cadence-quadspi.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322
  1. /*
  2. * Driver for Cadence QSPI Controller
  3. *
  4. * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program. If not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/err.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/io.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/partitions.h>
  30. #include <linux/mtd/spi-nor.h>
  31. #include <linux/of_device.h>
  32. #include <linux/of.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/pm_runtime.h>
  35. #include <linux/sched.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/timer.h>
  38. #define CQSPI_NAME "cadence-qspi"
  39. #define CQSPI_MAX_CHIPSELECT 16
  40. struct cqspi_st;
  41. struct cqspi_flash_pdata {
  42. struct spi_nor nor;
  43. struct cqspi_st *cqspi;
  44. u32 clk_rate;
  45. u32 read_delay;
  46. u32 tshsl_ns;
  47. u32 tsd2d_ns;
  48. u32 tchsh_ns;
  49. u32 tslch_ns;
  50. u8 inst_width;
  51. u8 addr_width;
  52. u8 data_width;
  53. u8 cs;
  54. bool registered;
  55. };
  56. struct cqspi_st {
  57. struct platform_device *pdev;
  58. struct clk *clk;
  59. unsigned int sclk;
  60. void __iomem *iobase;
  61. void __iomem *ahb_base;
  62. struct completion transfer_complete;
  63. struct mutex bus_mutex;
  64. int current_cs;
  65. int current_page_size;
  66. int current_erase_size;
  67. int current_addr_width;
  68. unsigned long master_ref_clk_hz;
  69. bool is_decoded_cs;
  70. u32 fifo_depth;
  71. u32 fifo_width;
  72. u32 trigger_address;
  73. u32 wr_delay;
  74. struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  75. };
  76. /* Operation timeout value */
  77. #define CQSPI_TIMEOUT_MS 500
  78. #define CQSPI_READ_TIMEOUT_MS 10
  79. /* Instruction type */
  80. #define CQSPI_INST_TYPE_SINGLE 0
  81. #define CQSPI_INST_TYPE_DUAL 1
  82. #define CQSPI_INST_TYPE_QUAD 2
  83. #define CQSPI_DUMMY_CLKS_PER_BYTE 8
  84. #define CQSPI_DUMMY_BYTES_MAX 4
  85. #define CQSPI_DUMMY_CLKS_MAX 31
  86. #define CQSPI_STIG_DATA_LEN_MAX 8
  87. /* Register map */
  88. #define CQSPI_REG_CONFIG 0x00
  89. #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
  90. #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
  91. #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
  92. #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
  93. #define CQSPI_REG_CONFIG_BAUD_LSB 19
  94. #define CQSPI_REG_CONFIG_IDLE_LSB 31
  95. #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
  96. #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
  97. #define CQSPI_REG_RD_INSTR 0x04
  98. #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
  99. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
  100. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
  101. #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
  102. #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
  103. #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
  104. #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
  105. #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
  106. #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
  107. #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
  108. #define CQSPI_REG_WR_INSTR 0x08
  109. #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
  110. #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
  111. #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
  112. #define CQSPI_REG_DELAY 0x0C
  113. #define CQSPI_REG_DELAY_TSLCH_LSB 0
  114. #define CQSPI_REG_DELAY_TCHSH_LSB 8
  115. #define CQSPI_REG_DELAY_TSD2D_LSB 16
  116. #define CQSPI_REG_DELAY_TSHSL_LSB 24
  117. #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
  118. #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
  119. #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
  120. #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
  121. #define CQSPI_REG_READCAPTURE 0x10
  122. #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
  123. #define CQSPI_REG_READCAPTURE_DELAY_LSB 1
  124. #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
  125. #define CQSPI_REG_SIZE 0x14
  126. #define CQSPI_REG_SIZE_ADDRESS_LSB 0
  127. #define CQSPI_REG_SIZE_PAGE_LSB 4
  128. #define CQSPI_REG_SIZE_BLOCK_LSB 16
  129. #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
  130. #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
  131. #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
  132. #define CQSPI_REG_SRAMPARTITION 0x18
  133. #define CQSPI_REG_INDIRECTTRIGGER 0x1C
  134. #define CQSPI_REG_DMA 0x20
  135. #define CQSPI_REG_DMA_SINGLE_LSB 0
  136. #define CQSPI_REG_DMA_BURST_LSB 8
  137. #define CQSPI_REG_DMA_SINGLE_MASK 0xFF
  138. #define CQSPI_REG_DMA_BURST_MASK 0xFF
  139. #define CQSPI_REG_REMAP 0x24
  140. #define CQSPI_REG_MODE_BIT 0x28
  141. #define CQSPI_REG_SDRAMLEVEL 0x2C
  142. #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
  143. #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
  144. #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
  145. #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
  146. #define CQSPI_REG_IRQSTATUS 0x40
  147. #define CQSPI_REG_IRQMASK 0x44
  148. #define CQSPI_REG_INDIRECTRD 0x60
  149. #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
  150. #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
  151. #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
  152. #define CQSPI_REG_INDIRECTRDWATERMARK 0x64
  153. #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
  154. #define CQSPI_REG_INDIRECTRDBYTES 0x6C
  155. #define CQSPI_REG_CMDCTRL 0x90
  156. #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
  157. #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
  158. #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
  159. #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
  160. #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
  161. #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
  162. #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
  163. #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
  164. #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
  165. #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
  166. #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
  167. #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
  168. #define CQSPI_REG_INDIRECTWR 0x70
  169. #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
  170. #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
  171. #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
  172. #define CQSPI_REG_INDIRECTWRWATERMARK 0x74
  173. #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
  174. #define CQSPI_REG_INDIRECTWRBYTES 0x7C
  175. #define CQSPI_REG_CMDADDRESS 0x94
  176. #define CQSPI_REG_CMDREADDATALOWER 0xA0
  177. #define CQSPI_REG_CMDREADDATAUPPER 0xA4
  178. #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
  179. #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
  180. /* Interrupt status bits */
  181. #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
  182. #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
  183. #define CQSPI_REG_IRQ_IND_COMP BIT(2)
  184. #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
  185. #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
  186. #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
  187. #define CQSPI_REG_IRQ_WATERMARK BIT(6)
  188. #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
  189. #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
  190. CQSPI_REG_IRQ_IND_SRAM_FULL | \
  191. CQSPI_REG_IRQ_IND_COMP)
  192. #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
  193. CQSPI_REG_IRQ_WATERMARK | \
  194. CQSPI_REG_IRQ_UNDERFLOW)
  195. #define CQSPI_IRQ_STATUS_MASK 0x1FFFF
  196. static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
  197. {
  198. unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  199. u32 val;
  200. while (1) {
  201. val = readl(reg);
  202. if (clear)
  203. val = ~val;
  204. val &= mask;
  205. if (val == mask)
  206. return 0;
  207. if (time_after(jiffies, end))
  208. return -ETIMEDOUT;
  209. }
  210. }
  211. static bool cqspi_is_idle(struct cqspi_st *cqspi)
  212. {
  213. u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
  214. return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
  215. }
  216. static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
  217. {
  218. u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
  219. reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
  220. return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
  221. }
  222. static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
  223. {
  224. struct cqspi_st *cqspi = dev;
  225. unsigned int irq_status;
  226. /* Read interrupt status */
  227. irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
  228. /* Clear interrupt */
  229. writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
  230. irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
  231. if (irq_status)
  232. complete(&cqspi->transfer_complete);
  233. return IRQ_HANDLED;
  234. }
  235. static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
  236. {
  237. struct cqspi_flash_pdata *f_pdata = nor->priv;
  238. u32 rdreg = 0;
  239. rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
  240. rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
  241. rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
  242. return rdreg;
  243. }
  244. static int cqspi_wait_idle(struct cqspi_st *cqspi)
  245. {
  246. const unsigned int poll_idle_retry = 3;
  247. unsigned int count = 0;
  248. unsigned long timeout;
  249. timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
  250. while (1) {
  251. /*
  252. * Read few times in succession to ensure the controller
  253. * is indeed idle, that is, the bit does not transition
  254. * low again.
  255. */
  256. if (cqspi_is_idle(cqspi))
  257. count++;
  258. else
  259. count = 0;
  260. if (count >= poll_idle_retry)
  261. return 0;
  262. if (time_after(jiffies, timeout)) {
  263. /* Timeout, in busy mode. */
  264. dev_err(&cqspi->pdev->dev,
  265. "QSPI is still busy after %dms timeout.\n",
  266. CQSPI_TIMEOUT_MS);
  267. return -ETIMEDOUT;
  268. }
  269. cpu_relax();
  270. }
  271. }
  272. static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
  273. {
  274. void __iomem *reg_base = cqspi->iobase;
  275. int ret;
  276. /* Write the CMDCTRL without start execution. */
  277. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  278. /* Start execute */
  279. reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
  280. writel(reg, reg_base + CQSPI_REG_CMDCTRL);
  281. /* Polling for completion. */
  282. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
  283. CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
  284. if (ret) {
  285. dev_err(&cqspi->pdev->dev,
  286. "Flash command execution timed out.\n");
  287. return ret;
  288. }
  289. /* Polling QSPI idle status. */
  290. return cqspi_wait_idle(cqspi);
  291. }
  292. static int cqspi_command_read(struct spi_nor *nor,
  293. const u8 *txbuf, const unsigned n_tx,
  294. u8 *rxbuf, const unsigned n_rx)
  295. {
  296. struct cqspi_flash_pdata *f_pdata = nor->priv;
  297. struct cqspi_st *cqspi = f_pdata->cqspi;
  298. void __iomem *reg_base = cqspi->iobase;
  299. unsigned int rdreg;
  300. unsigned int reg;
  301. unsigned int read_len;
  302. int status;
  303. if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
  304. dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
  305. n_rx, rxbuf);
  306. return -EINVAL;
  307. }
  308. reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  309. rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
  310. writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
  311. reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
  312. /* 0 means 1 byte. */
  313. reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
  314. << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
  315. status = cqspi_exec_flash_cmd(cqspi, reg);
  316. if (status)
  317. return status;
  318. reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
  319. /* Put the read value into rx_buf */
  320. read_len = (n_rx > 4) ? 4 : n_rx;
  321. memcpy(rxbuf, &reg, read_len);
  322. rxbuf += read_len;
  323. if (n_rx > 4) {
  324. reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
  325. read_len = n_rx - read_len;
  326. memcpy(rxbuf, &reg, read_len);
  327. }
  328. return 0;
  329. }
  330. static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
  331. const u8 *txbuf, const unsigned n_tx)
  332. {
  333. struct cqspi_flash_pdata *f_pdata = nor->priv;
  334. struct cqspi_st *cqspi = f_pdata->cqspi;
  335. void __iomem *reg_base = cqspi->iobase;
  336. unsigned int reg;
  337. unsigned int data;
  338. int ret;
  339. if (n_tx > 4 || (n_tx && !txbuf)) {
  340. dev_err(nor->dev,
  341. "Invalid input argument, cmdlen %d txbuf 0x%p\n",
  342. n_tx, txbuf);
  343. return -EINVAL;
  344. }
  345. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  346. if (n_tx) {
  347. reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
  348. reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
  349. << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
  350. data = 0;
  351. memcpy(&data, txbuf, n_tx);
  352. writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
  353. }
  354. ret = cqspi_exec_flash_cmd(cqspi, reg);
  355. return ret;
  356. }
  357. static int cqspi_command_write_addr(struct spi_nor *nor,
  358. const u8 opcode, const unsigned int addr)
  359. {
  360. struct cqspi_flash_pdata *f_pdata = nor->priv;
  361. struct cqspi_st *cqspi = f_pdata->cqspi;
  362. void __iomem *reg_base = cqspi->iobase;
  363. unsigned int reg;
  364. reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
  365. reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
  366. reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
  367. << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
  368. writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
  369. return cqspi_exec_flash_cmd(cqspi, reg);
  370. }
  371. static int cqspi_indirect_read_setup(struct spi_nor *nor,
  372. const unsigned int from_addr)
  373. {
  374. struct cqspi_flash_pdata *f_pdata = nor->priv;
  375. struct cqspi_st *cqspi = f_pdata->cqspi;
  376. void __iomem *reg_base = cqspi->iobase;
  377. unsigned int dummy_clk = 0;
  378. unsigned int reg;
  379. writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
  380. reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
  381. reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
  382. /* Setup dummy clock cycles */
  383. dummy_clk = nor->read_dummy;
  384. if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
  385. dummy_clk = CQSPI_DUMMY_CLKS_MAX;
  386. if (dummy_clk / 8) {
  387. reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
  388. /* Set mode bits high to ensure chip doesn't enter XIP */
  389. writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
  390. /* Need to subtract the mode byte (8 clocks). */
  391. if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
  392. dummy_clk -= 8;
  393. if (dummy_clk)
  394. reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
  395. << CQSPI_REG_RD_INSTR_DUMMY_LSB;
  396. }
  397. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  398. /* Set address width */
  399. reg = readl(reg_base + CQSPI_REG_SIZE);
  400. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  401. reg |= (nor->addr_width - 1);
  402. writel(reg, reg_base + CQSPI_REG_SIZE);
  403. return 0;
  404. }
  405. static int cqspi_indirect_read_execute(struct spi_nor *nor,
  406. u8 *rxbuf, const unsigned n_rx)
  407. {
  408. struct cqspi_flash_pdata *f_pdata = nor->priv;
  409. struct cqspi_st *cqspi = f_pdata->cqspi;
  410. void __iomem *reg_base = cqspi->iobase;
  411. void __iomem *ahb_base = cqspi->ahb_base;
  412. unsigned int remaining = n_rx;
  413. unsigned int bytes_to_read = 0;
  414. int ret = 0;
  415. writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
  416. /* Clear all interrupts. */
  417. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  418. writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
  419. reinit_completion(&cqspi->transfer_complete);
  420. writel(CQSPI_REG_INDIRECTRD_START_MASK,
  421. reg_base + CQSPI_REG_INDIRECTRD);
  422. while (remaining > 0) {
  423. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  424. msecs_to_jiffies
  425. (CQSPI_READ_TIMEOUT_MS));
  426. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  427. if (!ret && bytes_to_read == 0) {
  428. dev_err(nor->dev, "Indirect read timeout, no bytes\n");
  429. ret = -ETIMEDOUT;
  430. goto failrd;
  431. }
  432. while (bytes_to_read != 0) {
  433. bytes_to_read *= cqspi->fifo_width;
  434. bytes_to_read = bytes_to_read > remaining ?
  435. remaining : bytes_to_read;
  436. readsl(ahb_base, rxbuf, DIV_ROUND_UP(bytes_to_read, 4));
  437. rxbuf += bytes_to_read;
  438. remaining -= bytes_to_read;
  439. bytes_to_read = cqspi_get_rd_sram_level(cqspi);
  440. }
  441. if (remaining > 0)
  442. reinit_completion(&cqspi->transfer_complete);
  443. }
  444. /* Check indirect done status */
  445. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
  446. CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
  447. if (ret) {
  448. dev_err(nor->dev,
  449. "Indirect read completion error (%i)\n", ret);
  450. goto failrd;
  451. }
  452. /* Disable interrupt */
  453. writel(0, reg_base + CQSPI_REG_IRQMASK);
  454. /* Clear indirect completion status */
  455. writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
  456. return 0;
  457. failrd:
  458. /* Disable interrupt */
  459. writel(0, reg_base + CQSPI_REG_IRQMASK);
  460. /* Cancel the indirect read */
  461. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  462. reg_base + CQSPI_REG_INDIRECTRD);
  463. return ret;
  464. }
  465. static int cqspi_indirect_write_setup(struct spi_nor *nor,
  466. const unsigned int to_addr)
  467. {
  468. unsigned int reg;
  469. struct cqspi_flash_pdata *f_pdata = nor->priv;
  470. struct cqspi_st *cqspi = f_pdata->cqspi;
  471. void __iomem *reg_base = cqspi->iobase;
  472. /* Set opcode. */
  473. reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
  474. writel(reg, reg_base + CQSPI_REG_WR_INSTR);
  475. reg = cqspi_calc_rdreg(nor, nor->program_opcode);
  476. writel(reg, reg_base + CQSPI_REG_RD_INSTR);
  477. writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
  478. reg = readl(reg_base + CQSPI_REG_SIZE);
  479. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  480. reg |= (nor->addr_width - 1);
  481. writel(reg, reg_base + CQSPI_REG_SIZE);
  482. return 0;
  483. }
  484. static int cqspi_indirect_write_execute(struct spi_nor *nor,
  485. const u8 *txbuf, const unsigned n_tx)
  486. {
  487. const unsigned int page_size = nor->page_size;
  488. struct cqspi_flash_pdata *f_pdata = nor->priv;
  489. struct cqspi_st *cqspi = f_pdata->cqspi;
  490. void __iomem *reg_base = cqspi->iobase;
  491. unsigned int remaining = n_tx;
  492. unsigned int write_bytes;
  493. int ret;
  494. writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
  495. /* Clear all interrupts. */
  496. writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
  497. writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
  498. reinit_completion(&cqspi->transfer_complete);
  499. writel(CQSPI_REG_INDIRECTWR_START_MASK,
  500. reg_base + CQSPI_REG_INDIRECTWR);
  501. /*
  502. * As per 66AK2G02 TRM SPRUHY8 section 11.14.5.3 Indirect Access
  503. * Controller programming sequence, couple of cycles of
  504. * QSPI_REF_CLK delay is required for the above bit to
  505. * be internally synchronized by the QSPI module.
  506. */
  507. ndelay(cqspi->wr_delay);
  508. while (remaining > 0) {
  509. write_bytes = remaining > page_size ? page_size : remaining;
  510. writesl(cqspi->ahb_base, txbuf, DIV_ROUND_UP(write_bytes, 4));
  511. ret = wait_for_completion_timeout(&cqspi->transfer_complete,
  512. msecs_to_jiffies
  513. (CQSPI_TIMEOUT_MS));
  514. if (!ret) {
  515. dev_err(nor->dev, "Indirect write timeout\n");
  516. ret = -ETIMEDOUT;
  517. goto failwr;
  518. }
  519. txbuf += write_bytes;
  520. remaining -= write_bytes;
  521. if (remaining > 0)
  522. reinit_completion(&cqspi->transfer_complete);
  523. }
  524. /* Check indirect done status */
  525. ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
  526. CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
  527. if (ret) {
  528. dev_err(nor->dev,
  529. "Indirect write completion error (%i)\n", ret);
  530. goto failwr;
  531. }
  532. /* Disable interrupt. */
  533. writel(0, reg_base + CQSPI_REG_IRQMASK);
  534. /* Clear indirect completion status */
  535. writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
  536. cqspi_wait_idle(cqspi);
  537. return 0;
  538. failwr:
  539. /* Disable interrupt. */
  540. writel(0, reg_base + CQSPI_REG_IRQMASK);
  541. /* Cancel the indirect write */
  542. writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
  543. reg_base + CQSPI_REG_INDIRECTWR);
  544. return ret;
  545. }
  546. static void cqspi_chipselect(struct spi_nor *nor)
  547. {
  548. struct cqspi_flash_pdata *f_pdata = nor->priv;
  549. struct cqspi_st *cqspi = f_pdata->cqspi;
  550. void __iomem *reg_base = cqspi->iobase;
  551. unsigned int chip_select = f_pdata->cs;
  552. unsigned int reg;
  553. reg = readl(reg_base + CQSPI_REG_CONFIG);
  554. if (cqspi->is_decoded_cs) {
  555. reg |= CQSPI_REG_CONFIG_DECODE_MASK;
  556. } else {
  557. reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
  558. /* Convert CS if without decoder.
  559. * CS0 to 4b'1110
  560. * CS1 to 4b'1101
  561. * CS2 to 4b'1011
  562. * CS3 to 4b'0111
  563. */
  564. chip_select = 0xF & ~(1 << chip_select);
  565. }
  566. reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
  567. << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
  568. reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
  569. << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
  570. writel(reg, reg_base + CQSPI_REG_CONFIG);
  571. }
  572. static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
  573. {
  574. struct cqspi_flash_pdata *f_pdata = nor->priv;
  575. struct cqspi_st *cqspi = f_pdata->cqspi;
  576. void __iomem *iobase = cqspi->iobase;
  577. unsigned int reg;
  578. /* configure page size and block size. */
  579. reg = readl(iobase + CQSPI_REG_SIZE);
  580. reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
  581. reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
  582. reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
  583. reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
  584. reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
  585. reg |= (nor->addr_width - 1);
  586. writel(reg, iobase + CQSPI_REG_SIZE);
  587. /* configure the chip select */
  588. cqspi_chipselect(nor);
  589. /* Store the new configuration of the controller */
  590. cqspi->current_page_size = nor->page_size;
  591. cqspi->current_erase_size = nor->mtd.erasesize;
  592. cqspi->current_addr_width = nor->addr_width;
  593. }
  594. static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
  595. const unsigned int ns_val)
  596. {
  597. unsigned int ticks;
  598. ticks = ref_clk_hz / 1000; /* kHz */
  599. ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
  600. return ticks;
  601. }
  602. static void cqspi_delay(struct spi_nor *nor)
  603. {
  604. struct cqspi_flash_pdata *f_pdata = nor->priv;
  605. struct cqspi_st *cqspi = f_pdata->cqspi;
  606. void __iomem *iobase = cqspi->iobase;
  607. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  608. unsigned int tshsl, tchsh, tslch, tsd2d;
  609. unsigned int reg;
  610. unsigned int tsclk;
  611. /* calculate the number of ref ticks for one sclk tick */
  612. tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
  613. tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
  614. /* this particular value must be at least one sclk */
  615. if (tshsl < tsclk)
  616. tshsl = tsclk;
  617. tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
  618. tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
  619. tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
  620. reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
  621. << CQSPI_REG_DELAY_TSHSL_LSB;
  622. reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
  623. << CQSPI_REG_DELAY_TCHSH_LSB;
  624. reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
  625. << CQSPI_REG_DELAY_TSLCH_LSB;
  626. reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
  627. << CQSPI_REG_DELAY_TSD2D_LSB;
  628. writel(reg, iobase + CQSPI_REG_DELAY);
  629. }
  630. static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
  631. {
  632. const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
  633. void __iomem *reg_base = cqspi->iobase;
  634. u32 reg, div;
  635. /* Recalculate the baudrate divisor based on QSPI specification. */
  636. div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
  637. reg = readl(reg_base + CQSPI_REG_CONFIG);
  638. reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
  639. reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
  640. writel(reg, reg_base + CQSPI_REG_CONFIG);
  641. }
  642. static void cqspi_readdata_capture(struct cqspi_st *cqspi,
  643. const unsigned int bypass,
  644. const unsigned int delay)
  645. {
  646. void __iomem *reg_base = cqspi->iobase;
  647. unsigned int reg;
  648. reg = readl(reg_base + CQSPI_REG_READCAPTURE);
  649. if (bypass)
  650. reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  651. else
  652. reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
  653. reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
  654. << CQSPI_REG_READCAPTURE_DELAY_LSB);
  655. reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
  656. << CQSPI_REG_READCAPTURE_DELAY_LSB;
  657. writel(reg, reg_base + CQSPI_REG_READCAPTURE);
  658. }
  659. static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
  660. {
  661. void __iomem *reg_base = cqspi->iobase;
  662. unsigned int reg;
  663. reg = readl(reg_base + CQSPI_REG_CONFIG);
  664. if (enable)
  665. reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
  666. else
  667. reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
  668. writel(reg, reg_base + CQSPI_REG_CONFIG);
  669. }
  670. static void cqspi_configure(struct spi_nor *nor)
  671. {
  672. struct cqspi_flash_pdata *f_pdata = nor->priv;
  673. struct cqspi_st *cqspi = f_pdata->cqspi;
  674. const unsigned int sclk = f_pdata->clk_rate;
  675. int switch_cs = (cqspi->current_cs != f_pdata->cs);
  676. int switch_ck = (cqspi->sclk != sclk);
  677. if ((cqspi->current_page_size != nor->page_size) ||
  678. (cqspi->current_erase_size != nor->mtd.erasesize) ||
  679. (cqspi->current_addr_width != nor->addr_width))
  680. switch_cs = 1;
  681. if (switch_cs || switch_ck)
  682. cqspi_controller_enable(cqspi, 0);
  683. /* Switch chip select. */
  684. if (switch_cs) {
  685. cqspi->current_cs = f_pdata->cs;
  686. cqspi_configure_cs_and_sizes(nor);
  687. }
  688. /* Setup baudrate divisor and delays */
  689. if (switch_ck) {
  690. cqspi->sclk = sclk;
  691. cqspi_config_baudrate_div(cqspi);
  692. cqspi_delay(nor);
  693. cqspi_readdata_capture(cqspi, 1, f_pdata->read_delay);
  694. }
  695. if (switch_cs || switch_ck)
  696. cqspi_controller_enable(cqspi, 1);
  697. }
  698. static int cqspi_set_protocol(struct spi_nor *nor, const int read)
  699. {
  700. struct cqspi_flash_pdata *f_pdata = nor->priv;
  701. f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
  702. f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
  703. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  704. if (read) {
  705. switch (nor->flash_read) {
  706. case SPI_NOR_NORMAL:
  707. case SPI_NOR_FAST:
  708. f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
  709. break;
  710. case SPI_NOR_DUAL:
  711. f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
  712. break;
  713. case SPI_NOR_QUAD:
  714. f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
  715. break;
  716. default:
  717. return -EINVAL;
  718. }
  719. }
  720. cqspi_configure(nor);
  721. return 0;
  722. }
  723. static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
  724. size_t len, const u_char *buf)
  725. {
  726. int ret;
  727. ret = cqspi_set_protocol(nor, 0);
  728. if (ret)
  729. return ret;
  730. ret = cqspi_indirect_write_setup(nor, to);
  731. if (ret)
  732. return ret;
  733. ret = cqspi_indirect_write_execute(nor, buf, len);
  734. if (ret)
  735. return ret;
  736. return (ret < 0) ? ret : len;
  737. }
  738. static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
  739. size_t len, u_char *buf)
  740. {
  741. int ret;
  742. ret = cqspi_set_protocol(nor, 1);
  743. if (ret)
  744. return ret;
  745. ret = cqspi_indirect_read_setup(nor, from);
  746. if (ret)
  747. return ret;
  748. ret = cqspi_indirect_read_execute(nor, buf, len);
  749. if (ret)
  750. return ret;
  751. return (ret < 0) ? ret : len;
  752. }
  753. static int cqspi_erase(struct spi_nor *nor, loff_t offs)
  754. {
  755. int ret;
  756. ret = cqspi_set_protocol(nor, 0);
  757. if (ret)
  758. return ret;
  759. /* Send write enable, then erase commands. */
  760. ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
  761. if (ret)
  762. return ret;
  763. /* Set up command buffer. */
  764. ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
  765. if (ret)
  766. return ret;
  767. return 0;
  768. }
  769. static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  770. {
  771. struct cqspi_flash_pdata *f_pdata = nor->priv;
  772. struct cqspi_st *cqspi = f_pdata->cqspi;
  773. mutex_lock(&cqspi->bus_mutex);
  774. return 0;
  775. }
  776. static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  777. {
  778. struct cqspi_flash_pdata *f_pdata = nor->priv;
  779. struct cqspi_st *cqspi = f_pdata->cqspi;
  780. mutex_unlock(&cqspi->bus_mutex);
  781. }
  782. static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  783. {
  784. int ret;
  785. ret = cqspi_set_protocol(nor, 0);
  786. if (!ret)
  787. ret = cqspi_command_read(nor, &opcode, 1, buf, len);
  788. return ret;
  789. }
  790. static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  791. {
  792. int ret;
  793. ret = cqspi_set_protocol(nor, 0);
  794. if (!ret)
  795. ret = cqspi_command_write(nor, opcode, buf, len);
  796. return ret;
  797. }
  798. static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
  799. struct cqspi_flash_pdata *f_pdata,
  800. struct device_node *np)
  801. {
  802. if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
  803. dev_err(&pdev->dev, "couldn't determine read-delay\n");
  804. return -ENXIO;
  805. }
  806. if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
  807. dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
  808. return -ENXIO;
  809. }
  810. if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
  811. dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
  812. return -ENXIO;
  813. }
  814. if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
  815. dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
  816. return -ENXIO;
  817. }
  818. if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
  819. dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
  820. return -ENXIO;
  821. }
  822. if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
  823. dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
  824. return -ENXIO;
  825. }
  826. return 0;
  827. }
  828. static int cqspi_of_get_pdata(struct platform_device *pdev)
  829. {
  830. struct device_node *np = pdev->dev.of_node;
  831. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  832. cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
  833. if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
  834. dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
  835. return -ENXIO;
  836. }
  837. if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
  838. dev_err(&pdev->dev, "couldn't determine fifo-width\n");
  839. return -ENXIO;
  840. }
  841. if (of_property_read_u32(np, "cdns,trigger-address",
  842. &cqspi->trigger_address)) {
  843. dev_err(&pdev->dev, "couldn't determine trigger-address\n");
  844. return -ENXIO;
  845. }
  846. return 0;
  847. }
  848. static void cqspi_controller_init(struct cqspi_st *cqspi)
  849. {
  850. cqspi_controller_enable(cqspi, 0);
  851. /* Configure the remap address register, no remap */
  852. writel(0, cqspi->iobase + CQSPI_REG_REMAP);
  853. /* Disable all interrupts. */
  854. writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
  855. /* Configure the SRAM split to 1:1 . */
  856. writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
  857. /* Load indirect trigger address. */
  858. writel(cqspi->trigger_address,
  859. cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
  860. /* Program read watermark -- 1/2 of the FIFO. */
  861. writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
  862. cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
  863. /* Program write watermark -- 1/8 of the FIFO. */
  864. writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
  865. cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
  866. cqspi_controller_enable(cqspi, 1);
  867. }
  868. static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
  869. {
  870. struct platform_device *pdev = cqspi->pdev;
  871. struct device *dev = &pdev->dev;
  872. struct cqspi_flash_pdata *f_pdata;
  873. struct spi_nor *nor;
  874. struct mtd_info *mtd;
  875. unsigned int cs;
  876. int i, ret;
  877. /* Get flash device data */
  878. for_each_available_child_of_node(dev->of_node, np) {
  879. ret = of_property_read_u32(np, "reg", &cs);
  880. if (ret) {
  881. dev_err(dev, "Couldn't determine chip select.\n");
  882. goto err;
  883. }
  884. if (cs >= CQSPI_MAX_CHIPSELECT) {
  885. ret = -EINVAL;
  886. dev_err(dev, "Chip select %d out of range.\n", cs);
  887. goto err;
  888. }
  889. f_pdata = &cqspi->f_pdata[cs];
  890. f_pdata->cqspi = cqspi;
  891. f_pdata->cs = cs;
  892. ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
  893. if (ret)
  894. goto err;
  895. nor = &f_pdata->nor;
  896. mtd = &nor->mtd;
  897. mtd->priv = nor;
  898. nor->dev = dev;
  899. spi_nor_set_flash_node(nor, np);
  900. nor->priv = f_pdata;
  901. nor->read_reg = cqspi_read_reg;
  902. nor->write_reg = cqspi_write_reg;
  903. nor->read = cqspi_read;
  904. nor->write = cqspi_write;
  905. nor->erase = cqspi_erase;
  906. nor->prepare = cqspi_prep;
  907. nor->unprepare = cqspi_unprep;
  908. mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
  909. dev_name(dev), cs);
  910. if (!mtd->name) {
  911. ret = -ENOMEM;
  912. goto err;
  913. }
  914. ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
  915. if (ret)
  916. goto err;
  917. ret = mtd_device_register(mtd, NULL, 0);
  918. if (ret)
  919. goto err;
  920. f_pdata->registered = true;
  921. }
  922. return 0;
  923. err:
  924. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  925. if (cqspi->f_pdata[i].registered)
  926. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  927. return ret;
  928. }
  929. static int cqspi_probe(struct platform_device *pdev)
  930. {
  931. struct device_node *np = pdev->dev.of_node;
  932. struct device *dev = &pdev->dev;
  933. struct cqspi_st *cqspi;
  934. struct resource *res;
  935. struct resource *res_ahb;
  936. int ret;
  937. int irq;
  938. cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
  939. if (!cqspi)
  940. return -ENOMEM;
  941. mutex_init(&cqspi->bus_mutex);
  942. cqspi->pdev = pdev;
  943. platform_set_drvdata(pdev, cqspi);
  944. /* Obtain configuration from OF. */
  945. ret = cqspi_of_get_pdata(pdev);
  946. if (ret) {
  947. dev_err(dev, "Cannot get mandatory OF data.\n");
  948. return -ENODEV;
  949. }
  950. /* Obtain QSPI clock. */
  951. cqspi->clk = devm_clk_get(dev, NULL);
  952. if (IS_ERR(cqspi->clk)) {
  953. dev_err(dev, "Cannot claim QSPI clock.\n");
  954. return PTR_ERR(cqspi->clk);
  955. }
  956. /* Obtain and remap controller address. */
  957. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  958. cqspi->iobase = devm_ioremap_resource(dev, res);
  959. if (IS_ERR(cqspi->iobase)) {
  960. dev_err(dev, "Cannot remap controller address.\n");
  961. return PTR_ERR(cqspi->iobase);
  962. }
  963. /* Obtain and remap AHB address. */
  964. res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  965. cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
  966. if (IS_ERR(cqspi->ahb_base)) {
  967. dev_err(dev, "Cannot remap AHB address.\n");
  968. return PTR_ERR(cqspi->ahb_base);
  969. }
  970. init_completion(&cqspi->transfer_complete);
  971. /* Obtain IRQ line. */
  972. irq = platform_get_irq(pdev, 0);
  973. if (irq < 0) {
  974. dev_err(dev, "Cannot obtain IRQ.\n");
  975. return -ENXIO;
  976. }
  977. ret = clk_prepare_enable(cqspi->clk);
  978. if (ret) {
  979. dev_err(dev, "Cannot enable QSPI clock.\n");
  980. return ret;
  981. }
  982. cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
  983. if (of_device_is_compatible(dev->of_node, "ti,k2g-qspi"))
  984. cqspi->wr_delay = 3 * DIV_ROUND_UP(1000000000U,
  985. cqspi->master_ref_clk_hz);
  986. ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
  987. pdev->name, cqspi);
  988. if (ret) {
  989. dev_err(dev, "Cannot request IRQ.\n");
  990. goto probe_irq_failed;
  991. }
  992. pm_runtime_enable(&pdev->dev);
  993. pm_runtime_get_sync(&pdev->dev);
  994. cqspi_wait_idle(cqspi);
  995. cqspi_controller_init(cqspi);
  996. cqspi->current_cs = -1;
  997. cqspi->sclk = 0;
  998. ret = cqspi_setup_flash(cqspi, np);
  999. if (ret) {
  1000. dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
  1001. goto probe_setup_failed;
  1002. }
  1003. return ret;
  1004. probe_irq_failed:
  1005. cqspi_controller_enable(cqspi, 0);
  1006. pm_runtime_put_sync(&pdev->dev);
  1007. pm_runtime_disable(&pdev->dev);
  1008. probe_setup_failed:
  1009. clk_disable_unprepare(cqspi->clk);
  1010. return ret;
  1011. }
  1012. static int cqspi_remove(struct platform_device *pdev)
  1013. {
  1014. struct cqspi_st *cqspi = platform_get_drvdata(pdev);
  1015. int i;
  1016. for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
  1017. if (cqspi->f_pdata[i].registered)
  1018. mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
  1019. cqspi_controller_enable(cqspi, 0);
  1020. clk_disable_unprepare(cqspi->clk);
  1021. pm_runtime_put_sync(&pdev->dev);
  1022. pm_runtime_disable(&pdev->dev);
  1023. return 0;
  1024. }
  1025. #ifdef CONFIG_PM_SLEEP
  1026. static int cqspi_suspend(struct device *dev)
  1027. {
  1028. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1029. cqspi_controller_enable(cqspi, 0);
  1030. pm_runtime_put_sync(dev);
  1031. return 0;
  1032. }
  1033. static int cqspi_resume(struct device *dev)
  1034. {
  1035. struct cqspi_st *cqspi = dev_get_drvdata(dev);
  1036. cqspi_controller_enable(cqspi, 1);
  1037. pm_runtime_get_sync(dev);
  1038. return 0;
  1039. }
  1040. static const struct dev_pm_ops cqspi__dev_pm_ops = {
  1041. .suspend = cqspi_suspend,
  1042. .resume = cqspi_resume,
  1043. };
  1044. #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
  1045. #else
  1046. #define CQSPI_DEV_PM_OPS NULL
  1047. #endif
  1048. static struct of_device_id const cqspi_dt_ids[] = {
  1049. {.compatible = "cdns,qspi-nor",},
  1050. {.compatible = "ti,k2g-qspi",},
  1051. { /* end of table */ }
  1052. };
  1053. MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
  1054. static struct platform_driver cqspi_platform_driver = {
  1055. .probe = cqspi_probe,
  1056. .remove = cqspi_remove,
  1057. .driver = {
  1058. .name = CQSPI_NAME,
  1059. .pm = CQSPI_DEV_PM_OPS,
  1060. .of_match_table = cqspi_dt_ids,
  1061. },
  1062. };
  1063. module_platform_driver(cqspi_platform_driver);
  1064. MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
  1065. MODULE_LICENSE("GPL v2");
  1066. MODULE_ALIAS("platform:" CQSPI_NAME);
  1067. MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
  1068. MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");