value_halt;
  3257. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3258. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3259. return 0;
  3260. }
  3261. static int
  3262. bnx2_init_cpus(struct bnx2 *bp)
  3263. {
  3264. const struct bnx2_mips_fw_file *mips_fw =
  3265. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3266. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3267. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3268. int rc;
  3269. /* Initialize the RV2P processor. */
  3270. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3271. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3272. /* Initialize the RX Processor. */
  3273. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3274. if (rc)
  3275. goto init_cpu_err;
  3276. /* Initialize the TX Processor. */
  3277. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3278. if (rc)
  3279. goto init_cpu_err;
  3280. /* Initialize the TX Patch-up Processor. */
  3281. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3282. if (rc)
  3283. goto init_cpu_err;
  3284. /* Initialize the Completion Processor. */
  3285. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3286. if (rc)
  3287. goto init_cpu_err;
  3288. /* Initialize the Command Processor. */
  3289. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3290. init_cpu_err:
  3291. return rc;
  3292. }
  3293. static void
  3294. bnx2_setup_wol(struct bnx2 *bp)
  3295. {
  3296. int i;
  3297. u32 val, wol_msg;
  3298. if (bp->wol) {
  3299. u32 advertising;
  3300. u8 autoneg;
  3301. autoneg = bp->autoneg;
  3302. advertising = bp->advertising;
  3303. if (bp->phy_port == PORT_TP) {
  3304. bp->autoneg = AUTONEG_SPEED;
  3305. bp->advertising = ADVERTISED_10baseT_Half |
  3306. ADVERTISED_10baseT_Full |
  3307. ADVERTISED_100baseT_Half |
  3308. ADVERTISED_100baseT_Full |
  3309. ADVERTISED_Autoneg;
  3310. }
  3311. spin_lock_bh(&bp->phy_lock);
  3312. bnx2_setup_phy(bp, bp->phy_port);
  3313. spin_unlock_bh(&bp->phy_lock);
  3314. bp->autoneg = autoneg;
  3315. bp->advertising = advertising;
  3316. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3317. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3318. /* Enable port mode. */
  3319. val &= ~BNX2_EMAC_MODE_PORT;
  3320. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3321. BNX2_EMAC_MODE_ACPI_RCVD |
  3322. BNX2_EMAC_MODE_MPKT;
  3323. if (bp->phy_port == PORT_TP) {
  3324. val |= BNX2_EMAC_MODE_PORT_MII;
  3325. } else {
  3326. val |= BNX2_EMAC_MODE_PORT_GMII;
  3327. if (bp->line_speed == SPEED_2500)
  3328. val |= BNX2_EMAC_MODE_25G_MODE;
  3329. }
  3330. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3331. /* receive all multicast */
  3332. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3333. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3334. 0xffffffff);
  3335. }
  3336. BNX2_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE);
  3337. val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN;
  3338. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3339. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3340. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA);
  3341. /* Need to enable EMAC and RPM for WOL. */
  3342. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3343. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3344. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3345. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3346. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3347. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3348. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3349. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3350. } else {
  3351. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3352. }
  3353. if (!(bp->flags & BNX2_FLAG_NO_WOL)) {
  3354. u32 val;
  3355. wol_msg |= BNX2_DRV_MSG_DATA_WAIT3;
  3356. if (bp->fw_last_msg || BNX2_CHIP(bp) != BNX2_CHIP_5709) {
  3357. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3358. return;
  3359. }
  3360. /* Tell firmware not to power down the PHY yet, otherwise
  3361. * the chip will take a long time to respond to MMIO reads.
  3362. */
  3363. val = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  3364. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE,
  3365. val | BNX2_PORT_FEATURE_ASF_ENABLED);
  3366. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3367. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE, val);
  3368. }
  3369. }
  3370. static int
  3371. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3372. {
  3373. switch (state) {
  3374. case PCI_D0: {
  3375. u32 val;
  3376. pci_enable_wake(bp->pdev, PCI_D0, false);
  3377. pci_set_power_state(bp->pdev, PCI_D0);
  3378. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3379. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3380. val &= ~BNX2_EMAC_MODE_MPKT;
  3381. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3382. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3383. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3384. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3385. break;
  3386. }
  3387. case PCI_D3hot: {
  3388. bnx2_setup_wol(bp);
  3389. pci_wake_from_d3(bp->pdev, bp->wol);
  3390. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3391. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3392. if (bp->wol)
  3393. pci_set_power_state(bp->pdev, PCI_D3hot);
  3394. break;
  3395. }
  3396. if (!bp->fw_last_msg && BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3397. u32 val;
  3398. /* Tell firmware not to power down the PHY yet,
  3399. * otherwise the other port may not respond to
  3400. * MMIO reads.
  3401. */
  3402. val = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  3403. val &= ~BNX2_CONDITION_PM_STATE_MASK;
  3404. val |= BNX2_CONDITION_PM_STATE_UNPREP;
  3405. bnx2_shmem_wr(bp, BNX2_BC_STATE_CONDITION, val);
  3406. }
  3407. pci_set_power_state(bp->pdev, PCI_D3hot);
  3408. /* No more memory access after this point until
  3409. * device is brought back to D0.
  3410. */
  3411. break;
  3412. }
  3413. default:
  3414. return -EINVAL;
  3415. }
  3416. return 0;
  3417. }
  3418. static int
  3419. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3420. {
  3421. u32 val;
  3422. int j;
  3423. /* Request access to the flash interface. */
  3424. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3425. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3426. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3427. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3428. break;
  3429. udelay(5);
  3430. }
  3431. if (j >= NVRAM_TIMEOUT_COUNT)
  3432. return -EBUSY;
  3433. return 0;
  3434. }
  3435. static int
  3436. bnx2_release_nvram_lock(struct bnx2 *bp)
  3437. {
  3438. int j;
  3439. u32 val;
  3440. /* Relinquish nvram interface. */
  3441. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3442. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3443. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3444. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3445. break;
  3446. udelay(5);
  3447. }
  3448. if (j >= NVRAM_TIMEOUT_COUNT)
  3449. return -EBUSY;
  3450. return 0;
  3451. }
  3452. static int
  3453. bnx2_enable_nvram_write(struct bnx2 *bp)
  3454. {
  3455. u32 val;
  3456. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3457. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3458. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3459. int j;
  3460. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3461. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3462. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3463. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3464. udelay(5);
  3465. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3466. if (val & BNX2_NVM_COMMAND_DONE)
  3467. break;
  3468. }
  3469. if (j >= NVRAM_TIMEOUT_COUNT)
  3470. return -EBUSY;
  3471. }
  3472. return 0;
  3473. }
  3474. static void
  3475. bnx2_disable_nvram_write(struct bnx2 *bp)
  3476. {
  3477. u32 val;
  3478. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3479. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3480. }
  3481. static void
  3482. bnx2_enable_nvram_access(struct bnx2 *bp)
  3483. {
  3484. u32 val;
  3485. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3486. /* Enable both bits, even on read. */
  3487. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3488. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3489. }
  3490. static void
  3491. bnx2_disable_nvram_access(struct bnx2 *bp)
  3492. {
  3493. u32 val;
  3494. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3495. /* Disable both bits, even after read. */
  3496. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3497. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3498. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3499. }
  3500. static int
  3501. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3502. {
  3503. u32 cmd;
  3504. int j;
  3505. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3506. /* Buffered flash, no erase needed */
  3507. return 0;
  3508. /* Build an erase command */
  3509. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3510. BNX2_NVM_COMMAND_DOIT;
  3511. /* Need to clear DONE bit separately. */
  3512. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3513. /* Address of the NVRAM to read from. */
  3514. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3515. /* Issue an erase command. */
  3516. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3517. /* Wait for completion. */
  3518. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3519. u32 val;
  3520. udelay(5);
  3521. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3522. if (val & BNX2_NVM_COMMAND_DONE)
  3523. break;
  3524. }
  3525. if (j >= NVRAM_TIMEOUT_COUNT)
  3526. return -EBUSY;
  3527. return 0;
  3528. }
  3529. static int
  3530. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3531. {
  3532. u32 cmd;
  3533. int j;
  3534. /* Build the command word. */
  3535. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3536. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3537. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3538. offset = ((offset / bp->flash_info->page_size) <<
  3539. bp->flash_info->page_bits) +
  3540. (offset % bp->flash_info->page_size);
  3541. }
  3542. /* Need to clear DONE bit separately. */
  3543. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3544. /* Address of the NVRAM to read from. */
  3545. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3546. /* Issue a read command. */
  3547. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3548. /* Wait for completion. */
  3549. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3550. u32 val;
  3551. udelay(5);
  3552. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3553. if (val & BNX2_NVM_COMMAND_DONE) {
  3554. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3555. memcpy(ret_val, &v, 4);
  3556. break;
  3557. }
  3558. }
  3559. if (j >= NVRAM_TIMEOUT_COUNT)
  3560. return -EBUSY;
  3561. return 0;
  3562. }
  3563. static int
  3564. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3565. {
  3566. u32 cmd;
  3567. __be32 val32;
  3568. int j;
  3569. /* Build the command word. */
  3570. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3571. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3572. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3573. offset = ((offset / bp->flash_info->page_size) <<
  3574. bp->flash_info->page_bits) +
  3575. (offset % bp->flash_info->page_size);
  3576. }
  3577. /* Need to clear DONE bit separately. */
  3578. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3579. memcpy(&val32, val, 4);
  3580. /* Write the data. */
  3581. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3582. /* Address of the NVRAM to write to. */
  3583. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3584. /* Issue the write command. */
  3585. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3586. /* Wait for completion. */
  3587. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3588. udelay(5);
  3589. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3590. break;
  3591. }
  3592. if (j >= NVRAM_TIMEOUT_COUNT)
  3593. return -EBUSY;
  3594. return 0;
  3595. }
  3596. static int
  3597. bnx2_init_nvram(struct bnx2 *bp)
  3598. {
  3599. u32 val;
  3600. int j, entry_count, rc = 0;
  3601. const struct flash_spec *flash;
  3602. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3603. bp->flash_info = &flash_5709;
  3604. goto get_flash_size;
  3605. }
  3606. /* Determine the selected interface. */
  3607. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3608. entry_count = ARRAY_SIZE(flash_table);
  3609. if (val & 0x40000000) {
  3610. /* Flash interface has been reconfigured */
  3611. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3612. j++, flash++) {
  3613. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3614. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3615. bp->flash_info = flash;
  3616. break;
  3617. }
  3618. }
  3619. }
  3620. else {
  3621. u32 mask;
  3622. /* Not yet been reconfigured */
  3623. if (val & (1 << 23))
  3624. mask = FLASH_BACKUP_STRAP_MASK;
  3625. else
  3626. mask = FLASH_STRAP_MASK;
  3627. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3628. j++, flash++) {
  3629. if ((val & mask) == (flash->strapping & mask)) {
  3630. bp->flash_info = flash;
  3631. /* Request access to the flash interface. */
  3632. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3633. return rc;
  3634. /* Enable access to flash interface */
  3635. bnx2_enable_nvram_access(bp);
  3636. /* Reconfigure the flash interface */
  3637. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3638. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3639. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3640. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3641. /* Disable access to flash interface */
  3642. bnx2_disable_nvram_access(bp);
  3643. bnx2_release_nvram_lock(bp);
  3644. break;
  3645. }
  3646. }
  3647. } /* if (val & 0x40000000) */
  3648. if (j == entry_count) {
  3649. bp->flash_info = NULL;
  3650. pr_alert("Unknown flash/EEPROM type\n");
  3651. return -ENODEV;
  3652. }
  3653. get_flash_size:
  3654. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3655. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3656. if (val)
  3657. bp->flash_size = val;
  3658. else
  3659. bp->flash_size = bp->flash_info->total_size;
  3660. return rc;
  3661. }
  3662. static int
  3663. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3664. int buf_size)
  3665. {
  3666. int rc = 0;
  3667. u32 cmd_flags, offset32, len32, extra;
  3668. if (buf_size == 0)
  3669. return 0;
  3670. /* Request access to the flash interface. */
  3671. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3672. return rc;
  3673. /* Enable access to flash interface */
  3674. bnx2_enable_nvram_access(bp);
  3675. len32 = buf_size;
  3676. offset32 = offset;
  3677. extra = 0;
  3678. cmd_flags = 0;
  3679. if (offset32 & 3) {
  3680. u8 buf[4];
  3681. u32 pre_len;
  3682. offset32 &= ~3;
  3683. pre_len = 4 - (offset & 3);
  3684. if (pre_len >= len32) {
  3685. pre_len = len32;
  3686. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3687. BNX2_NVM_COMMAND_LAST;
  3688. }
  3689. else {
  3690. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3691. }
  3692. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3693. if (rc)
  3694. return rc;
  3695. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3696. offset32 += 4;
  3697. ret_buf += pre_len;
  3698. len32 -= pre_len;
  3699. }
  3700. if (len32 & 3) {
  3701. extra = 4 - (len32 & 3);
  3702. len32 = (len32 + 4) & ~3;
  3703. }
  3704. if (len32 == 4) {
  3705. u8 buf[4];
  3706. if (cmd_flags)
  3707. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3708. else
  3709. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3710. BNX2_NVM_COMMAND_LAST;
  3711. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3712. memcpy(ret_buf, buf, 4 - extra);
  3713. }
  3714. else if (len32 > 0) {
  3715. u8 buf[4];
  3716. /* Read the first word. */
  3717. if (cmd_flags)
  3718. cmd_flags = 0;
  3719. else
  3720. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3721. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3722. /* Advance to the next dword. */
  3723. offset32 += 4;
  3724. ret_buf += 4;
  3725. len32 -= 4;
  3726. while (len32 > 4 && rc == 0) {
  3727. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3728. /* Advance to the next dword. */
  3729. offset32 += 4;
  3730. ret_buf += 4;
  3731. len32 -= 4;
  3732. }
  3733. if (rc)
  3734. return rc;
  3735. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3736. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3737. memcpy(ret_buf, buf, 4 - extra);
  3738. }
  3739. /* Disable access to flash interface */
  3740. bnx2_disable_nvram_access(bp);
  3741. bnx2_release_nvram_lock(bp);
  3742. return rc;
  3743. }
  3744. static int
  3745. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3746. int buf_size)
  3747. {
  3748. u32 written, offset32, len32;
  3749. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3750. int rc = 0;
  3751. int align_start, align_end;
  3752. buf = data_buf;
  3753. offset32 = offset;
  3754. len32 = buf_size;
  3755. align_start = align_end = 0;
  3756. if ((align_start = (offset32 & 3))) {
  3757. offset32 &= ~3;
  3758. len32 += align_start;
  3759. if (len32 < 4)
  3760. len32 = 4;
  3761. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3762. return rc;
  3763. }
  3764. if (len32 & 3) {
  3765. align_end = 4 - (len32 & 3);
  3766. len32 += align_end;
  3767. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3768. return rc;
  3769. }
  3770. if (align_start || align_end) {
  3771. align_buf = kmalloc(len32, GFP_KERNEL);
  3772. if (align_buf == NULL)
  3773. return -ENOMEM;
  3774. if (align_start) {
  3775. memcpy(align_buf, start, 4);
  3776. }
  3777. if (align_end) {
  3778. memcpy(align_buf + len32 - 4, end, 4);
  3779. }
  3780. memcpy(align_buf + align_start, data_buf, buf_size);
  3781. buf = align_buf;
  3782. }
  3783. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3784. flash_buffer = kmalloc(264, GFP_KERNEL);
  3785. if (flash_buffer == NULL) {
  3786. rc = -ENOMEM;
  3787. goto nvram_write_end;
  3788. }
  3789. }
  3790. written = 0;
  3791. while ((written < len32) && (rc == 0)) {
  3792. u32 page_start, page_end, data_start, data_end;
  3793. u32 addr, cmd_flags;
  3794. int i;
  3795. /* Find the page_start addr */
  3796. page_start = offset32 + written;
  3797. page_start -= (page_start % bp->flash_info->page_size);
  3798. /* Find the page_end addr */
  3799. page_end = page_start + bp->flash_info->page_size;
  3800. /* Find the data_start addr */
  3801. data_start = (written == 0) ? offset32 : page_start;
  3802. /* Find the data_end addr */
  3803. data_end = (page_end > offset32 + len32) ?
  3804. (offset32 + len32) : page_end;
  3805. /* Request access to the flash interface. */
  3806. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3807. goto nvram_write_end;
  3808. /* Enable access to flash interface */
  3809. bnx2_enable_nvram_access(bp);
  3810. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3811. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3812. int j;
  3813. /* Read the whole page into the buffer
  3814. * (non-buffer flash only) */
  3815. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3816. if (j == (bp->flash_info->page_size - 4)) {
  3817. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3818. }
  3819. rc = bnx2_nvram_read_dword(bp,
  3820. page_start + j,
  3821. &flash_buffer[j],
  3822. cmd_flags);
  3823. if (rc)
  3824. goto nvram_write_end;
  3825. cmd_flags = 0;
  3826. }
  3827. }
  3828. /* Enable writes to flash interface (unlock write-protect) */
  3829. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3830. goto nvram_write_end;
  3831. /* Loop to write back the buffer data from page_start to
  3832. * data_start */
  3833. i = 0;
  3834. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3835. /* Erase the page */
  3836. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3837. goto nvram_write_end;
  3838. /* Re-enable the write again for the actual write */
  3839. bnx2_enable_nvram_write(bp);
  3840. for (addr = page_start; addr < data_start;
  3841. addr += 4, i += 4) {
  3842. rc = bnx2_nvram_write_dword(bp, addr,
  3843. &flash_buffer[i], cmd_flags);
  3844. if (rc != 0)
  3845. goto nvram_write_end;
  3846. cmd_flags = 0;
  3847. }
  3848. }
  3849. /* Loop to write the new data from data_start to data_end */
  3850. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3851. if ((addr == page_end - 4) ||
  3852. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3853. (addr == data_end - 4))) {
  3854. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3855. }
  3856. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3857. cmd_flags);
  3858. if (rc != 0)
  3859. goto nvram_write_end;
  3860. cmd_flags = 0;
  3861. buf += 4;
  3862. }
  3863. /* Loop to write back the buffer data from data_end
  3864. * to page_end */
  3865. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3866. for (addr = data_end; addr < page_end;
  3867. addr += 4, i += 4) {
  3868. if (addr == page_end-4) {
  3869. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3870. }
  3871. rc = bnx2_nvram_write_dword(bp, addr,
  3872. &flash_buffer[i], cmd_flags);
  3873. if (rc != 0)
  3874. goto nvram_write_end;
  3875. cmd_flags = 0;
  3876. }
  3877. }
  3878. /* Disable writes to flash interface (lock write-protect) */
  3879. bnx2_disable_nvram_write(bp);
  3880. /* Disable access to flash interface */
  3881. bnx2_disable_nvram_access(bp);
  3882. bnx2_release_nvram_lock(bp);
  3883. /* Increment written */
  3884. written += data_end - data_start;
  3885. }
  3886. nvram_write_end:
  3887. kfree(flash_buffer);
  3888. kfree(align_buf);
  3889. return rc;
  3890. }
  3891. static void
  3892. bnx2_init_fw_cap(struct bnx2 *bp)
  3893. {
  3894. u32 val, sig = 0;
  3895. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3896. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3897. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3898. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3899. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3900. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3901. return;
  3902. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3903. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3904. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3905. }
  3906. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3907. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3908. u32 link;
  3909. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3910. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3911. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3912. bp->phy_port = PORT_FIBRE;
  3913. else
  3914. bp->phy_port = PORT_TP;
  3915. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3916. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3917. }
  3918. if (netif_running(bp->dev) && sig)
  3919. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3920. }
  3921. static void
  3922. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3923. {
  3924. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3925. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3926. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3927. }
  3928. static void
  3929. bnx2_wait_dma_complete(struct bnx2 *bp)
  3930. {
  3931. u32 val;
  3932. int i;
  3933. /*
  3934. * Wait for the current PCI transaction to complete before
  3935. * issuing a reset.
  3936. */
  3937. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3938. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3939. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3940. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3941. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3942. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3943. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3944. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3945. udelay(5);
  3946. } else { /* 5709 */
  3947. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3948. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3949. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3950. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3951. for (i = 0; i < 100; i++) {
  3952. msleep(1);
  3953. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3954. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3955. break;
  3956. }
  3957. }
  3958. return;
  3959. }
  3960. static int
  3961. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3962. {
  3963. u32 val;
  3964. int i, rc = 0;
  3965. u8 old_port;
  3966. /* Wait for the current PCI transaction to complete before
  3967. * issuing a reset. */
  3968. bnx2_wait_dma_complete(bp);
  3969. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3970. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3971. /* Deposit a driver reset signature so the firmware knows that
  3972. * this is a soft reset. */
  3973. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3974. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3975. /* Do a dummy read to force the chip to complete all current transaction
  3976. * before we issue a reset. */
  3977. val = BNX2_RD(bp, BNX2_MISC_ID);
  3978. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3979. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3980. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3981. udelay(5);
  3982. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3983. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3984. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3985. } else {
  3986. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3987. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3988. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3989. /* Chip reset. */
  3990. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3991. /* Reading back any register after chip reset will hang the
  3992. * bus on 5706 A0 and A1. The msleep below provides plenty
  3993. * of margin for write posting.
  3994. */
  3995. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3996. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3997. msleep(20);
  3998. /* Reset takes approximate 30 usec */
  3999. for (i = 0; i < 10; i++) {
  4000. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  4001. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  4002. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  4003. break;
  4004. udelay(10);
  4005. }
  4006. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  4007. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  4008. pr_err("Chip reset did not complete\n");
  4009. return -EBUSY;
  4010. }
  4011. }
  4012. /* Make sure byte swapping is properly configured. */
  4013. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  4014. if (val != 0x01020304) {
  4015. pr_err("Chip not in correct endian mode\n");
  4016. return -ENODEV;
  4017. }
  4018. /* Wait for the firmware to finish its initialization. */
  4019. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  4020. if (rc)
  4021. return rc;
  4022. spin_lock_bh(&bp->phy_lock);
  4023. old_port = bp->phy_port;
  4024. bnx2_init_fw_cap(bp);
  4025. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  4026. old_port != bp->phy_port)
  4027. bnx2_set_default_remote_link(bp);
  4028. spin_unlock_bh(&bp->phy_lock);
  4029. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4030. /* Adjust the voltage regular to two steps lower. The default
  4031. * of this register is 0x0000000e. */
  4032. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  4033. /* Remove bad rbuf memory from the free pool. */
  4034. rc = bnx2_alloc_bad_rbuf(bp);
  4035. }
  4036. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4037. bnx2_setup_msix_tbl(bp);
  4038. /* Prevent MSIX table reads and write from timing out */
  4039. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  4040. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  4041. }
  4042. return rc;
  4043. }
  4044. static int
  4045. bnx2_init_chip(struct bnx2 *bp)
  4046. {
  4047. u32 val, mtu;
  4048. int rc, i;
  4049. /* Make sure the interrupt is not active. */
  4050. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  4051. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  4052. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  4053. #ifdef __BIG_ENDIAN
  4054. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  4055. #endif
  4056. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  4057. DMA_READ_CHANS << 12 |
  4058. DMA_WRITE_CHANS << 16;
  4059. val |= (0x2 << 20) | (1 << 11);
  4060. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4061. val |= (1 << 23);
  4062. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4063. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4064. !(bp->flags & BNX2_FLAG_PCIX))
  4065. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4066. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4067. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4068. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4069. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4070. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4071. }
  4072. if (bp->flags & BNX2_FLAG_PCIX) {
  4073. u16 val16;
  4074. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4075. &val16);
  4076. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4077. val16 & ~PCI_X_CMD_ERO);
  4078. }
  4079. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4080. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4081. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4082. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4083. /* Initialize context mapping and zero out the quick contexts. The
  4084. * context block must have already been enabled. */
  4085. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4086. rc = bnx2_init_5709_context(bp);
  4087. if (rc)
  4088. return rc;
  4089. } else
  4090. bnx2_init_context(bp);
  4091. if ((rc = bnx2_init_cpus(bp)) != 0)
  4092. return rc;
  4093. bnx2_init_nvram(bp);
  4094. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4095. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4096. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4097. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4098. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4099. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4100. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4101. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4102. }
  4103. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4104. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4105. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4106. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4107. val = (BNX2_PAGE_BITS - 8) << 24;
  4108. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4109. /* Configure page size. */
  4110. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4111. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4112. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4113. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4114. val = bp->mac_addr[0] +
  4115. (bp->mac_addr[1] << 8) +
  4116. (bp->mac_addr[2] << 16) +
  4117. bp->mac_addr[3] +
  4118. (bp->mac_addr[4] << 8) +
  4119. (bp->mac_addr[5] << 16);
  4120. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4121. /* Program the MTU. Also include 4 bytes for CRC32. */
  4122. mtu = bp->dev->mtu;
  4123. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4124. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4125. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4126. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4127. if (mtu < 1500)
  4128. mtu = 1500;
  4129. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4130. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4131. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4132. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4133. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4134. bp->bnx2_napi[i].last_status_idx = 0;
  4135. bp->idle_chk_status_idx = 0xffff;
  4136. /* Set up how to generate a link change interrupt. */
  4137. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4138. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4139. (u64) bp->status_blk_mapping & 0xffffffff);
  4140. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4141. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4142. (u64) bp->stats_blk_mapping & 0xffffffff);
  4143. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4144. (u64) bp->stats_blk_mapping >> 32);
  4145. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4146. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4147. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4148. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4149. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4150. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4151. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4152. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4153. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4154. (bp->com_ticks_int << 16) | bp->com_ticks);
  4155. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4156. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4157. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4158. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4159. else
  4160. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4161. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4162. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4163. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4164. else {
  4165. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4166. BNX2_HC_CONFIG_COLLECT_STATS;
  4167. }
  4168. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4169. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4170. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4171. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4172. }
  4173. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4174. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4175. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4176. if (bp->rx_ticks < 25)
  4177. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4178. else
  4179. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4180. for (i = 1; i < bp->irq_nvecs; i++) {
  4181. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4182. BNX2_HC_SB_CONFIG_1;
  4183. BNX2_WR(bp, base,
  4184. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4185. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4186. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4187. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4188. (bp->tx_quick_cons_trip_int << 16) |
  4189. bp->tx_quick_cons_trip);
  4190. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4191. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4192. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4193. (bp->rx_quick_cons_trip_int << 16) |
  4194. bp->rx_quick_cons_trip);
  4195. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4196. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4197. }
  4198. /* Clear internal stats counters. */
  4199. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4200. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4201. /* Initialize the receive filter. */
  4202. bnx2_set_rx_mode(bp->dev);
  4203. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4204. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4205. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4206. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4207. }
  4208. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4209. 1, 0);
  4210. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4211. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4212. udelay(20);
  4213. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4214. return rc;
  4215. }
  4216. static void
  4217. bnx2_clear_ring_states(struct bnx2 *bp)
  4218. {
  4219. struct bnx2_napi *bnapi;
  4220. struct bnx2_tx_ring_info *txr;
  4221. struct bnx2_rx_ring_info *rxr;
  4222. int i;
  4223. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4224. bnapi = &bp->bnx2_napi[i];
  4225. txr = &bnapi->tx_ring;
  4226. rxr = &bnapi->rx_ring;
  4227. txr->tx_cons = 0;
  4228. txr->hw_tx_cons = 0;
  4229. rxr->rx_prod_bseq = 0;
  4230. rxr->rx_prod = 0;
  4231. rxr->rx_cons = 0;
  4232. rxr->rx_pg_prod = 0;
  4233. rxr->rx_pg_cons = 0;
  4234. }
  4235. }
  4236. static void
  4237. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4238. {
  4239. u32 val, offset0, offset1, offset2, offset3;
  4240. u32 cid_addr = GET_CID_ADDR(cid);
  4241. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4242. offset0 = BNX2_L2CTX_TYPE_XI;
  4243. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4244. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4245. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4246. } else {
  4247. offset0 = BNX2_L2CTX_TYPE;
  4248. offset1 = BNX2_L2CTX_CMD_TYPE;
  4249. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4250. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4251. }
  4252. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4253. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4254. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4255. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4256. val = (u64) txr->tx_desc_mapping >> 32;
  4257. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4258. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4259. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4260. }
  4261. static void
  4262. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4263. {
  4264. struct bnx2_tx_bd *txbd;
  4265. u32 cid = TX_CID;
  4266. struct bnx2_napi *bnapi;
  4267. struct bnx2_tx_ring_info *txr;
  4268. bnapi = &bp->bnx2_napi[ring_num];
  4269. txr = &bnapi->tx_ring;
  4270. if (ring_num == 0)
  4271. cid = TX_CID;
  4272. else
  4273. cid = TX_TSS_CID + ring_num - 1;
  4274. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4275. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4276. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4277. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4278. txr->tx_prod = 0;
  4279. txr->tx_prod_bseq = 0;
  4280. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4281. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4282. bnx2_init_tx_context(bp, cid, txr);
  4283. }
  4284. static void
  4285. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4286. u32 buf_size, int num_rings)
  4287. {
  4288. int i;
  4289. struct bnx2_rx_bd *rxbd;
  4290. for (i = 0; i < num_rings; i++) {
  4291. int j;
  4292. rxbd = &rx_ring[i][0];
  4293. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4294. rxbd->rx_bd_len = buf_size;
  4295. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4296. }
  4297. if (i == (num_rings - 1))
  4298. j = 0;
  4299. else
  4300. j = i + 1;
  4301. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4302. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4303. }
  4304. }
  4305. static void
  4306. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4307. {
  4308. int i;
  4309. u16 prod, ring_prod;
  4310. u32 cid, rx_cid_addr, val;
  4311. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4312. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4313. if (ring_num == 0)
  4314. cid = RX_CID;
  4315. else
  4316. cid = RX_RSS_CID + ring_num - 1;
  4317. rx_cid_addr = GET_CID_ADDR(cid);
  4318. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4319. bp->rx_buf_use_size, bp->rx_max_ring);
  4320. bnx2_init_rx_context(bp, cid);
  4321. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4322. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4323. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4324. }
  4325. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4326. if (bp->rx_pg_ring_size) {
  4327. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4328. rxr->rx_pg_desc_mapping,
  4329. PAGE_SIZE, bp->rx_max_pg_ring);
  4330. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4331. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4332. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4333. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4334. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4335. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4336. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4337. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4338. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4339. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4340. }
  4341. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4342. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4343. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4344. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4345. ring_prod = prod = rxr->rx_pg_prod;
  4346. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4347. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4348. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4349. ring_num, i, bp->rx_pg_ring_size);
  4350. break;
  4351. }
  4352. prod = BNX2_NEXT_RX_BD(prod);
  4353. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4354. }
  4355. rxr->rx_pg_prod = prod;
  4356. ring_prod = prod = rxr->rx_prod;
  4357. for (i = 0; i < bp->rx_ring_size; i++) {
  4358. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4359. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4360. ring_num, i, bp->rx_ring_size);
  4361. break;
  4362. }
  4363. prod = BNX2_NEXT_RX_BD(prod);
  4364. ring_prod = BNX2_RX_RING_IDX(prod);
  4365. }
  4366. rxr->rx_prod = prod;
  4367. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4368. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4369. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4370. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4371. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4372. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4373. }
  4374. static void
  4375. bnx2_init_all_rings(struct bnx2 *bp)
  4376. {
  4377. int i;
  4378. u32 val;
  4379. bnx2_clear_ring_states(bp);
  4380. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4381. for (i = 0; i < bp->num_tx_rings; i++)
  4382. bnx2_init_tx_ring(bp, i);
  4383. if (bp->num_tx_rings > 1)
  4384. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4385. (TX_TSS_CID << 7));
  4386. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4387. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4388. for (i = 0; i < bp->num_rx_rings; i++)
  4389. bnx2_init_rx_ring(bp, i);
  4390. if (bp->num_rx_rings > 1) {
  4391. u32 tbl_32 = 0;
  4392. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4393. int shift = (i % 8) << 2;
  4394. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4395. if ((i % 8) == 7) {
  4396. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4397. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4398. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4399. BNX2_RLUP_RSS_COMMAND_WRITE |
  4400. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4401. tbl_32 = 0;
  4402. }
  4403. }
  4404. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4405. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4406. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4407. }
  4408. }
  4409. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4410. {
  4411. u32 max, num_rings = 1;
  4412. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4413. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4414. num_rings++;
  4415. }
  4416. /* round to next power of 2 */
  4417. max = max_size;
  4418. while ((max & num_rings) == 0)
  4419. max >>= 1;
  4420. if (num_rings != max)
  4421. max <<= 1;
  4422. return max;
  4423. }
  4424. static void
  4425. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4426. {
  4427. u32 rx_size, rx_space, jumbo_size;
  4428. /* 8 for CRC and VLAN */
  4429. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4430. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4431. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4432. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4433. bp->rx_pg_ring_size = 0;
  4434. bp->rx_max_pg_ring = 0;
  4435. bp->rx_max_pg_ring_idx = 0;
  4436. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4437. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4438. jumbo_size = size * pages;
  4439. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4440. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4441. bp->rx_pg_ring_size = jumbo_size;
  4442. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4443. BNX2_MAX_RX_PG_RINGS);
  4444. bp->rx_max_pg_ring_idx =
  4445. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4446. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4447. bp->rx_copy_thresh = 0;
  4448. }
  4449. bp->rx_buf_use_size = rx_size;
  4450. /* hw alignment + build_skb() overhead*/
  4451. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4452. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4453. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4454. bp->rx_ring_size = size;
  4455. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4456. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4457. }
  4458. static void
  4459. bnx2_free_tx_skbs(struct bnx2 *bp)
  4460. {
  4461. int i;
  4462. for (i = 0; i < bp->num_tx_rings; i++) {
  4463. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4464. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4465. int j;
  4466. if (txr->tx_buf_ring == NULL)
  4467. continue;
  4468. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4469. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4470. struct sk_buff *skb = tx_buf->skb;
  4471. int k, last;
  4472. if (skb == NULL) {
  4473. j = BNX2_NEXT_TX_BD(j);
  4474. continue;
  4475. }
  4476. dma_unmap_single(&bp->pdev->dev,
  4477. dma_unmap_addr(tx_buf, mapping),
  4478. skb_headlen(skb),
  4479. PCI_DMA_TODEVICE);
  4480. tx_buf->skb = NULL;
  4481. last = tx_buf->nr_frags;
  4482. j = BNX2_NEXT_TX_BD(j);
  4483. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4484. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4485. dma_unmap_page(&bp->pdev->dev,
  4486. dma_unmap_addr(tx_buf, mapping),
  4487. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4488. PCI_DMA_TODEVICE);
  4489. }
  4490. dev_kfree_skb(skb);
  4491. }
  4492. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4493. }
  4494. }
  4495. static void
  4496. bnx2_free_rx_skbs(struct bnx2 *bp)
  4497. {
  4498. int i;
  4499. for (i = 0; i < bp->num_rx_rings; i++) {
  4500. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4501. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4502. int j;
  4503. if (rxr->rx_buf_ring == NULL)
  4504. return;
  4505. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4506. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4507. u8 *data = rx_buf->data;
  4508. if (data == NULL)
  4509. continue;
  4510. dma_unmap_single(&bp->pdev->dev,
  4511. dma_unmap_addr(rx_buf, mapping),
  4512. bp->rx_buf_use_size,
  4513. PCI_DMA_FROMDEVICE);
  4514. rx_buf->data = NULL;
  4515. kfree(data);
  4516. }
  4517. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4518. bnx2_free_rx_page(bp, rxr, j);
  4519. }
  4520. }
  4521. static void
  4522. bnx2_free_skbs(struct bnx2 *bp)
  4523. {
  4524. bnx2_free_tx_skbs(bp);
  4525. bnx2_free_rx_skbs(bp);
  4526. }
  4527. static int
  4528. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4529. {
  4530. int rc;
  4531. rc = bnx2_reset_chip(bp, reset_code);
  4532. bnx2_free_skbs(bp);
  4533. if (rc)
  4534. return rc;
  4535. if ((rc = bnx2_init_chip(bp)) != 0)
  4536. return rc;
  4537. bnx2_init_all_rings(bp);
  4538. return 0;
  4539. }
  4540. static int
  4541. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4542. {
  4543. int rc;
  4544. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4545. return rc;
  4546. spin_lock_bh(&bp->phy_lock);
  4547. bnx2_init_phy(bp, reset_phy);
  4548. bnx2_set_link(bp);
  4549. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4550. bnx2_remote_phy_event(bp);
  4551. spin_unlock_bh(&bp->phy_lock);
  4552. return 0;
  4553. }
  4554. static int
  4555. bnx2_shutdown_chip(struct bnx2 *bp)
  4556. {
  4557. u32 reset_code;
  4558. if (bp->flags & BNX2_FLAG_NO_WOL)
  4559. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4560. else if (bp->wol)
  4561. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4562. else
  4563. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4564. return bnx2_reset_chip(bp, reset_code);
  4565. }
  4566. static int
  4567. bnx2_test_registers(struct bnx2 *bp)
  4568. {
  4569. int ret;
  4570. int i, is_5709;
  4571. static const struct {
  4572. u16 offset;
  4573. u16 flags;
  4574. #define BNX2_FL_NOT_5709 1
  4575. u32 rw_mask;
  4576. u32 ro_mask;
  4577. } reg_tbl[] = {
  4578. { 0x006c, 0, 0x00000000, 0x0000003f },
  4579. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4580. { 0x0094, 0, 0x00000000, 0x00000000 },
  4581. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4582. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4583. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4584. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4585. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4586. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4587. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4588. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4589. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4590. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4591. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4592. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4593. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4594. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4595. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4596. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4597. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4598. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4599. { 0x1000, 0, 0x00000000, 0x00000001 },
  4600. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4601. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4602. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4603. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4604. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4605. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4606. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4607. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4608. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4609. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4610. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4611. { 0x1800, 0, 0x00000000, 0x00000001 },
  4612. { 0x1804, 0, 0x00000000, 0x00000003 },
  4613. { 0x2800, 0, 0x00000000, 0x00000001 },
  4614. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4615. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4616. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4617. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4618. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4619. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4620. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4621. { 0x2840, 0, 0x00000000, 0xffffffff },
  4622. { 0x2844, 0, 0x00000000, 0xffffffff },
  4623. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4624. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4625. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4626. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4627. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4628. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4629. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4630. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4631. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4632. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4633. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4634. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4635. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4636. { 0x5004, 0, 0x00000000, 0x0000007f },
  4637. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4638. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4639. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4640. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4641. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4642. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4643. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4644. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4645. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4646. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4647. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4648. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4649. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4650. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4651. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4652. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4653. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4654. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4655. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4656. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4657. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4658. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4659. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4660. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4661. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4662. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4663. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4664. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4665. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4666. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4667. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4668. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4669. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4670. { 0xffff, 0, 0x00000000, 0x00000000 },
  4671. };
  4672. ret = 0;
  4673. is_5709 = 0;
  4674. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4675. is_5709 = 1;
  4676. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4677. u32 offset, rw_mask, ro_mask, save_val, val;
  4678. u16 flags = reg_tbl[i].flags;
  4679. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4680. continue;
  4681. offset = (u32) reg_tbl[i].offset;
  4682. rw_mask = reg_tbl[i].rw_mask;
  4683. ro_mask = reg_tbl[i].ro_mask;
  4684. save_val = readl(bp->regview + offset);
  4685. writel(0, bp->regview + offset);
  4686. val = readl(bp->regview + offset);
  4687. if ((val & rw_mask) != 0) {
  4688. goto reg_test_err;
  4689. }
  4690. if ((val & ro_mask) != (save_val & ro_mask)) {
  4691. goto reg_test_err;
  4692. }
  4693. writel(0xffffffff, bp->regview + offset);
  4694. val = readl(bp->regview + offset);
  4695. if ((val & rw_mask) != rw_mask) {
  4696. goto reg_test_err;
  4697. }
  4698. if ((val & ro_mask) != (save_val & ro_mask)) {
  4699. goto reg_test_err;
  4700. }
  4701. writel(save_val, bp->regview + offset);
  4702. continue;
  4703. reg_test_err:
  4704. writel(save_val, bp->regview + offset);
  4705. ret = -ENODEV;
  4706. break;
  4707. }
  4708. return ret;
  4709. }
  4710. static int
  4711. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4712. {
  4713. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4714. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4715. int i;
  4716. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4717. u32 offset;
  4718. for (offset = 0; offset < size; offset += 4) {
  4719. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4720. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4721. test_pattern[i]) {
  4722. return -ENODEV;
  4723. }
  4724. }
  4725. }
  4726. return 0;
  4727. }
  4728. static int
  4729. bnx2_test_memory(struct bnx2 *bp)
  4730. {
  4731. int ret = 0;
  4732. int i;
  4733. static struct mem_entry {
  4734. u32 offset;
  4735. u32 len;
  4736. } mem_tbl_5706[] = {
  4737. { 0x60000, 0x4000 },
  4738. { 0xa0000, 0x3000 },
  4739. { 0xe0000, 0x4000 },
  4740. { 0x120000, 0x4000 },
  4741. { 0x1a0000, 0x4000 },
  4742. { 0x160000, 0x4000 },
  4743. { 0xffffffff, 0 },
  4744. },
  4745. mem_tbl_5709[] = {
  4746. { 0x60000, 0x4000 },
  4747. { 0xa0000, 0x3000 },
  4748. { 0xe0000, 0x4000 },
  4749. { 0x120000, 0x4000 },
  4750. { 0x1a0000, 0x4000 },
  4751. { 0xffffffff, 0 },
  4752. };
  4753. struct mem_entry *mem_tbl;
  4754. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4755. mem_tbl = mem_tbl_5709;
  4756. else
  4757. mem_tbl = mem_tbl_5706;
  4758. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4759. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4760. mem_tbl[i].len)) != 0) {
  4761. return ret;
  4762. }
  4763. }
  4764. return ret;
  4765. }
  4766. #define BNX2_MAC_LOOPBACK 0
  4767. #define BNX2_PHY_LOOPBACK 1
  4768. static int
  4769. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4770. {
  4771. unsigned int pkt_size, num_pkts, i;
  4772. struct sk_buff *skb;
  4773. u8 *data;
  4774. unsigned char *packet;
  4775. u16 rx_start_idx, rx_idx;
  4776. dma_addr_t map;
  4777. struct bnx2_tx_bd *txbd;
  4778. struct bnx2_sw_bd *rx_buf;
  4779. struct l2_fhdr *rx_hdr;
  4780. int ret = -ENODEV;
  4781. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4782. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4783. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4784. tx_napi = bnapi;
  4785. txr = &tx_napi->tx_ring;
  4786. rxr = &bnapi->rx_ring;
  4787. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4788. bp->loopback = MAC_LOOPBACK;
  4789. bnx2_set_mac_loopback(bp);
  4790. }
  4791. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4792. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4793. return 0;
  4794. bp->loopback = PHY_LOOPBACK;
  4795. bnx2_set_phy_loopback(bp);
  4796. }
  4797. else
  4798. return -EINVAL;
  4799. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4800. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4801. if (!skb)
  4802. return -ENOMEM;
  4803. packet = skb_put(skb, pkt_size);
  4804. memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
  4805. memset(packet + ETH_ALEN, 0x0, 8);
  4806. for (i = 14; i < pkt_size; i++)
  4807. packet[i] = (unsigned char) (i & 0xff);
  4808. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4809. PCI_DMA_TODEVICE);
  4810. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4811. dev_kfree_skb(skb);
  4812. return -EIO;
  4813. }
  4814. BNX2_WR(bp, BNX2_HC_COMMAND,
  4815. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4816. BNX2_RD(bp, BNX2_HC_COMMAND);
  4817. udelay(5);
  4818. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4819. num_pkts = 0;
  4820. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4821. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4822. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4823. txbd->tx_bd_mss_nbytes = pkt_size;
  4824. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4825. num_pkts++;
  4826. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4827. txr->tx_prod_bseq += pkt_size;
  4828. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4829. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4830. udelay(100);
  4831. BNX2_WR(bp, BNX2_HC_COMMAND,
  4832. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4833. BNX2_RD(bp, BNX2_HC_COMMAND);
  4834. udelay(5);
  4835. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4836. dev_kfree_skb(skb);
  4837. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4838. goto loopback_test_done;
  4839. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4840. if (rx_idx != rx_start_idx + num_pkts) {
  4841. goto loopback_test_done;
  4842. }
  4843. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4844. data = rx_buf->data;
  4845. rx_hdr = get_l2_fhdr(data);
  4846. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4847. dma_sync_single_for_cpu(&bp->pdev->dev,
  4848. dma_unmap_addr(rx_buf, mapping),
  4849. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4850. if (rx_hdr->l2_fhdr_status &
  4851. (L2_FHDR_ERRORS_BAD_CRC |
  4852. L2_FHDR_ERRORS_PHY_DECODE |
  4853. L2_FHDR_ERRORS_ALIGNMENT |
  4854. L2_FHDR_ERRORS_TOO_SHORT |
  4855. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4856. goto loopback_test_done;
  4857. }
  4858. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4859. goto loopback_test_done;
  4860. }
  4861. for (i = 14; i < pkt_size; i++) {
  4862. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4863. goto loopback_test_done;
  4864. }
  4865. }
  4866. ret = 0;
  4867. loopback_test_done:
  4868. bp->loopback = 0;
  4869. return ret;
  4870. }
  4871. #define BNX2_MAC_LOOPBACK_FAILED 1
  4872. #define BNX2_PHY_LOOPBACK_FAILED 2
  4873. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4874. BNX2_PHY_LOOPBACK_FAILED)
  4875. static int
  4876. bnx2_test_loopback(struct bnx2 *bp)
  4877. {
  4878. int rc = 0;
  4879. if (!netif_running(bp->dev))
  4880. return BNX2_LOOPBACK_FAILED;
  4881. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4882. spin_lock_bh(&bp->phy_lock);
  4883. bnx2_init_phy(bp, 1);
  4884. spin_unlock_bh(&bp->phy_lock);
  4885. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4886. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4887. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4888. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4889. return rc;
  4890. }
  4891. #define NVRAM_SIZE 0x200
  4892. #define CRC32_RESIDUAL 0xdebb20e3
  4893. static int
  4894. bnx2_test_nvram(struct bnx2 *bp)
  4895. {
  4896. __be32 buf[NVRAM_SIZE / 4];
  4897. u8 *data = (u8 *) buf;
  4898. int rc = 0;
  4899. u32 magic, csum;
  4900. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4901. goto test_nvram_done;
  4902. magic = be32_to_cpu(buf[0]);
  4903. if (magic != 0x669955aa) {
  4904. rc = -ENODEV;
  4905. goto test_nvram_done;
  4906. }
  4907. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4908. goto test_nvram_done;
  4909. csum = ether_crc_le(0x100, data);
  4910. if (csum != CRC32_RESIDUAL) {
  4911. rc = -ENODEV;
  4912. goto test_nvram_done;
  4913. }
  4914. csum = ether_crc_le(0x100, data + 0x100);
  4915. if (csum != CRC32_RESIDUAL) {
  4916. rc = -ENODEV;
  4917. }
  4918. test_nvram_done:
  4919. return rc;
  4920. }
  4921. static int
  4922. bnx2_test_link(struct bnx2 *bp)
  4923. {
  4924. u32 bmsr;
  4925. if (!netif_running(bp->dev))
  4926. return -ENODEV;
  4927. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4928. if (bp->link_up)
  4929. return 0;
  4930. return -ENODEV;
  4931. }
  4932. spin_lock_bh(&bp->phy_lock);
  4933. bnx2_enable_bmsr1(bp);
  4934. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4935. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4936. bnx2_disable_bmsr1(bp);
  4937. spin_unlock_bh(&bp->phy_lock);
  4938. if (bmsr & BMSR_LSTATUS) {
  4939. return 0;
  4940. }
  4941. return -ENODEV;
  4942. }
  4943. static int
  4944. bnx2_test_intr(struct bnx2 *bp)
  4945. {
  4946. int i;
  4947. u16 status_idx;
  4948. if (!netif_running(bp->dev))
  4949. return -ENODEV;
  4950. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4951. /* This register is not touched during run-time. */
  4952. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4953. BNX2_RD(bp, BNX2_HC_COMMAND);
  4954. for (i = 0; i < 10; i++) {
  4955. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4956. status_idx) {
  4957. break;
  4958. }
  4959. msleep_interruptible(10);
  4960. }
  4961. if (i < 10)
  4962. return 0;
  4963. return -ENODEV;
  4964. }
  4965. /* Determining link for parallel detection. */
  4966. static int
  4967. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4968. {
  4969. u32 mode_ctl, an_dbg, exp;
  4970. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4971. return 0;
  4972. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4973. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4974. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4975. return 0;
  4976. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4977. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4978. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4979. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4980. return 0;
  4981. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4982. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4983. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4984. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4985. return 0;
  4986. return 1;
  4987. }
  4988. static void
  4989. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4990. {
  4991. int check_link = 1;
  4992. spin_lock(&bp->phy_lock);
  4993. if (bp->serdes_an_pending) {
  4994. bp->serdes_an_pending--;
  4995. check_link = 0;
  4996. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4997. u32 bmcr;
  4998. bp->current_interval = BNX2_TIMER_INTERVAL;
  4999. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5000. if (bmcr & BMCR_ANENABLE) {
  5001. if (bnx2_5706_serdes_has_link(bp)) {
  5002. bmcr &= ~BMCR_ANENABLE;
  5003. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  5004. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  5005. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  5006. }
  5007. }
  5008. }
  5009. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  5010. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  5011. u32 phy2;
  5012. bnx2_write_phy(bp, 0x17, 0x0f01);
  5013. bnx2_read_phy(bp, 0x15, &phy2);
  5014. if (phy2 & 0x20) {
  5015. u32 bmcr;
  5016. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5017. bmcr |= BMCR_ANENABLE;
  5018. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  5019. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  5020. }
  5021. } else
  5022. bp->current_interval = BNX2_TIMER_INTERVAL;
  5023. if (check_link) {
  5024. u32 val;
  5025. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  5026. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  5027. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  5028. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  5029. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  5030. bnx2_5706s_force_link_dn(bp, 1);
  5031. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  5032. } else
  5033. bnx2_set_link(bp);
  5034. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  5035. bnx2_set_link(bp);
  5036. }
  5037. spin_unlock(&bp->phy_lock);
  5038. }
  5039. static void
  5040. bnx2_5708_serdes_timer(struct bnx2 *bp)
  5041. {
  5042. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5043. return;
  5044. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  5045. bp->serdes_an_pending = 0;
  5046. return;
  5047. }
  5048. spin_lock(&bp->phy_lock);
  5049. if (bp->serdes_an_pending)
  5050. bp->serdes_an_pending--;
  5051. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  5052. u32 bmcr;
  5053. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5054. if (bmcr & BMCR_ANENABLE) {
  5055. bnx2_enable_forced_2g5(bp);
  5056. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  5057. } else {
  5058. bnx2_disable_forced_2g5(bp);
  5059. bp->serdes_an_pending = 2;
  5060. bp->current_interval = BNX2_TIMER_INTERVAL;
  5061. }
  5062. } else
  5063. bp->current_interval = BNX2_TIMER_INTERVAL;
  5064. spin_unlock(&bp->phy_lock);
  5065. }
  5066. static void
  5067. bnx2_timer(unsigned long data)
  5068. {
  5069. struct bnx2 *bp = (struct bnx2 *) data;
  5070. if (!netif_running(bp->dev))
  5071. return;
  5072. if (atomic_read(&bp->intr_sem) != 0)
  5073. goto bnx2_restart_timer;
  5074. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5075. BNX2_FLAG_USING_MSI)
  5076. bnx2_chk_missed_msi(bp);
  5077. bnx2_send_heart_beat(bp);
  5078. bp->stats_blk->stat_FwRxDrop =
  5079. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5080. /* workaround occasional corrupted counters */
  5081. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5082. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5083. BNX2_HC_COMMAND_STATS_NOW);
  5084. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5085. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5086. bnx2_5706_serdes_timer(bp);
  5087. else
  5088. bnx2_5708_serdes_timer(bp);
  5089. }
  5090. bnx2_restart_timer:
  5091. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5092. }
  5093. static int
  5094. bnx2_request_irq(struct bnx2 *bp)
  5095. {
  5096. unsigned long flags;
  5097. struct bnx2_irq *irq;
  5098. int rc = 0, i;
  5099. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5100. flags = 0;
  5101. else
  5102. flags = IRQF_SHARED;
  5103. for (i = 0; i < bp->irq_nvecs; i++) {
  5104. irq = &bp->irq_tbl[i];
  5105. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5106. &bp->bnx2_napi[i]);
  5107. if (rc)
  5108. break;
  5109. irq->requested = 1;
  5110. }
  5111. return rc;
  5112. }
  5113. static void
  5114. __bnx2_free_irq(struct bnx2 *bp)
  5115. {
  5116. struct bnx2_irq *irq;
  5117. int i;
  5118. for (i = 0; i < bp->irq_nvecs; i++) {
  5119. irq = &bp->irq_tbl[i];
  5120. if (irq->requested)
  5121. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5122. irq->requested = 0;
  5123. }
  5124. }
  5125. static void
  5126. bnx2_free_irq(struct bnx2 *bp)
  5127. {
  5128. __bnx2_free_irq(bp);
  5129. if (bp->flags & BNX2_FLAG_USING_MSI)
  5130. pci_disable_msi(bp->pdev);
  5131. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5132. pci_disable_msix(bp->pdev);
  5133. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5134. }
  5135. static void
  5136. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5137. {
  5138. int i, total_vecs;
  5139. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5140. struct net_device *dev = bp->dev;
  5141. const int len = sizeof(bp->irq_tbl[0].name);
  5142. bnx2_setup_msix_tbl(bp);
  5143. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5144. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5145. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5146. /* Need to flush the previous three writes to ensure MSI-X
  5147. * is setup properly */
  5148. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5149. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5150. msix_ent[i].entry = i;
  5151. msix_ent[i].vector = 0;
  5152. }
  5153. total_vecs = msix_vecs;
  5154. #ifdef BCM_CNIC
  5155. total_vecs++;
  5156. #endif
  5157. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent,
  5158. BNX2_MIN_MSIX_VEC, total_vecs);
  5159. if (total_vecs < 0)
  5160. return;
  5161. msix_vecs = total_vecs;
  5162. #ifdef BCM_CNIC
  5163. msix_vecs--;
  5164. #endif
  5165. bp->irq_nvecs = msix_vecs;
  5166. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5167. for (i = 0; i < total_vecs; i++) {
  5168. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5169. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5170. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5171. }
  5172. }
  5173. static int
  5174. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5175. {
  5176. int cpus = netif_get_num_default_rss_queues();
  5177. int msix_vecs;
  5178. if (!bp->num_req_rx_rings)
  5179. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5180. else if (!bp->num_req_tx_rings)
  5181. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5182. else
  5183. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5184. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5185. bp->irq_tbl[0].handler = bnx2_interrupt;
  5186. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5187. bp->irq_nvecs = 1;
  5188. bp->irq_tbl[0].vector = bp->pdev->irq;
  5189. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5190. bnx2_enable_msix(bp, msix_vecs);
  5191. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5192. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5193. if (pci_enable_msi(bp->pdev) == 0) {
  5194. bp->flags |= BNX2_FLAG_USING_MSI;
  5195. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5196. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5197. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5198. } else
  5199. bp->irq_tbl[0].handler = bnx2_msi;
  5200. bp->irq_tbl[0].vector = bp->pdev->irq;
  5201. }
  5202. }
  5203. if (!bp->num_req_tx_rings)
  5204. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5205. else
  5206. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5207. if (!bp->num_req_rx_rings)
  5208. bp->num_rx_rings = bp->irq_nvecs;
  5209. else
  5210. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5211. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5212. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5213. }
  5214. /* Called with rtnl_lock */
  5215. static int
  5216. bnx2_open(struct net_device *dev)
  5217. {
  5218. struct bnx2 *bp = netdev_priv(dev);
  5219. int rc;
  5220. rc = bnx2_request_firmware(bp);
  5221. if (rc < 0)
  5222. goto out;
  5223. netif_carrier_off(dev);
  5224. bnx2_disable_int(bp);
  5225. rc = bnx2_setup_int_mode(bp, disable_msi);
  5226. if (rc)
  5227. goto open_err;
  5228. bnx2_init_napi(bp);
  5229. bnx2_napi_enable(bp);
  5230. rc = bnx2_alloc_mem(bp);
  5231. if (rc)
  5232. goto open_err;
  5233. rc = bnx2_request_irq(bp);
  5234. if (rc)
  5235. goto open_err;
  5236. rc = bnx2_init_nic(bp, 1);
  5237. if (rc)
  5238. goto open_err;
  5239. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5240. atomic_set(&bp->intr_sem, 0);
  5241. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5242. bnx2_enable_int(bp);
  5243. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5244. /* Test MSI to make sure it is working
  5245. * If MSI test fails, go back to INTx mode
  5246. */
  5247. if (bnx2_test_intr(bp) != 0) {
  5248. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5249. bnx2_disable_int(bp);
  5250. bnx2_free_irq(bp);
  5251. bnx2_setup_int_mode(bp, 1);
  5252. rc = bnx2_init_nic(bp, 0);
  5253. if (!rc)
  5254. rc = bnx2_request_irq(bp);
  5255. if (rc) {
  5256. del_timer_sync(&bp->timer);
  5257. goto open_err;
  5258. }
  5259. bnx2_enable_int(bp);
  5260. }
  5261. }
  5262. if (bp->flags & BNX2_FLAG_USING_MSI)
  5263. netdev_info(dev, "using MSI\n");
  5264. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5265. netdev_info(dev, "using MSIX\n");
  5266. netif_tx_start_all_queues(dev);
  5267. out:
  5268. return rc;
  5269. open_err:
  5270. bnx2_napi_disable(bp);
  5271. bnx2_free_skbs(bp);
  5272. bnx2_free_irq(bp);
  5273. bnx2_free_mem(bp);
  5274. bnx2_del_napi(bp);
  5275. bnx2_release_firmware(bp);
  5276. goto out;
  5277. }
  5278. static void
  5279. bnx2_reset_task(struct work_struct *work)
  5280. {
  5281. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5282. int rc;
  5283. u16 pcicmd;
  5284. rtnl_lock();
  5285. if (!netif_running(bp->dev)) {
  5286. rtnl_unlock();
  5287. return;
  5288. }
  5289. bnx2_netif_stop(bp, true);
  5290. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5291. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5292. /* in case PCI block has reset */
  5293. pci_restore_state(bp->pdev);
  5294. pci_save_state(bp->pdev);
  5295. }
  5296. rc = bnx2_init_nic(bp, 1);
  5297. if (rc) {
  5298. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5299. bnx2_napi_enable(bp);
  5300. dev_close(bp->dev);
  5301. rtnl_unlock();
  5302. return;
  5303. }
  5304. atomic_set(&bp->intr_sem, 1);
  5305. bnx2_netif_start(bp, true);
  5306. rtnl_unlock();
  5307. }
  5308. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5309. static void
  5310. bnx2_dump_ftq(struct bnx2 *bp)
  5311. {
  5312. int i;
  5313. u32 reg, bdidx, cid, valid;
  5314. struct net_device *dev = bp->dev;
  5315. static const struct ftq_reg {
  5316. char *name;
  5317. u32 off;
  5318. } ftq_arr[] = {
  5319. BNX2_FTQ_ENTRY(RV2P_P),
  5320. BNX2_FTQ_ENTRY(RV2P_T),
  5321. BNX2_FTQ_ENTRY(RV2P_M),
  5322. BNX2_FTQ_ENTRY(TBDR_),
  5323. BNX2_FTQ_ENTRY(TDMA_),
  5324. BNX2_FTQ_ENTRY(TXP_),
  5325. BNX2_FTQ_ENTRY(TXP_),
  5326. BNX2_FTQ_ENTRY(TPAT_),
  5327. BNX2_FTQ_ENTRY(RXP_C),
  5328. BNX2_FTQ_ENTRY(RXP_),
  5329. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5330. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5331. BNX2_FTQ_ENTRY(COM_COMQ_),
  5332. BNX2_FTQ_ENTRY(CP_CPQ_),
  5333. };
  5334. netdev_err(dev, "<--- start FTQ dump --->\n");
  5335. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5336. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5337. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5338. netdev_err(dev, "CPU states:\n");
  5339. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5340. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5341. reg, bnx2_reg_rd_ind(bp, reg),
  5342. bnx2_reg_rd_ind(bp, reg + 4),
  5343. bnx2_reg_rd_ind(bp, reg + 8),
  5344. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5345. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5346. bnx2_reg_rd_ind(bp, reg + 0x20));
  5347. netdev_err(dev, "<--- end FTQ dump --->\n");
  5348. netdev_err(dev, "<--- start TBDC dump --->\n");
  5349. netdev_err(dev, "TBDC free cnt: %ld\n",
  5350. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5351. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5352. for (i = 0; i < 0x20; i++) {
  5353. int j = 0;
  5354. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5355. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5356. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5357. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5358. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5359. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5360. j++;
  5361. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5362. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5363. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5364. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5365. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5366. bdidx >> 24, (valid >> 8) & 0x0ff);
  5367. }
  5368. netdev_err(dev, "<--- end TBDC dump --->\n");
  5369. }
  5370. static void
  5371. bnx2_dump_state(struct bnx2 *bp)
  5372. {
  5373. struct net_device *dev = bp->dev;
  5374. u32 val1, val2;
  5375. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5376. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5377. atomic_read(&bp->intr_sem), val1);
  5378. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5379. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5380. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5381. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5382. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5383. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5384. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5385. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5386. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5387. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5388. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5389. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5390. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5391. }
  5392. static void
  5393. bnx2_tx_timeout(struct net_device *dev)
  5394. {
  5395. struct bnx2 *bp = netdev_priv(dev);
  5396. bnx2_dump_ftq(bp);
  5397. bnx2_dump_state(bp);
  5398. bnx2_dump_mcp_state(bp);
  5399. /* This allows the netif to be shutdown gracefully before resetting */
  5400. schedule_work(&bp->reset_task);
  5401. }
  5402. /* Called with netif_tx_lock.
  5403. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5404. * netif_wake_queue().
  5405. */
  5406. static netdev_tx_t
  5407. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5408. {
  5409. struct bnx2 *bp = netdev_priv(dev);
  5410. dma_addr_t mapping;
  5411. struct bnx2_tx_bd *txbd;
  5412. struct bnx2_sw_tx_bd *tx_buf;
  5413. u32 len, vlan_tag_flags, last_frag, mss;
  5414. u16 prod, ring_prod;
  5415. int i;
  5416. struct bnx2_napi *bnapi;
  5417. struct bnx2_tx_ring_info *txr;
  5418. struct netdev_queue *txq;
  5419. /* Determine which tx ring we will be placed on */
  5420. i = skb_get_queue_mapping(skb);
  5421. bnapi = &bp->bnx2_napi[i];
  5422. txr = &bnapi->tx_ring;
  5423. txq = netdev_get_tx_queue(dev, i);
  5424. if (unlikely(bnx2_tx_avail(bp, txr) <
  5425. (skb_shinfo(skb)->nr_frags + 1))) {
  5426. netif_tx_stop_queue(txq);
  5427. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5428. return NETDEV_TX_BUSY;
  5429. }
  5430. len = skb_headlen(skb);
  5431. prod = txr->tx_prod;
  5432. ring_prod = BNX2_TX_RING_IDX(prod);
  5433. vlan_tag_flags = 0;
  5434. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5435. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5436. }
  5437. if (skb_vlan_tag_present(skb)) {
  5438. vlan_tag_flags |=
  5439. (TX_BD_FLAGS_VLAN_TAG | (skb_vlan_tag_get(skb) << 16));
  5440. }
  5441. if ((mss = skb_shinfo(skb)->gso_size)) {
  5442. u32 tcp_opt_len;
  5443. struct iphdr *iph;
  5444. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5445. tcp_opt_len = tcp_optlen(skb);
  5446. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5447. u32 tcp_off = skb_transport_offset(skb) -
  5448. sizeof(struct ipv6hdr) - ETH_HLEN;
  5449. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5450. TX_BD_FLAGS_SW_FLAGS;
  5451. if (likely(tcp_off == 0))
  5452. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5453. else {
  5454. tcp_off >>= 3;
  5455. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5456. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5457. ((tcp_off & 0x10) <<
  5458. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5459. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5460. }
  5461. } else {
  5462. iph = ip_hdr(skb);
  5463. if (tcp_opt_len || (iph->ihl > 5)) {
  5464. vlan_tag_flags |= ((iph->ihl - 5) +
  5465. (tcp_opt_len >> 2)) << 8;
  5466. }
  5467. }
  5468. } else
  5469. mss = 0;
  5470. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5471. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5472. dev_kfree_skb_any(skb);
  5473. return NETDEV_TX_OK;
  5474. }
  5475. tx_buf = &txr->tx_buf_ring[ring_prod];
  5476. tx_buf->skb = skb;
  5477. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5478. txbd = &txr->tx_desc_ring[ring_prod];
  5479. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5480. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5481. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5482. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5483. last_frag = skb_shinfo(skb)->nr_frags;
  5484. tx_buf->nr_frags = last_frag;
  5485. tx_buf->is_gso = skb_is_gso(skb);
  5486. for (i = 0; i < last_frag; i++) {
  5487. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5488. prod = BNX2_NEXT_TX_BD(prod);
  5489. ring_prod = BNX2_TX_RING_IDX(prod);
  5490. txbd = &txr->tx_desc_ring[ring_prod];
  5491. len = skb_frag_size(frag);
  5492. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5493. DMA_TO_DEVICE);
  5494. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5495. goto dma_error;
  5496. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5497. mapping);
  5498. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5499. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5500. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5501. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5502. }
  5503. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5504. /* Sync BD data before updating TX mailbox */
  5505. wmb();
  5506. netdev_tx_sent_queue(txq, skb->len);
  5507. prod = BNX2_NEXT_TX_BD(prod);
  5508. txr->tx_prod_bseq += skb->len;
  5509. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5510. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5511. mmiowb();
  5512. txr->tx_prod = prod;
  5513. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5514. netif_tx_stop_queue(txq);
  5515. /* netif_tx_stop_queue() must be done before checking
  5516. * tx index in bnx2_tx_avail() below, because in
  5517. * bnx2_tx_int(), we update tx index before checking for
  5518. * netif_tx_queue_stopped().
  5519. */
  5520. smp_mb();
  5521. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5522. netif_tx_wake_queue(txq);
  5523. }
  5524. return NETDEV_TX_OK;
  5525. dma_error:
  5526. /* save value of frag that failed */
  5527. last_frag = i;
  5528. /* start back at beginning and unmap skb */
  5529. prod = txr->tx_prod;
  5530. ring_prod = BNX2_TX_RING_IDX(prod);
  5531. tx_buf = &txr->tx_buf_ring[ring_prod];
  5532. tx_buf->skb = NULL;
  5533. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5534. skb_headlen(skb), PCI_DMA_TODEVICE);
  5535. /* unmap remaining mapped pages */
  5536. for (i = 0; i < last_frag; i++) {
  5537. prod = BNX2_NEXT_TX_BD(prod);
  5538. ring_prod = BNX2_TX_RING_IDX(prod);
  5539. tx_buf = &txr->tx_buf_ring[ring_prod];
  5540. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5541. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5542. PCI_DMA_TODEVICE);
  5543. }
  5544. dev_kfree_skb_any(skb);
  5545. return NETDEV_TX_OK;
  5546. }
  5547. /* Called with rtnl_lock */
  5548. static int
  5549. bnx2_close(struct net_device *dev)
  5550. {
  5551. struct bnx2 *bp = netdev_priv(dev);
  5552. bnx2_disable_int_sync(bp);
  5553. bnx2_napi_disable(bp);
  5554. netif_tx_disable(dev);
  5555. del_timer_sync(&bp->timer);
  5556. bnx2_shutdown_chip(bp);
  5557. bnx2_free_irq(bp);
  5558. bnx2_free_skbs(bp);
  5559. bnx2_free_mem(bp);
  5560. bnx2_del_napi(bp);
  5561. bp->link_up = 0;
  5562. netif_carrier_off(bp->dev);
  5563. return 0;
  5564. }
  5565. static void
  5566. bnx2_save_stats(struct bnx2 *bp)
  5567. {
  5568. u32 *hw_stats = (u32 *) bp->stats_blk;
  5569. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5570. int i;
  5571. /* The 1st 10 counters are 64-bit counters */
  5572. for (i = 0; i < 20; i += 2) {
  5573. u32 hi;
  5574. u64 lo;
  5575. hi = temp_stats[i] + hw_stats[i];
  5576. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5577. if (lo > 0xffffffff)
  5578. hi++;
  5579. temp_stats[i] = hi;
  5580. temp_stats[i + 1] = lo & 0xffffffff;
  5581. }
  5582. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5583. temp_stats[i] += hw_stats[i];
  5584. }
  5585. #define GET_64BIT_NET_STATS64(ctr) \
  5586. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5587. #define GET_64BIT_NET_STATS(ctr) \
  5588. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5589. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5590. #define GET_32BIT_NET_STATS(ctr) \
  5591. (unsigned long) (bp->stats_blk->ctr + \
  5592. bp->temp_stats_blk->ctr)
  5593. static struct rtnl_link_stats64 *
  5594. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5595. {
  5596. struct bnx2 *bp = netdev_priv(dev);
  5597. if (bp->stats_blk == NULL)
  5598. return net_stats;
  5599. net_stats->rx_packets =
  5600. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5601. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5602. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5603. net_stats->tx_packets =
  5604. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5605. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5606. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5607. net_stats->rx_bytes =
  5608. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5609. net_stats->tx_bytes =
  5610. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5611. net_stats->multicast =
  5612. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5613. net_stats->collisions =
  5614. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5615. net_stats->rx_length_errors =
  5616. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5617. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5618. net_stats->rx_over_errors =
  5619. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5620. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5621. net_stats->rx_frame_errors =
  5622. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5623. net_stats->rx_crc_errors =
  5624. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5625. net_stats->rx_errors = net_stats->rx_length_errors +
  5626. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5627. net_stats->rx_crc_errors;
  5628. net_stats->tx_aborted_errors =
  5629. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5630. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5631. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5632. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5633. net_stats->tx_carrier_errors = 0;
  5634. else {
  5635. net_stats->tx_carrier_errors =
  5636. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5637. }
  5638. net_stats->tx_errors =
  5639. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5640. net_stats->tx_aborted_errors +
  5641. net_stats->tx_carrier_errors;
  5642. net_stats->rx_missed_errors =
  5643. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5644. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5645. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5646. return net_stats;
  5647. }
  5648. /* All ethtool functions called with rtnl_lock */
  5649. static int
  5650. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5651. {
  5652. struct bnx2 *bp = netdev_priv(dev);
  5653. int support_serdes = 0, support_copper = 0;
  5654. cmd->supported = SUPPORTED_Autoneg;
  5655. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5656. support_serdes = 1;
  5657. support_copper = 1;
  5658. } else if (bp->phy_port == PORT_FIBRE)
  5659. support_serdes = 1;
  5660. else
  5661. support_copper = 1;
  5662. if (support_serdes) {
  5663. cmd->supported |= SUPPORTED_1000baseT_Full |
  5664. SUPPORTED_FIBRE;
  5665. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5666. cmd->supported |= SUPPORTED_2500baseX_Full;
  5667. }
  5668. if (support_copper) {
  5669. cmd->supported |= SUPPORTED_10baseT_Half |
  5670. SUPPORTED_10baseT_Full |
  5671. SUPPORTED_100baseT_Half |
  5672. SUPPORTED_100baseT_Full |
  5673. SUPPORTED_1000baseT_Full |
  5674. SUPPORTED_TP;
  5675. }
  5676. spin_lock_bh(&bp->phy_lock);
  5677. cmd->port = bp->phy_port;
  5678. cmd->advertising = bp->advertising;
  5679. if (bp->autoneg & AUTONEG_SPEED) {
  5680. cmd->autoneg = AUTONEG_ENABLE;
  5681. } else {
  5682. cmd->autoneg = AUTONEG_DISABLE;
  5683. }
  5684. if (netif_carrier_ok(dev)) {
  5685. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5686. cmd->duplex = bp->duplex;
  5687. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES)) {
  5688. if (bp->phy_flags & BNX2_PHY_FLAG_MDIX)
  5689. cmd->eth_tp_mdix = ETH_TP_MDI_X;
  5690. else
  5691. cmd->eth_tp_mdix = ETH_TP_MDI;
  5692. }
  5693. }
  5694. else {
  5695. ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
  5696. cmd->duplex = DUPLEX_UNKNOWN;
  5697. }
  5698. spin_unlock_bh(&bp->phy_lock);
  5699. cmd->transceiver = XCVR_INTERNAL;
  5700. cmd->phy_address = bp->phy_addr;
  5701. return 0;
  5702. }
  5703. static int
  5704. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5705. {
  5706. struct bnx2 *bp = netdev_priv(dev);
  5707. u8 autoneg = bp->autoneg;
  5708. u8 req_duplex = bp->req_duplex;
  5709. u16 req_line_speed = bp->req_line_speed;
  5710. u32 advertising = bp->advertising;
  5711. int err = -EINVAL;
  5712. spin_lock_bh(&bp->phy_lock);
  5713. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5714. goto err_out_unlock;
  5715. if (cmd->port != bp->phy_port &&
  5716. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5717. goto err_out_unlock;
  5718. /* If device is down, we can store the settings only if the user
  5719. * is setting the currently active port.
  5720. */
  5721. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5722. goto err_out_unlock;
  5723. if (cmd->autoneg == AUTONEG_ENABLE) {
  5724. autoneg |= AUTONEG_SPEED;
  5725. advertising = cmd->advertising;
  5726. if (cmd->port == PORT_TP) {
  5727. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5728. if (!advertising)
  5729. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5730. } else {
  5731. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5732. if (!advertising)
  5733. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5734. }
  5735. advertising |= ADVERTISED_Autoneg;
  5736. }
  5737. else {
  5738. u32 speed = ethtool_cmd_speed(cmd);
  5739. if (cmd->port == PORT_FIBRE) {
  5740. if ((speed != SPEED_1000 &&
  5741. speed != SPEED_2500) ||
  5742. (cmd->duplex != DUPLEX_FULL))
  5743. goto err_out_unlock;
  5744. if (speed == SPEED_2500 &&
  5745. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5746. goto err_out_unlock;
  5747. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5748. goto err_out_unlock;
  5749. autoneg &= ~AUTONEG_SPEED;
  5750. req_line_speed = speed;
  5751. req_duplex = cmd->duplex;
  5752. advertising = 0;
  5753. }
  5754. bp->autoneg = autoneg;
  5755. bp->advertising = advertising;
  5756. bp->req_line_speed = req_line_speed;
  5757. bp->req_duplex = req_duplex;
  5758. err = 0;
  5759. /* If device is down, the new settings will be picked up when it is
  5760. * brought up.
  5761. */
  5762. if (netif_running(dev))
  5763. err = bnx2_setup_phy(bp, cmd->port);
  5764. err_out_unlock:
  5765. spin_unlock_bh(&bp->phy_lock);
  5766. return err;
  5767. }
  5768. static void
  5769. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5770. {
  5771. struct bnx2 *bp = netdev_priv(dev);
  5772. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5773. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5774. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5775. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5776. }
  5777. #define BNX2_REGDUMP_LEN (32 * 1024)
  5778. static int
  5779. bnx2_get_regs_len(struct net_device *dev)
  5780. {
  5781. return BNX2_REGDUMP_LEN;
  5782. }
  5783. static void
  5784. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5785. {
  5786. u32 *p = _p, i, offset;
  5787. u8 *orig_p = _p;
  5788. struct bnx2 *bp = netdev_priv(dev);
  5789. static const u32 reg_boundaries[] = {
  5790. 0x0000, 0x0098, 0x0400, 0x045c,
  5791. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5792. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5793. 0x1040, 0x1048, 0x1080, 0x10a4,
  5794. 0x1400, 0x1490, 0x1498, 0x14f0,
  5795. 0x1500, 0x155c, 0x1580, 0x15dc,
  5796. 0x1600, 0x1658, 0x1680, 0x16d8,
  5797. 0x1800, 0x1820, 0x1840, 0x1854,
  5798. 0x1880, 0x1894, 0x1900, 0x1984,
  5799. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5800. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5801. 0x2000, 0x2030, 0x23c0, 0x2400,
  5802. 0x2800, 0x2820, 0x2830, 0x2850,
  5803. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5804. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5805. 0x4080, 0x4090, 0x43c0, 0x4458,
  5806. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5807. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5808. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5809. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5810. 0x6800, 0x6848, 0x684c, 0x6860,
  5811. 0x6888, 0x6910, 0x8000
  5812. };
  5813. regs->version = 0;
  5814. memset(p, 0, BNX2_REGDUMP_LEN);
  5815. if (!netif_running(bp->dev))
  5816. return;
  5817. i = 0;
  5818. offset = reg_boundaries[0];
  5819. p += offset;
  5820. while (offset < BNX2_REGDUMP_LEN) {
  5821. *p++ = BNX2_RD(bp, offset);
  5822. offset += 4;
  5823. if (offset == reg_boundaries[i + 1]) {
  5824. offset = reg_boundaries[i + 2];
  5825. p = (u32 *) (orig_p + offset);
  5826. i += 2;
  5827. }
  5828. }
  5829. }
  5830. static void
  5831. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5832. {
  5833. struct bnx2 *bp = netdev_priv(dev);
  5834. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5835. wol->supported = 0;
  5836. wol->wolopts = 0;
  5837. }
  5838. else {
  5839. wol->supported = WAKE_MAGIC;
  5840. if (bp->wol)
  5841. wol->wolopts = WAKE_MAGIC;
  5842. else
  5843. wol->wolopts = 0;
  5844. }
  5845. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5846. }
  5847. static int
  5848. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5849. {
  5850. struct bnx2 *bp = netdev_priv(dev);
  5851. if (wol->wolopts & ~WAKE_MAGIC)
  5852. return -EINVAL;
  5853. if (wol->wolopts & WAKE_MAGIC) {
  5854. if (bp->flags & BNX2_FLAG_NO_WOL)
  5855. return -EINVAL;
  5856. bp->wol = 1;
  5857. }
  5858. else {
  5859. bp->wol = 0;
  5860. }
  5861. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  5862. return 0;
  5863. }
  5864. static int
  5865. bnx2_nway_reset(struct net_device *dev)
  5866. {
  5867. struct bnx2 *bp = netdev_priv(dev);
  5868. u32 bmcr;
  5869. if (!netif_running(dev))
  5870. return -EAGAIN;
  5871. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5872. return -EINVAL;
  5873. }
  5874. spin_lock_bh(&bp->phy_lock);
  5875. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5876. int rc;
  5877. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5878. spin_unlock_bh(&bp->phy_lock);
  5879. return rc;
  5880. }
  5881. /* Force a link down visible on the other side */
  5882. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5883. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5884. spin_unlock_bh(&bp->phy_lock);
  5885. msleep(20);
  5886. spin_lock_bh(&bp->phy_lock);
  5887. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5888. bp->serdes_an_pending = 1;
  5889. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5890. }
  5891. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5892. bmcr &= ~BMCR_LOOPBACK;
  5893. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5894. spin_unlock_bh(&bp->phy_lock);
  5895. return 0;
  5896. }
  5897. static u32
  5898. bnx2_get_link(struct net_device *dev)
  5899. {
  5900. struct bnx2 *bp = netdev_priv(dev);
  5901. return bp->link_up;
  5902. }
  5903. static int
  5904. bnx2_get_eeprom_len(struct net_device *dev)
  5905. {
  5906. struct bnx2 *bp = netdev_priv(dev);
  5907. if (bp->flash_info == NULL)
  5908. return 0;
  5909. return (int) bp->flash_size;
  5910. }
  5911. static int
  5912. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5913. u8 *eebuf)
  5914. {
  5915. struct bnx2 *bp = netdev_priv(dev);
  5916. int rc;
  5917. /* parameters already validated in ethtool_get_eeprom */
  5918. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5919. return rc;
  5920. }
  5921. static int
  5922. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5923. u8 *eebuf)
  5924. {
  5925. struct bnx2 *bp = netdev_priv(dev);
  5926. int rc;
  5927. /* parameters already validated in ethtool_set_eeprom */
  5928. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5929. return rc;
  5930. }
  5931. static int
  5932. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5933. {
  5934. struct bnx2 *bp = netdev_priv(dev);
  5935. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5936. coal->rx_coalesce_usecs = bp->rx_ticks;
  5937. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5938. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5939. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5940. coal->tx_coalesce_usecs = bp->tx_ticks;
  5941. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5942. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5943. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5944. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5945. return 0;
  5946. }
  5947. static int
  5948. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5949. {
  5950. struct bnx2 *bp = netdev_priv(dev);
  5951. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5952. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5953. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5954. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5955. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5956. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5957. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5958. if (bp->rx_quick_cons_trip_int > 0xff)
  5959. bp->rx_quick_cons_trip_int = 0xff;
  5960. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5961. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5962. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5963. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5964. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5965. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5966. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5967. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5968. 0xff;
  5969. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5970. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5971. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5972. bp->stats_ticks = USEC_PER_SEC;
  5973. }
  5974. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5975. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5976. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5977. if (netif_running(bp->dev)) {
  5978. bnx2_netif_stop(bp, true);
  5979. bnx2_init_nic(bp, 0);
  5980. bnx2_netif_start(bp, true);
  5981. }
  5982. return 0;
  5983. }
  5984. static void
  5985. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5986. {
  5987. struct bnx2 *bp = netdev_priv(dev);
  5988. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5989. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5990. ering->rx_pending = bp->rx_ring_size;
  5991. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5992. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5993. ering->tx_pending = bp->tx_ring_size;
  5994. }
  5995. static int
  5996. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5997. {
  5998. if (netif_running(bp->dev)) {
  5999. /* Reset will erase chipset stats; save them */
  6000. bnx2_save_stats(bp);
  6001. bnx2_netif_stop(bp, true);
  6002. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  6003. if (reset_irq) {
  6004. bnx2_free_irq(bp);
  6005. bnx2_del_napi(bp);
  6006. } else {
  6007. __bnx2_free_irq(bp);
  6008. }
  6009. bnx2_free_skbs(bp);
  6010. bnx2_free_mem(bp);
  6011. }
  6012. bnx2_set_rx_ring_size(bp, rx);
  6013. bp->tx_ring_size = tx;
  6014. if (netif_running(bp->dev)) {
  6015. int rc = 0;
  6016. if (reset_irq) {
  6017. rc = bnx2_setup_int_mode(bp, disable_msi);
  6018. bnx2_init_napi(bp);
  6019. }
  6020. if (!rc)
  6021. rc = bnx2_alloc_mem(bp);
  6022. if (!rc)
  6023. rc = bnx2_request_irq(bp);
  6024. if (!rc)
  6025. rc = bnx2_init_nic(bp, 0);
  6026. if (rc) {
  6027. bnx2_napi_enable(bp);
  6028. dev_close(bp->dev);
  6029. return rc;
  6030. }
  6031. #ifdef BCM_CNIC
  6032. mutex_lock(&bp->cnic_lock);
  6033. /* Let cnic know about the new status block. */
  6034. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  6035. bnx2_setup_cnic_irq_info(bp);
  6036. mutex_unlock(&bp->cnic_lock);
  6037. #endif
  6038. bnx2_netif_start(bp, true);
  6039. }
  6040. return 0;
  6041. }
  6042. static int
  6043. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  6044. {
  6045. struct bnx2 *bp = netdev_priv(dev);
  6046. int rc;
  6047. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  6048. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  6049. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  6050. return -EINVAL;
  6051. }
  6052. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6053. false);
  6054. return rc;
  6055. }
  6056. static void
  6057. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6058. {
  6059. struct bnx2 *bp = netdev_priv(dev);
  6060. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6061. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6062. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6063. }
  6064. static int
  6065. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6066. {
  6067. struct bnx2 *bp = netdev_priv(dev);
  6068. bp->req_flow_ctrl = 0;
  6069. if (epause->rx_pause)
  6070. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6071. if (epause->tx_pause)
  6072. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6073. if (epause->autoneg) {
  6074. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6075. }
  6076. else {
  6077. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6078. }
  6079. if (netif_running(dev)) {
  6080. spin_lock_bh(&bp->phy_lock);
  6081. bnx2_setup_phy(bp, bp->phy_port);
  6082. spin_unlock_bh(&bp->phy_lock);
  6083. }
  6084. return 0;
  6085. }
  6086. static struct {
  6087. char string[ETH_GSTRING_LEN];
  6088. } bnx2_stats_str_arr[] = {
  6089. { "rx_bytes" },
  6090. { "rx_error_bytes" },
  6091. { "tx_bytes" },
  6092. { "tx_error_bytes" },
  6093. { "rx_ucast_packets" },
  6094. { "rx_mcast_packets" },
  6095. { "rx_bcast_packets" },
  6096. { "tx_ucast_packets" },
  6097. { "tx_mcast_packets" },
  6098. { "tx_bcast_packets" },
  6099. { "tx_mac_errors" },
  6100. { "tx_carrier_errors" },
  6101. { "rx_crc_errors" },
  6102. { "rx_align_errors" },
  6103. { "tx_single_collisions" },
  6104. { "tx_multi_collisions" },
  6105. { "tx_deferred" },
  6106. { "tx_excess_collisions" },
  6107. { "tx_late_collisions" },
  6108. { "tx_total_collisions" },
  6109. { "rx_fragments" },
  6110. { "rx_jabbers" },
  6111. { "rx_undersize_packets" },
  6112. { "rx_oversize_packets" },
  6113. { "rx_64_byte_packets" },
  6114. { "rx_65_to_127_byte_packets" },
  6115. { "rx_128_to_255_byte_packets" },
  6116. { "rx_256_to_511_byte_packets" },
  6117. { "rx_512_to_1023_byte_packets" },
  6118. { "rx_1024_to_1522_byte_packets" },
  6119. { "rx_1523_to_9022_byte_packets" },
  6120. { "tx_64_byte_packets" },
  6121. { "tx_65_to_127_byte_packets" },
  6122. { "tx_128_to_255_byte_packets" },
  6123. { "tx_256_to_511_byte_packets" },
  6124. { "tx_512_to_1023_byte_packets" },
  6125. { "tx_1024_to_1522_byte_packets" },
  6126. { "tx_1523_to_9022_byte_packets" },
  6127. { "rx_xon_frames" },
  6128. { "rx_xoff_frames" },
  6129. { "tx_xon_frames" },
  6130. { "tx_xoff_frames" },
  6131. { "rx_mac_ctrl_frames" },
  6132. { "rx_filtered_packets" },
  6133. { "rx_ftq_discards" },
  6134. { "rx_discards" },
  6135. { "rx_fw_discards" },
  6136. };
  6137. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6138. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6139. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6140. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6141. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6142. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6143. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6144. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6145. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6146. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6147. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6148. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6149. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6150. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6151. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6152. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6153. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6154. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6155. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6156. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6157. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6158. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6159. STATS_OFFSET32(stat_EtherStatsCollisions),
  6160. STATS_OFFSET32(stat_EtherStatsFragments),
  6161. STATS_OFFSET32(stat_EtherStatsJabbers),
  6162. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6163. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6164. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6165. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6166. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6167. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6168. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6169. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6170. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6171. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6172. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6173. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6174. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6175. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6176. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6177. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6178. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6179. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6180. STATS_OFFSET32(stat_OutXonSent),
  6181. STATS_OFFSET32(stat_OutXoffSent),
  6182. STATS_OFFSET32(stat_MacControlFramesReceived),
  6183. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6184. STATS_OFFSET32(stat_IfInFTQDiscards),
  6185. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6186. STATS_OFFSET32(stat_FwRxDrop),
  6187. };
  6188. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6189. * skipped because of errata.
  6190. */
  6191. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6192. 8,0,8,8,8,8,8,8,8,8,
  6193. 4,0,4,4,4,4,4,4,4,4,
  6194. 4,4,4,4,4,4,4,4,4,4,
  6195. 4,4,4,4,4,4,4,4,4,4,
  6196. 4,4,4,4,4,4,4,
  6197. };
  6198. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6199. 8,0,8,8,8,8,8,8,8,8,
  6200. 4,4,4,4,4,4,4,4,4,4,
  6201. 4,4,4,4,4,4,4,4,4,4,
  6202. 4,4,4,4,4,4,4,4,4,4,
  6203. 4,4,4,4,4,4,4,
  6204. };
  6205. #define BNX2_NUM_TESTS 6
  6206. static struct {
  6207. char string[ETH_GSTRING_LEN];
  6208. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6209. { "register_test (offline)" },
  6210. { "memory_test (offline)" },
  6211. { "loopback_test (offline)" },
  6212. { "nvram_test (online)" },
  6213. { "interrupt_test (online)" },
  6214. { "link_test (online)" },
  6215. };
  6216. static int
  6217. bnx2_get_sset_count(struct net_device *dev, int sset)
  6218. {
  6219. switch (sset) {
  6220. case ETH_SS_TEST:
  6221. return BNX2_NUM_TESTS;
  6222. case ETH_SS_STATS:
  6223. return BNX2_NUM_STATS;
  6224. default:
  6225. return -EOPNOTSUPP;
  6226. }
  6227. }
  6228. static void
  6229. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6230. {
  6231. struct bnx2 *bp = netdev_priv(dev);
  6232. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6233. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6234. int i;
  6235. bnx2_netif_stop(bp, true);
  6236. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6237. bnx2_free_skbs(bp);
  6238. if (bnx2_test_registers(bp) != 0) {
  6239. buf[0] = 1;
  6240. etest->flags |= ETH_TEST_FL_FAILED;
  6241. }
  6242. if (bnx2_test_memory(bp) != 0) {
  6243. buf[1] = 1;
  6244. etest->flags |= ETH_TEST_FL_FAILED;
  6245. }
  6246. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6247. etest->flags |= ETH_TEST_FL_FAILED;
  6248. if (!netif_running(bp->dev))
  6249. bnx2_shutdown_chip(bp);
  6250. else {
  6251. bnx2_init_nic(bp, 1);
  6252. bnx2_netif_start(bp, true);
  6253. }
  6254. /* wait for link up */
  6255. for (i = 0; i < 7; i++) {
  6256. if (bp->link_up)
  6257. break;
  6258. msleep_interruptible(1000);
  6259. }
  6260. }
  6261. if (bnx2_test_nvram(bp) != 0) {
  6262. buf[3] = 1;
  6263. etest->flags |= ETH_TEST_FL_FAILED;
  6264. }
  6265. if (bnx2_test_intr(bp) != 0) {
  6266. buf[4] = 1;
  6267. etest->flags |= ETH_TEST_FL_FAILED;
  6268. }
  6269. if (bnx2_test_link(bp) != 0) {
  6270. buf[5] = 1;
  6271. etest->flags |= ETH_TEST_FL_FAILED;
  6272. }
  6273. }
  6274. static void
  6275. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6276. {
  6277. switch (stringset) {
  6278. case ETH_SS_STATS:
  6279. memcpy(buf, bnx2_stats_str_arr,
  6280. sizeof(bnx2_stats_str_arr));
  6281. break;
  6282. case ETH_SS_TEST:
  6283. memcpy(buf, bnx2_tests_str_arr,
  6284. sizeof(bnx2_tests_str_arr));
  6285. break;
  6286. }
  6287. }
  6288. static void
  6289. bnx2_get_ethtool_stats(struct net_device *dev,
  6290. struct ethtool_stats *stats, u64 *buf)
  6291. {
  6292. struct bnx2 *bp = netdev_priv(dev);
  6293. int i;
  6294. u32 *hw_stats = (u32 *) bp->stats_blk;
  6295. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6296. u8 *stats_len_arr = NULL;
  6297. if (hw_stats == NULL) {
  6298. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6299. return;
  6300. }
  6301. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6302. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6303. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6304. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6305. stats_len_arr = bnx2_5706_stats_len_arr;
  6306. else
  6307. stats_len_arr = bnx2_5708_stats_len_arr;
  6308. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6309. unsigned long offset;
  6310. if (stats_len_arr[i] == 0) {
  6311. /* skip this counter */
  6312. buf[i] = 0;
  6313. continue;
  6314. }
  6315. offset = bnx2_stats_offset_arr[i];
  6316. if (stats_len_arr[i] == 4) {
  6317. /* 4-byte counter */
  6318. buf[i] = (u64) *(hw_stats + offset) +
  6319. *(temp_stats + offset);
  6320. continue;
  6321. }
  6322. /* 8-byte counter */
  6323. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6324. *(hw_stats + offset + 1) +
  6325. (((u64) *(temp_stats + offset)) << 32) +
  6326. *(temp_stats + offset + 1);
  6327. }
  6328. }
  6329. static int
  6330. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6331. {
  6332. struct bnx2 *bp = netdev_priv(dev);
  6333. switch (state) {
  6334. case ETHTOOL_ID_ACTIVE:
  6335. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6336. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6337. return 1; /* cycle on/off once per second */
  6338. case ETHTOOL_ID_ON:
  6339. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6340. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6341. BNX2_EMAC_LED_100MB_OVERRIDE |
  6342. BNX2_EMAC_LED_10MB_OVERRIDE |
  6343. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6344. BNX2_EMAC_LED_TRAFFIC);
  6345. break;
  6346. case ETHTOOL_ID_OFF:
  6347. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6348. break;
  6349. case ETHTOOL_ID_INACTIVE:
  6350. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6351. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6352. break;
  6353. }
  6354. return 0;
  6355. }
  6356. static int
  6357. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6358. {
  6359. struct bnx2 *bp = netdev_priv(dev);
  6360. /* TSO with VLAN tag won't work with current firmware */
  6361. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  6362. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6363. else
  6364. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6365. if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
  6366. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6367. netif_running(dev)) {
  6368. bnx2_netif_stop(bp, false);
  6369. dev->features = features;
  6370. bnx2_set_rx_mode(dev);
  6371. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6372. bnx2_netif_start(bp, false);
  6373. return 1;
  6374. }
  6375. return 0;
  6376. }
  6377. static void bnx2_get_channels(struct net_device *dev,
  6378. struct ethtool_channels *channels)
  6379. {
  6380. struct bnx2 *bp = netdev_priv(dev);
  6381. u32 max_rx_rings = 1;
  6382. u32 max_tx_rings = 1;
  6383. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6384. max_rx_rings = RX_MAX_RINGS;
  6385. max_tx_rings = TX_MAX_RINGS;
  6386. }
  6387. channels->max_rx = max_rx_rings;
  6388. channels->max_tx = max_tx_rings;
  6389. channels->max_other = 0;
  6390. channels->max_combined = 0;
  6391. channels->rx_count = bp->num_rx_rings;
  6392. channels->tx_count = bp->num_tx_rings;
  6393. channels->other_count = 0;
  6394. channels->combined_count = 0;
  6395. }
  6396. static int bnx2_set_channels(struct net_device *dev,
  6397. struct ethtool_channels *channels)
  6398. {
  6399. struct bnx2 *bp = netdev_priv(dev);
  6400. u32 max_rx_rings = 1;
  6401. u32 max_tx_rings = 1;
  6402. int rc = 0;
  6403. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6404. max_rx_rings = RX_MAX_RINGS;
  6405. max_tx_rings = TX_MAX_RINGS;
  6406. }
  6407. if (channels->rx_count > max_rx_rings ||
  6408. channels->tx_count > max_tx_rings)
  6409. return -EINVAL;
  6410. bp->num_req_rx_rings = channels->rx_count;
  6411. bp->num_req_tx_rings = channels->tx_count;
  6412. if (netif_running(dev))
  6413. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6414. bp->tx_ring_size, true);
  6415. return rc;
  6416. }
  6417. static const struct ethtool_ops bnx2_ethtool_ops = {
  6418. .get_settings = bnx2_get_settings,
  6419. .set_settings = bnx2_set_settings,
  6420. .get_drvinfo = bnx2_get_drvinfo,
  6421. .get_regs_len = bnx2_get_regs_len,
  6422. .get_regs = bnx2_get_regs,
  6423. .get_wol = bnx2_get_wol,
  6424. .set_wol = bnx2_set_wol,
  6425. .nway_reset = bnx2_nway_reset,
  6426. .get_link = bnx2_get_link,
  6427. .get_eeprom_len = bnx2_get_eeprom_len,
  6428. .get_eeprom = bnx2_get_eeprom,
  6429. .set_eeprom = bnx2_set_eeprom,
  6430. .get_coalesce = bnx2_get_coalesce,
  6431. .set_coalesce = bnx2_set_coalesce,
  6432. .get_ringparam = bnx2_get_ringparam,
  6433. .set_ringparam = bnx2_set_ringparam,
  6434. .get_pauseparam = bnx2_get_pauseparam,
  6435. .set_pauseparam = bnx2_set_pauseparam,
  6436. .self_test = bnx2_self_test,
  6437. .get_strings = bnx2_get_strings,
  6438. .set_phys_id = bnx2_set_phys_id,
  6439. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6440. .get_sset_count = bnx2_get_sset_count,
  6441. .get_channels = bnx2_get_channels,
  6442. .set_channels = bnx2_set_channels,
  6443. };
  6444. /* Called with rtnl_lock */
  6445. static int
  6446. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6447. {
  6448. struct mii_ioctl_data *data = if_mii(ifr);
  6449. struct bnx2 *bp = netdev_priv(dev);
  6450. int err;
  6451. switch(cmd) {
  6452. case SIOCGMIIPHY:
  6453. data->phy_id = bp->phy_addr;
  6454. /* fallthru */
  6455. case SIOCGMIIREG: {
  6456. u32 mii_regval;
  6457. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6458. return -EOPNOTSUPP;
  6459. if (!netif_running(dev))
  6460. return -EAGAIN;
  6461. spin_lock_bh(&bp->phy_lock);
  6462. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6463. spin_unlock_bh(&bp->phy_lock);
  6464. data->val_out = mii_regval;
  6465. return err;
  6466. }
  6467. case SIOCSMIIREG:
  6468. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6469. return -EOPNOTSUPP;
  6470. if (!netif_running(dev))
  6471. return -EAGAIN;
  6472. spin_lock_bh(&bp->phy_lock);
  6473. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6474. spin_unlock_bh(&bp->phy_lock);
  6475. return err;
  6476. default:
  6477. /* do nothing */
  6478. break;
  6479. }
  6480. return -EOPNOTSUPP;
  6481. }
  6482. /* Called with rtnl_lock */
  6483. static int
  6484. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6485. {
  6486. struct sockaddr *addr = p;
  6487. struct bnx2 *bp = netdev_priv(dev);
  6488. if (!is_valid_ether_addr(addr->sa_data))
  6489. return -EADDRNOTAVAIL;
  6490. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6491. if (netif_running(dev))
  6492. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6493. return 0;
  6494. }
  6495. /* Called with rtnl_lock */
  6496. static int
  6497. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6498. {
  6499. struct bnx2 *bp = netdev_priv(dev);
  6500. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6501. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6502. return -EINVAL;
  6503. dev->mtu = new_mtu;
  6504. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6505. false);
  6506. }
  6507. #ifdef CONFIG_NET_POLL_CONTROLLER
  6508. static void
  6509. poll_bnx2(struct net_device *dev)
  6510. {
  6511. struct bnx2 *bp = netdev_priv(dev);
  6512. int i;
  6513. for (i = 0; i < bp->irq_nvecs; i++) {
  6514. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6515. disable_irq(irq->vector);
  6516. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6517. enable_irq(irq->vector);
  6518. }
  6519. }
  6520. #endif
  6521. static void
  6522. bnx2_get_5709_media(struct bnx2 *bp)
  6523. {
  6524. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6525. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6526. u32 strap;
  6527. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6528. return;
  6529. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6530. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6531. return;
  6532. }
  6533. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6534. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6535. else
  6536. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6537. if (bp->func == 0) {
  6538. switch (strap) {
  6539. case 0x4:
  6540. case 0x5:
  6541. case 0x6:
  6542. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6543. return;
  6544. }
  6545. } else {
  6546. switch (strap) {
  6547. case 0x1:
  6548. case 0x2:
  6549. case 0x4:
  6550. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6551. return;
  6552. }
  6553. }
  6554. }
  6555. static void
  6556. bnx2_get_pci_speed(struct bnx2 *bp)
  6557. {
  6558. u32 reg;
  6559. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6560. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6561. u32 clkreg;
  6562. bp->flags |= BNX2_FLAG_PCIX;
  6563. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6564. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6565. switch (clkreg) {
  6566. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6567. bp->bus_speed_mhz = 133;
  6568. break;
  6569. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6570. bp->bus_speed_mhz = 100;
  6571. break;
  6572. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6573. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6574. bp->bus_speed_mhz = 66;
  6575. break;
  6576. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6577. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6578. bp->bus_speed_mhz = 50;
  6579. break;
  6580. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6581. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6582. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6583. bp->bus_speed_mhz = 33;
  6584. break;
  6585. }
  6586. }
  6587. else {
  6588. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6589. bp->bus_speed_mhz = 66;
  6590. else
  6591. bp->bus_speed_mhz = 33;
  6592. }
  6593. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6594. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6595. }
  6596. static void
  6597. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6598. {
  6599. int rc, i, j;
  6600. u8 *data;
  6601. unsigned int block_end, rosize, len;
  6602. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6603. #define BNX2_VPD_LEN 128
  6604. #define BNX2_MAX_VER_SLEN 30
  6605. data = kmalloc(256, GFP_KERNEL);
  6606. if (!data)
  6607. return;
  6608. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6609. BNX2_VPD_LEN);
  6610. if (rc)
  6611. goto vpd_done;
  6612. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6613. data[i] = data[i + BNX2_VPD_LEN + 3];
  6614. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6615. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6616. data[i + 3] = data[i + BNX2_VPD_LEN];
  6617. }
  6618. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6619. if (i < 0)
  6620. goto vpd_done;
  6621. rosize = pci_vpd_lrdt_size(&data[i]);
  6622. i += PCI_VPD_LRDT_TAG_SIZE;
  6623. block_end = i + rosize;
  6624. if (block_end > BNX2_VPD_LEN)
  6625. goto vpd_done;
  6626. j = pci_vpd_find_info_keyword(data, i, rosize,
  6627. PCI_VPD_RO_KEYWORD_MFR_ID);
  6628. if (j < 0)
  6629. goto vpd_done;
  6630. len = pci_vpd_info_field_size(&data[j]);
  6631. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6632. if (j + len > block_end || len != 4 ||
  6633. memcmp(&data[j], "1028", 4))
  6634. goto vpd_done;
  6635. j = pci_vpd_find_info_keyword(data, i, rosize,
  6636. PCI_VPD_RO_KEYWORD_VENDOR0);
  6637. if (j < 0)
  6638. goto vpd_done;
  6639. len = pci_vpd_info_field_size(&data[j]);
  6640. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6641. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6642. goto vpd_done;
  6643. memcpy(bp->fw_version, &data[j], len);
  6644. bp->fw_version[len] = ' ';
  6645. vpd_done:
  6646. kfree(data);
  6647. }
  6648. static int
  6649. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6650. {
  6651. struct bnx2 *bp;
  6652. int rc, i, j;
  6653. u32 reg;
  6654. u64 dma_mask, persist_dma_mask;
  6655. int err;
  6656. SET_NETDEV_DEV(dev, &pdev->dev);
  6657. bp = netdev_priv(dev);
  6658. bp->flags = 0;
  6659. bp->phy_flags = 0;
  6660. bp->temp_stats_blk =
  6661. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6662. if (bp->temp_stats_blk == NULL) {
  6663. rc = -ENOMEM;
  6664. goto err_out;
  6665. }
  6666. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6667. rc = pci_enable_device(pdev);
  6668. if (rc) {
  6669. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6670. goto err_out;
  6671. }
  6672. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6673. dev_err(&pdev->dev,
  6674. "Cannot find PCI device base address, aborting\n");
  6675. rc = -ENODEV;
  6676. goto err_out_disable;
  6677. }
  6678. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6679. if (rc) {
  6680. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6681. goto err_out_disable;
  6682. }
  6683. pci_set_master(pdev);
  6684. bp->pm_cap = pdev->pm_cap;
  6685. if (bp->pm_cap == 0) {
  6686. dev_err(&pdev->dev,
  6687. "Cannot find power management capability, aborting\n");
  6688. rc = -EIO;
  6689. goto err_out_release;
  6690. }
  6691. bp->dev = dev;
  6692. bp->pdev = pdev;
  6693. spin_lock_init(&bp->phy_lock);
  6694. spin_lock_init(&bp->indirect_lock);
  6695. #ifdef BCM_CNIC
  6696. mutex_init(&bp->cnic_lock);
  6697. #endif
  6698. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6699. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6700. TX_MAX_TSS_RINGS + 1));
  6701. if (!bp->regview) {
  6702. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6703. rc = -ENOMEM;
  6704. goto err_out_release;
  6705. }
  6706. /* Configure byte swap and enable write to the reg_window registers.
  6707. * Rely on CPU to do target byte swapping on big endian systems
  6708. * The chip's target access swapping will not swap all accesses
  6709. */
  6710. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6711. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6712. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6713. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6714. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6715. if (!pci_is_pcie(pdev)) {
  6716. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6717. rc = -EIO;
  6718. goto err_out_unmap;
  6719. }
  6720. bp->flags |= BNX2_FLAG_PCIE;
  6721. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6722. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6723. /* AER (Advanced Error Reporting) hooks */
  6724. err = pci_enable_pcie_error_reporting(pdev);
  6725. if (!err)
  6726. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6727. } else {
  6728. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6729. if (bp->pcix_cap == 0) {
  6730. dev_err(&pdev->dev,
  6731. "Cannot find PCIX capability, aborting\n");
  6732. rc = -EIO;
  6733. goto err_out_unmap;
  6734. }
  6735. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6736. }
  6737. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6738. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6739. if (pdev->msix_cap)
  6740. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6741. }
  6742. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6743. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6744. if (pdev->msi_cap)
  6745. bp->flags |= BNX2_FLAG_MSI_CAP;
  6746. }
  6747. /* 5708 cannot support DMA addresses > 40-bit. */
  6748. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6749. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6750. else
  6751. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6752. /* Configure DMA attributes. */
  6753. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6754. dev->features |= NETIF_F_HIGHDMA;
  6755. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6756. if (rc) {
  6757. dev_err(&pdev->dev,
  6758. "pci_set_consistent_dma_mask failed, aborting\n");
  6759. goto err_out_unmap;
  6760. }
  6761. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6762. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6763. goto err_out_unmap;
  6764. }
  6765. if (!(bp->flags & BNX2_FLAG_PCIE))
  6766. bnx2_get_pci_speed(bp);
  6767. /* 5706A0 may falsely detect SERR and PERR. */
  6768. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6769. reg = BNX2_RD(bp, PCI_COMMAND);
  6770. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6771. BNX2_WR(bp, PCI_COMMAND, reg);
  6772. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6773. !(bp->flags & BNX2_FLAG_PCIX)) {
  6774. dev_err(&pdev->dev,
  6775. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6776. goto err_out_unmap;
  6777. }
  6778. bnx2_init_nvram(bp);
  6779. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6780. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6781. bp->func = 1;
  6782. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6783. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6784. u32 off = bp->func << 2;
  6785. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6786. } else
  6787. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6788. /* Get the permanent MAC address. First we need to make sure the
  6789. * firmware is actually running.
  6790. */
  6791. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6792. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6793. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6794. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6795. rc = -ENODEV;
  6796. goto err_out_unmap;
  6797. }
  6798. bnx2_read_vpd_fw_ver(bp);
  6799. j = strlen(bp->fw_version);
  6800. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6801. for (i = 0; i < 3 && j < 24; i++) {
  6802. u8 num, k, skip0;
  6803. if (i == 0) {
  6804. bp->fw_version[j++] = 'b';
  6805. bp->fw_version[j++] = 'c';
  6806. bp->fw_version[j++] = ' ';
  6807. }
  6808. num = (u8) (reg >> (24 - (i * 8)));
  6809. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6810. if (num >= k || !skip0 || k == 1) {
  6811. bp->fw_version[j++] = (num / k) + '0';
  6812. skip0 = 0;
  6813. }
  6814. }
  6815. if (i != 2)
  6816. bp->fw_version[j++] = '.';
  6817. }
  6818. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6819. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6820. bp->wol = 1;
  6821. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6822. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6823. for (i = 0; i < 30; i++) {
  6824. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6825. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6826. break;
  6827. msleep(10);
  6828. }
  6829. }
  6830. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6831. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6832. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6833. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6834. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6835. if (j < 32)
  6836. bp->fw_version[j++] = ' ';
  6837. for (i = 0; i < 3 && j < 28; i++) {
  6838. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6839. reg = be32_to_cpu(reg);
  6840. memcpy(&bp->fw_version[j], &reg, 4);
  6841. j += 4;
  6842. }
  6843. }
  6844. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6845. bp->mac_addr[0] = (u8) (reg >> 8);
  6846. bp->mac_addr[1] = (u8) reg;
  6847. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6848. bp->mac_addr[2] = (u8) (reg >> 24);
  6849. bp->mac_addr[3] = (u8) (reg >> 16);
  6850. bp->mac_addr[4] = (u8) (reg >> 8);
  6851. bp->mac_addr[5] = (u8) reg;
  6852. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6853. bnx2_set_rx_ring_size(bp, 255);
  6854. bp->tx_quick_cons_trip_int = 2;
  6855. bp->tx_quick_cons_trip = 20;
  6856. bp->tx_ticks_int = 18;
  6857. bp->tx_ticks = 80;
  6858. bp->rx_quick_cons_trip_int = 2;
  6859. bp->rx_quick_cons_trip = 12;
  6860. bp->rx_ticks_int = 18;
  6861. bp->rx_ticks = 18;
  6862. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6863. bp->current_interval = BNX2_TIMER_INTERVAL;
  6864. bp->phy_addr = 1;
  6865. /* allocate stats_blk */
  6866. rc = bnx2_alloc_stats_blk(dev);
  6867. if (rc)
  6868. goto err_out_unmap;
  6869. /* Disable WOL support if we are running on a SERDES chip. */
  6870. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6871. bnx2_get_5709_media(bp);
  6872. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6873. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6874. bp->phy_port = PORT_TP;
  6875. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6876. bp->phy_port = PORT_FIBRE;
  6877. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6878. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6879. bp->flags |= BNX2_FLAG_NO_WOL;
  6880. bp->wol = 0;
  6881. }
  6882. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6883. /* Don't do parallel detect on this board because of
  6884. * some board problems. The link will not go down
  6885. * if we do parallel detect.
  6886. */
  6887. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6888. pdev->subsystem_device == 0x310c)
  6889. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6890. } else {
  6891. bp->phy_addr = 2;
  6892. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6893. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6894. }
  6895. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6896. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6897. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6898. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6899. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6900. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6901. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6902. bnx2_init_fw_cap(bp);
  6903. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6904. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6905. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6906. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6907. bp->flags |= BNX2_FLAG_NO_WOL;
  6908. bp->wol = 0;
  6909. }
  6910. if (bp->flags & BNX2_FLAG_NO_WOL)
  6911. device_set_wakeup_capable(&bp->pdev->dev, false);
  6912. else
  6913. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  6914. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6915. bp->tx_quick_cons_trip_int =
  6916. bp->tx_quick_cons_trip;
  6917. bp->tx_ticks_int = bp->tx_ticks;
  6918. bp->rx_quick_cons_trip_int =
  6919. bp->rx_quick_cons_trip;
  6920. bp->rx_ticks_int = bp->rx_ticks;
  6921. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6922. bp->com_ticks_int = bp->com_ticks;
  6923. bp->cmd_ticks_int = bp->cmd_ticks;
  6924. }
  6925. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6926. *
  6927. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6928. * with byte enables disabled on the unused 32-bit word. This is legal
  6929. * but causes problems on the AMD 8132 which will eventually stop
  6930. * responding after a while.
  6931. *
  6932. * AMD believes this incompatibility is unique to the 5706, and
  6933. * prefers to locally disable MSI rather than globally disabling it.
  6934. */
  6935. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6936. struct pci_dev *amd_8132 = NULL;
  6937. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6938. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6939. amd_8132))) {
  6940. if (amd_8132->revision >= 0x10 &&
  6941. amd_8132->revision <= 0x13) {
  6942. disable_msi = 1;
  6943. pci_dev_put(amd_8132);
  6944. break;
  6945. }
  6946. }
  6947. }
  6948. bnx2_set_default_link(bp);
  6949. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6950. init_timer(&bp->timer);
  6951. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6952. bp->timer.data = (unsigned long) bp;
  6953. bp->timer.function = bnx2_timer;
  6954. #ifdef BCM_CNIC
  6955. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6956. bp->cnic_eth_dev.max_iscsi_conn =
  6957. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6958. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6959. bp->cnic_probe = bnx2_cnic_probe;
  6960. #endif
  6961. pci_save_state(pdev);
  6962. return 0;
  6963. err_out_unmap:
  6964. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6965. pci_disable_pcie_error_reporting(pdev);
  6966. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6967. }
  6968. pci_iounmap(pdev, bp->regview);
  6969. bp->regview = NULL;
  6970. err_out_release:
  6971. pci_release_regions(pdev);
  6972. err_out_disable:
  6973. pci_disable_device(pdev);
  6974. err_out:
  6975. kfree(bp->temp_stats_blk);
  6976. return rc;
  6977. }
  6978. static char *
  6979. bnx2_bus_string(struct bnx2 *bp, char *str)
  6980. {
  6981. char *s = str;
  6982. if (bp->flags & BNX2_FLAG_PCIE) {
  6983. s += sprintf(s, "PCI Express");
  6984. } else {
  6985. s += sprintf(s, "PCI");
  6986. if (bp->flags & BNX2_FLAG_PCIX)
  6987. s += sprintf(s, "-X");
  6988. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6989. s += sprintf(s, " 32-bit");
  6990. else
  6991. s += sprintf(s, " 64-bit");
  6992. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6993. }
  6994. return str;
  6995. }
  6996. static void
  6997. bnx2_del_napi(struct bnx2 *bp)
  6998. {
  6999. int i;
  7000. for (i = 0; i < bp->irq_nvecs; i++)
  7001. netif_napi_del(&bp->bnx2_napi[i].napi);
  7002. }
  7003. static void
  7004. bnx2_init_napi(struct bnx2 *bp)
  7005. {
  7006. int i;
  7007. for (i = 0; i < bp->irq_nvecs; i++) {
  7008. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  7009. int (*poll)(struct napi_struct *, int);
  7010. if (i == 0)
  7011. poll = bnx2_poll;
  7012. else
  7013. poll = bnx2_poll_msix;
  7014. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  7015. bnapi->bp = bp;
  7016. }
  7017. }
  7018. static const struct net_device_ops bnx2_netdev_ops = {
  7019. .ndo_open = bnx2_open,
  7020. .ndo_start_xmit = bnx2_start_xmit,
  7021. .ndo_stop = bnx2_close,
  7022. .ndo_get_stats64 = bnx2_get_stats64,
  7023. .ndo_set_rx_mode = bnx2_set_rx_mode,
  7024. .ndo_do_ioctl = bnx2_ioctl,
  7025. .ndo_validate_addr = eth_validate_addr,
  7026. .ndo_set_mac_address = bnx2_change_mac_addr,
  7027. .ndo_change_mtu = bnx2_change_mtu,
  7028. .ndo_set_features = bnx2_set_features,
  7029. .ndo_tx_timeout = bnx2_tx_timeout,
  7030. #ifdef CONFIG_NET_POLL_CONTROLLER
  7031. .ndo_poll_controller = poll_bnx2,
  7032. #endif
  7033. };
  7034. static int
  7035. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7036. {
  7037. static int version_printed = 0;
  7038. struct net_device *dev;
  7039. struct bnx2 *bp;
  7040. int rc;
  7041. char str[40];
  7042. if (version_printed++ == 0)
  7043. pr_info("%s", version);
  7044. /* dev zeroed in init_etherdev */
  7045. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7046. if (!dev)
  7047. return -ENOMEM;
  7048. rc = bnx2_init_board(pdev, dev);
  7049. if (rc < 0)
  7050. goto err_free;
  7051. dev->netdev_ops = &bnx2_netdev_ops;
  7052. dev->watchdog_timeo = TX_TIMEOUT;
  7053. dev->ethtool_ops = &bnx2_ethtool_ops;
  7054. bp = netdev_priv(dev);
  7055. pci_set_drvdata(pdev, dev);
  7056. /*
  7057. * In-flight DMA from 1st kernel could continue going in kdump kernel.
  7058. * New io-page table has been created before bnx2 does reset at open stage.
  7059. * We have to wait for the in-flight DMA to complete to avoid it look up
  7060. * into the newly created io-page table.
  7061. */
  7062. if (is_kdump_kernel())
  7063. bnx2_wait_dma_complete(bp);
  7064. memcpy(dev->dev_addr, bp->mac_addr, ETH_ALEN);
  7065. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7066. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7067. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7068. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7069. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7070. dev->vlan_features = dev->hw_features;
  7071. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  7072. dev->features |= dev->hw_features;
  7073. dev->priv_flags |= IFF_UNICAST_FLT;
  7074. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  7075. dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
  7076. if ((rc = register_netdev(dev))) {
  7077. dev_err(&pdev->dev, "Cannot register net device\n");
  7078. goto error;
  7079. }
  7080. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7081. "node addr %pM\n", board_info[ent->driver_data].name,
  7082. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7083. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7084. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7085. pdev->irq, dev->dev_addr);
  7086. return 0;
  7087. error:
  7088. pci_iounmap(pdev, bp->regview);
  7089. pci_release_regions(pdev);
  7090. pci_disable_device(pdev);
  7091. err_free:
  7092. bnx2_free_stats_blk(dev);
  7093. free_netdev(dev);
  7094. return rc;
  7095. }
  7096. static void
  7097. bnx2_remove_one(struct pci_dev *pdev)
  7098. {
  7099. struct net_device *dev = pci_get_drvdata(pdev);
  7100. struct bnx2 *bp = netdev_priv(dev);
  7101. unregister_netdev(dev);
  7102. del_timer_sync(&bp->timer);
  7103. cancel_work_sync(&bp->reset_task);
  7104. pci_iounmap(bp->pdev, bp->regview);
  7105. bnx2_free_stats_blk(dev);
  7106. kfree(bp->temp_stats_blk);
  7107. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7108. pci_disable_pcie_error_reporting(pdev);
  7109. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7110. }
  7111. bnx2_release_firmware(bp);
  7112. free_netdev(dev);
  7113. pci_release_regions(pdev);
  7114. pci_disable_device(pdev);
  7115. }
  7116. #ifdef CONFIG_PM_SLEEP
  7117. static int
  7118. bnx2_suspend(struct device *device)
  7119. {
  7120. struct pci_dev *pdev = to_pci_dev(device);
  7121. struct net_device *dev = pci_get_drvdata(pdev);
  7122. struct bnx2 *bp = netdev_priv(dev);
  7123. if (netif_running(dev)) {
  7124. cancel_work_sync(&bp->reset_task);
  7125. bnx2_netif_stop(bp, true);
  7126. netif_device_detach(dev);
  7127. del_timer_sync(&bp->timer);
  7128. bnx2_shutdown_chip(bp);
  7129. __bnx2_free_irq(bp);
  7130. bnx2_free_skbs(bp);
  7131. }
  7132. bnx2_setup_wol(bp);
  7133. return 0;
  7134. }
  7135. static int
  7136. bnx2_resume(struct device *device)
  7137. {
  7138. struct pci_dev *pdev = to_pci_dev(device);
  7139. struct net_device *dev = pci_get_drvdata(pdev);
  7140. struct bnx2 *bp = netdev_priv(dev);
  7141. if (!netif_running(dev))
  7142. return 0;
  7143. bnx2_set_power_state(bp, PCI_D0);
  7144. netif_device_attach(dev);
  7145. bnx2_request_irq(bp);
  7146. bnx2_init_nic(bp, 1);
  7147. bnx2_netif_start(bp, true);
  7148. return 0;
  7149. }
  7150. static SIMPLE_DEV_PM_OPS(bnx2_pm_ops, bnx2_suspend, bnx2_resume);
  7151. #define BNX2_PM_OPS (&bnx2_pm_ops)
  7152. #else
  7153. #define BNX2_PM_OPS NULL
  7154. #endif /* CONFIG_PM_SLEEP */
  7155. /**
  7156. * bnx2_io_error_detected - called when PCI error is detected
  7157. * @pdev: Pointer to PCI device
  7158. * @state: The current pci connection state
  7159. *
  7160. * This function is called after a PCI bus error affecting
  7161. * this device has been detected.
  7162. */
  7163. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7164. pci_channel_state_t state)
  7165. {
  7166. struct net_device *dev = pci_get_drvdata(pdev);
  7167. struct bnx2 *bp = netdev_priv(dev);
  7168. rtnl_lock();
  7169. netif_device_detach(dev);
  7170. if (state == pci_channel_io_perm_failure) {
  7171. rtnl_unlock();
  7172. return PCI_ERS_RESULT_DISCONNECT;
  7173. }
  7174. if (netif_running(dev)) {
  7175. bnx2_netif_stop(bp, true);
  7176. del_timer_sync(&bp->timer);
  7177. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7178. }
  7179. pci_disable_device(pdev);
  7180. rtnl_unlock();
  7181. /* Request a slot slot reset. */
  7182. return PCI_ERS_RESULT_NEED_RESET;
  7183. }
  7184. /**
  7185. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7186. * @pdev: Pointer to PCI device
  7187. *
  7188. * Restart the card from scratch, as if from a cold-boot.
  7189. */
  7190. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7191. {
  7192. struct net_device *dev = pci_get_drvdata(pdev);
  7193. struct bnx2 *bp = netdev_priv(dev);
  7194. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7195. int err = 0;
  7196. rtnl_lock();
  7197. if (pci_enable_device(pdev)) {
  7198. dev_err(&pdev->dev,
  7199. "Cannot re-enable PCI device after reset\n");
  7200. } else {
  7201. pci_set_master(pdev);
  7202. pci_restore_state(pdev);
  7203. pci_save_state(pdev);
  7204. if (netif_running(dev))
  7205. err = bnx2_init_nic(bp, 1);
  7206. if (!err)
  7207. result = PCI_ERS_RESULT_RECOVERED;
  7208. }
  7209. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(dev)) {
  7210. bnx2_napi_enable(bp);
  7211. dev_close(dev);
  7212. }
  7213. rtnl_unlock();
  7214. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7215. return result;
  7216. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7217. if (err) {
  7218. dev_err(&pdev->dev,
  7219. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7220. err); /* non-fatal, continue */
  7221. }
  7222. return result;
  7223. }
  7224. /**
  7225. * bnx2_io_resume - called when traffic can start flowing again.
  7226. * @pdev: Pointer to PCI device
  7227. *
  7228. * This callback is called when the error recovery driver tells us that
  7229. * its OK to resume normal operation.
  7230. */
  7231. static void bnx2_io_resume(struct pci_dev *pdev)
  7232. {
  7233. struct net_device *dev = pci_get_drvdata(pdev);
  7234. struct bnx2 *bp = netdev_priv(dev);
  7235. rtnl_lock();
  7236. if (netif_running(dev))
  7237. bnx2_netif_start(bp, true);
  7238. netif_device_attach(dev);
  7239. rtnl_unlock();
  7240. }
  7241. static void bnx2_shutdown(struct pci_dev *pdev)
  7242. {
  7243. struct net_device *dev = pci_get_drvdata(pdev);
  7244. struct bnx2 *bp;
  7245. if (!dev)
  7246. return;
  7247. bp = netdev_priv(dev);
  7248. if (!bp)
  7249. return;
  7250. rtnl_lock();
  7251. if (netif_running(dev))
  7252. dev_close(bp->dev);
  7253. if (system_state == SYSTEM_POWER_OFF)
  7254. bnx2_set_power_state(bp, PCI_D3hot);
  7255. rtnl_unlock();
  7256. }
  7257. static const struct pci_error_handlers bnx2_err_handler = {
  7258. .error_detected = bnx2_io_error_detected,
  7259. .slot_reset = bnx2_io_slot_reset,
  7260. .resume = bnx2_io_resume,
  7261. };
  7262. static struct pci_driver bnx2_pci_driver = {
  7263. .name = DRV_MODULE_NAME,
  7264. .id_table = bnx2_pci_tbl,
  7265. .probe = bnx2_init_one,
  7266. .remove = bnx2_remove_one,
  7267. .driver.pm = BNX2_PM_OPS,
  7268. .err_handler = &bnx2_err_handler,
  7269. .shutdown = bnx2_shutdown,
  7270. };
  7271. module_pci_driver(bnx2_pci_driver);