intel.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. #include <linux/kernel.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/smp.h>
  5. #include <linux/sched.h>
  6. #include <linux/thread_info.h>
  7. #include <linux/init.h>
  8. #include <linux/uaccess.h>
  9. #include <asm/cpufeature.h>
  10. #include <asm/pgtable.h>
  11. #include <asm/msr.h>
  12. #include <asm/bugs.h>
  13. #include <asm/cpu.h>
  14. #include <asm/intel-family.h>
  15. #ifdef CONFIG_X86_64
  16. #include <linux/topology.h>
  17. #endif
  18. #include "cpu.h"
  19. #ifdef CONFIG_X86_LOCAL_APIC
  20. #include <asm/mpspec.h>
  21. #include <asm/apic.h>
  22. #endif
  23. /*
  24. * Just in case our CPU detection goes bad, or you have a weird system,
  25. * allow a way to override the automatic disabling of MPX.
  26. */
  27. static int forcempx;
  28. static int __init forcempx_setup(char *__unused)
  29. {
  30. forcempx = 1;
  31. return 1;
  32. }
  33. __setup("intel-skd-046-workaround=disable", forcempx_setup);
  34. void check_mpx_erratum(struct cpuinfo_x86 *c)
  35. {
  36. if (forcempx)
  37. return;
  38. /*
  39. * Turn off the MPX feature on CPUs where SMEP is not
  40. * available or disabled.
  41. *
  42. * Works around Intel Erratum SKD046: "Branch Instructions
  43. * May Initialize MPX Bound Registers Incorrectly".
  44. *
  45. * This might falsely disable MPX on systems without
  46. * SMEP, like Atom processors without SMEP. But there
  47. * is no such hardware known at the moment.
  48. */
  49. if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  50. setup_clear_cpu_cap(X86_FEATURE_MPX);
  51. pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  52. }
  53. }
  54. static void early_init_intel(struct cpuinfo_x86 *c)
  55. {
  56. u64 misc_enable;
  57. /* Unmask CPUID levels if masked: */
  58. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  59. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  60. MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
  61. c->cpuid_level = cpuid_eax(0);
  62. get_cpu_cap(c);
  63. }
  64. }
  65. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  66. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  67. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  68. if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
  69. unsigned lower_word;
  70. wrmsr(MSR_IA32_UCODE_REV, 0, 0);
  71. /* Required by the SDM */
  72. sync_core();
  73. rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
  74. }
  75. /*
  76. * Atom erratum AAE44/AAF40/AAG38/AAH41:
  77. *
  78. * A race condition between speculative fetches and invalidating
  79. * a large page. This is worked around in microcode, but we
  80. * need the microcode to have already been loaded... so if it is
  81. * not, recommend a BIOS update and disable large pages.
  82. */
  83. if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
  84. c->microcode < 0x20e) {
  85. pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
  86. clear_cpu_cap(c, X86_FEATURE_PSE);
  87. }
  88. #ifdef CONFIG_X86_64
  89. set_cpu_cap(c, X86_FEATURE_SYSENTER32);
  90. #else
  91. /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
  92. if (c->x86 == 15 && c->x86_cache_alignment == 64)
  93. c->x86_cache_alignment = 128;
  94. #endif
  95. /* CPUID workaround for 0F33/0F34 CPU */
  96. if (c->x86 == 0xF && c->x86_model == 0x3
  97. && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
  98. c->x86_phys_bits = 36;
  99. /*
  100. * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
  101. * with P/T states and does not stop in deep C-states.
  102. *
  103. * It is also reliable across cores and sockets. (but not across
  104. * cabinets - we turn it off in that case explicitly.)
  105. */
  106. if (c->x86_power & (1 << 8)) {
  107. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  108. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
  109. if (!check_tsc_unstable())
  110. set_sched_clock_stable();
  111. }
  112. /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
  113. if (c->x86 == 6) {
  114. switch (c->x86_model) {
  115. case 0x27: /* Penwell */
  116. case 0x35: /* Cloverview */
  117. case 0x4a: /* Merrifield */
  118. set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
  119. break;
  120. default:
  121. break;
  122. }
  123. }
  124. /*
  125. * There is a known erratum on Pentium III and Core Solo
  126. * and Core Duo CPUs.
  127. * " Page with PAT set to WC while associated MTRR is UC
  128. * may consolidate to UC "
  129. * Because of this erratum, it is better to stick with
  130. * setting WC in MTRR rather than using PAT on these CPUs.
  131. *
  132. * Enable PAT WC only on P4, Core 2 or later CPUs.
  133. */
  134. if (c->x86 == 6 && c->x86_model < 15)
  135. clear_cpu_cap(c, X86_FEATURE_PAT);
  136. #ifdef CONFIG_KMEMCHECK
  137. /*
  138. * P4s have a "fast strings" feature which causes single-
  139. * stepping REP instructions to only generate a #DB on
  140. * cache-line boundaries.
  141. *
  142. * Ingo Molnar reported a Pentium D (model 6) and a Xeon
  143. * (model 2) with the same problem.
  144. */
  145. if (c->x86 == 15)
  146. if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
  147. MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
  148. pr_info("kmemcheck: Disabling fast string operations\n");
  149. #endif
  150. /*
  151. * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
  152. * clear the fast string and enhanced fast string CPU capabilities.
  153. */
  154. if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
  155. rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
  156. if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
  157. pr_info("Disabled fast string operations\n");
  158. setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
  159. setup_clear_cpu_cap(X86_FEATURE_ERMS);
  160. }
  161. }
  162. /*
  163. * Intel Quark Core DevMan_001.pdf section 6.4.11
  164. * "The operating system also is required to invalidate (i.e., flush)
  165. * the TLB when any changes are made to any of the page table entries.
  166. * The operating system must reload CR3 to cause the TLB to be flushed"
  167. *
  168. * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
  169. * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
  170. * to be modified.
  171. */
  172. if (c->x86 == 5 && c->x86_model == 9) {
  173. pr_info("Disabling PGE capability bit\n");
  174. setup_clear_cpu_cap(X86_FEATURE_PGE);
  175. }
  176. if (c->cpuid_level >= 0x00000001) {
  177. u32 eax, ebx, ecx, edx;
  178. cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
  179. /*
  180. * If HTT (EDX[28]) is set EBX[16:23] contain the number of
  181. * apicids which are reserved per package. Store the resulting
  182. * shift value for the package management code.
  183. */
  184. if (edx & (1U << 28))
  185. c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
  186. }
  187. check_mpx_erratum(c);
  188. }
  189. #ifdef CONFIG_X86_32
  190. /*
  191. * Early probe support logic for ppro memory erratum #50
  192. *
  193. * This is called before we do cpu ident work
  194. */
  195. int ppro_with_ram_bug(void)
  196. {
  197. /* Uses data from early_cpu_detect now */
  198. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  199. boot_cpu_data.x86 == 6 &&
  200. boot_cpu_data.x86_model == 1 &&
  201. boot_cpu_data.x86_mask < 8) {
  202. pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
  203. return 1;
  204. }
  205. return 0;
  206. }
  207. static void intel_smp_check(struct cpuinfo_x86 *c)
  208. {
  209. /* calling is from identify_secondary_cpu() ? */
  210. if (!c->cpu_index)
  211. return;
  212. /*
  213. * Mask B, Pentium, but not Pentium MMX
  214. */
  215. if (c->x86 == 5 &&
  216. c->x86_mask >= 1 && c->x86_mask <= 4 &&
  217. c->x86_model <= 3) {
  218. /*
  219. * Remember we have B step Pentia with bugs
  220. */
  221. WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
  222. "with B stepping processors.\n");
  223. }
  224. }
  225. static int forcepae;
  226. static int __init forcepae_setup(char *__unused)
  227. {
  228. forcepae = 1;
  229. return 1;
  230. }
  231. __setup("forcepae", forcepae_setup);
  232. static void intel_workarounds(struct cpuinfo_x86 *c)
  233. {
  234. #ifdef CONFIG_X86_F00F_BUG
  235. /*
  236. * All models of Pentium and Pentium with MMX technology CPUs
  237. * have the F0 0F bug, which lets nonprivileged users lock up the
  238. * system. Announce that the fault handler will be checking for it.
  239. * The Quark is also family 5, but does not have the same bug.
  240. */
  241. clear_cpu_bug(c, X86_BUG_F00F);
  242. if (c->x86 == 5 && c->x86_model < 9) {
  243. static int f00f_workaround_enabled;
  244. set_cpu_bug(c, X86_BUG_F00F);
  245. if (!f00f_workaround_enabled) {
  246. pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
  247. f00f_workaround_enabled = 1;
  248. }
  249. }
  250. #endif
  251. /*
  252. * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
  253. * model 3 mask 3
  254. */
  255. if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
  256. clear_cpu_cap(c, X86_FEATURE_SEP);
  257. /*
  258. * PAE CPUID issue: many Pentium M report no PAE but may have a
  259. * functionally usable PAE implementation.
  260. * Forcefully enable PAE if kernel parameter "forcepae" is present.
  261. */
  262. if (forcepae) {
  263. pr_warn("PAE forced!\n");
  264. set_cpu_cap(c, X86_FEATURE_PAE);
  265. add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
  266. }
  267. /*
  268. * P4 Xeon erratum 037 workaround.
  269. * Hardware prefetcher may cause stale data to be loaded into the cache.
  270. */
  271. if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
  272. if (msr_set_bit(MSR_IA32_MISC_ENABLE,
  273. MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
  274. pr_info("CPU: C0 stepping P4 Xeon detected.\n");
  275. pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
  276. }
  277. }
  278. /*
  279. * See if we have a good local APIC by checking for buggy Pentia,
  280. * i.e. all B steppings and the C2 stepping of P54C when using their
  281. * integrated APIC (see 11AP erratum in "Pentium Processor
  282. * Specification Update").
  283. */
  284. if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
  285. (c->x86_mask < 0x6 || c->x86_mask == 0xb))
  286. set_cpu_bug(c, X86_BUG_11AP);
  287. #ifdef CONFIG_X86_INTEL_USERCOPY
  288. /*
  289. * Set up the preferred alignment for movsl bulk memory moves
  290. */
  291. switch (c->x86) {
  292. case 4: /* 486: untested */
  293. break;
  294. case 5: /* Old Pentia: untested */
  295. break;
  296. case 6: /* PII/PIII only like movsl with 8-byte alignment */
  297. movsl_mask.mask = 7;
  298. break;
  299. case 15: /* P4 is OK down to 8-byte alignment */
  300. movsl_mask.mask = 7;
  301. break;
  302. }
  303. #endif
  304. intel_smp_check(c);
  305. }
  306. #else
  307. static void intel_workarounds(struct cpuinfo_x86 *c)
  308. {
  309. }
  310. #endif
  311. static void srat_detect_node(struct cpuinfo_x86 *c)
  312. {
  313. #ifdef CONFIG_NUMA
  314. unsigned node;
  315. int cpu = smp_processor_id();
  316. /* Don't do the funky fallback heuristics the AMD version employs
  317. for now. */
  318. node = numa_cpu_node(cpu);
  319. if (node == NUMA_NO_NODE || !node_online(node)) {
  320. /* reuse the value from init_cpu_to_node() */
  321. node = cpu_to_node(cpu);
  322. }
  323. numa_set_node(cpu, node);
  324. #endif
  325. }
  326. /*
  327. * find out the number of processor cores on the die
  328. */
  329. static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
  330. {
  331. unsigned int eax, ebx, ecx, edx;
  332. if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
  333. return 1;
  334. /* Intel has a non-standard dependency on %ecx for this CPUID level. */
  335. cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
  336. if (eax & 0x1f)
  337. return (eax >> 26) + 1;
  338. else
  339. return 1;
  340. }
  341. static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
  342. {
  343. /* Intel VMX MSR indicated features */
  344. #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
  345. #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
  346. #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
  347. #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
  348. #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
  349. #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
  350. u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
  351. clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  352. clear_cpu_cap(c, X86_FEATURE_VNMI);
  353. clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  354. clear_cpu_cap(c, X86_FEATURE_EPT);
  355. clear_cpu_cap(c, X86_FEATURE_VPID);
  356. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
  357. msr_ctl = vmx_msr_high | vmx_msr_low;
  358. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
  359. set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
  360. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
  361. set_cpu_cap(c, X86_FEATURE_VNMI);
  362. if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
  363. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  364. vmx_msr_low, vmx_msr_high);
  365. msr_ctl2 = vmx_msr_high | vmx_msr_low;
  366. if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
  367. (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
  368. set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
  369. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
  370. set_cpu_cap(c, X86_FEATURE_EPT);
  371. if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
  372. set_cpu_cap(c, X86_FEATURE_VPID);
  373. }
  374. }
  375. static void init_intel_energy_perf(struct cpuinfo_x86 *c)
  376. {
  377. u64 epb;
  378. /*
  379. * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
  380. * (x86_energy_perf_policy(8) is available to change it at run-time.)
  381. */
  382. if (!cpu_has(c, X86_FEATURE_EPB))
  383. return;
  384. rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  385. if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
  386. return;
  387. pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
  388. pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
  389. epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
  390. wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
  391. }
  392. static void intel_bsp_resume(struct cpuinfo_x86 *c)
  393. {
  394. /*
  395. * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
  396. * so reinitialize it properly like during bootup:
  397. */
  398. init_intel_energy_perf(c);
  399. }
  400. static void init_intel(struct cpuinfo_x86 *c)
  401. {
  402. unsigned int l2 = 0;
  403. early_init_intel(c);
  404. intel_workarounds(c);
  405. /*
  406. * Detect the extended topology information if available. This
  407. * will reinitialise the initial_apicid which will be used
  408. * in init_intel_cacheinfo()
  409. */
  410. detect_extended_topology(c);
  411. if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
  412. /*
  413. * let's use the legacy cpuid vector 0x1 and 0x4 for topology
  414. * detection.
  415. */
  416. c->x86_max_cores = intel_num_cpu_cores(c);
  417. #ifdef CONFIG_X86_32
  418. detect_ht(c);
  419. #endif
  420. }
  421. l2 = init_intel_cacheinfo(c);
  422. /* Detect legacy cache sizes if init_intel_cacheinfo did not */
  423. if (l2 == 0) {
  424. cpu_detect_cache_sizes(c);
  425. l2 = c->x86_cache_size;
  426. }
  427. if (c->cpuid_level > 9) {
  428. unsigned eax = cpuid_eax(10);
  429. /* Check for version and the number of counters */
  430. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  431. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  432. }
  433. if (cpu_has(c, X86_FEATURE_XMM2))
  434. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  435. if (boot_cpu_has(X86_FEATURE_DS)) {
  436. unsigned int l1;
  437. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  438. if (!(l1 & (1<<11)))
  439. set_cpu_cap(c, X86_FEATURE_BTS);
  440. if (!(l1 & (1<<12)))
  441. set_cpu_cap(c, X86_FEATURE_PEBS);
  442. }
  443. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
  444. (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
  445. set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
  446. if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
  447. ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
  448. set_cpu_bug(c, X86_BUG_MONITOR);
  449. #ifdef CONFIG_X86_64
  450. if (c->x86 == 15)
  451. c->x86_cache_alignment = c->x86_clflush_size * 2;
  452. if (c->x86 == 6)
  453. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  454. #else
  455. /*
  456. * Names for the Pentium II/Celeron processors
  457. * detectable only by also checking the cache size.
  458. * Dixon is NOT a Celeron.
  459. */
  460. if (c->x86 == 6) {
  461. char *p = NULL;
  462. switch (c->x86_model) {
  463. case 5:
  464. if (l2 == 0)
  465. p = "Celeron (Covington)";
  466. else if (l2 == 256)
  467. p = "Mobile Pentium II (Dixon)";
  468. break;
  469. case 6:
  470. if (l2 == 128)
  471. p = "Celeron (Mendocino)";
  472. else if (c->x86_mask == 0 || c->x86_mask == 5)
  473. p = "Celeron-A";
  474. break;
  475. case 8:
  476. if (l2 == 128)
  477. p = "Celeron (Coppermine)";
  478. break;
  479. }
  480. if (p)
  481. strcpy(c->x86_model_id, p);
  482. }
  483. if (c->x86 == 15)
  484. set_cpu_cap(c, X86_FEATURE_P4);
  485. if (c->x86 == 6)
  486. set_cpu_cap(c, X86_FEATURE_P3);
  487. #endif
  488. /* Work around errata */
  489. srat_detect_node(c);
  490. if (cpu_has(c, X86_FEATURE_VMX))
  491. detect_vmx_virtcap(c);
  492. init_intel_energy_perf(c);
  493. }
  494. #ifdef CONFIG_X86_32
  495. static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
  496. {
  497. /*
  498. * Intel PIII Tualatin. This comes in two flavours.
  499. * One has 256kb of cache, the other 512. We have no way
  500. * to determine which, so we use a boottime override
  501. * for the 512kb model, and assume 256 otherwise.
  502. */
  503. if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
  504. size = 256;
  505. /*
  506. * Intel Quark SoC X1000 contains a 4-way set associative
  507. * 16K cache with a 16 byte cache line and 256 lines per tag
  508. */
  509. if ((c->x86 == 5) && (c->x86_model == 9))
  510. size = 16;
  511. return size;
  512. }
  513. #endif
  514. #define TLB_INST_4K 0x01
  515. #define TLB_INST_4M 0x02
  516. #define TLB_INST_2M_4M 0x03
  517. #define TLB_INST_ALL 0x05
  518. #define TLB_INST_1G 0x06
  519. #define TLB_DATA_4K 0x11
  520. #define TLB_DATA_4M 0x12
  521. #define TLB_DATA_2M_4M 0x13
  522. #define TLB_DATA_4K_4M 0x14
  523. #define TLB_DATA_1G 0x16
  524. #define TLB_DATA0_4K 0x21
  525. #define TLB_DATA0_4M 0x22
  526. #define TLB_DATA0_2M_4M 0x23
  527. #define STLB_4K 0x41
  528. #define STLB_4K_2M 0x42
  529. static const struct _tlb_table intel_tlb_table[] = {
  530. { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
  531. { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
  532. { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
  533. { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
  534. { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
  535. { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
  536. { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
  537. { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  538. { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  539. { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
  540. { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  541. { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
  542. { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
  543. { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
  544. { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
  545. { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
  546. { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
  547. { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
  548. { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" },
  549. { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" },
  550. { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
  551. { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
  552. { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
  553. { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
  554. { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
  555. { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
  556. { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" },
  557. { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" },
  558. { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
  559. { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
  560. { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" },
  561. { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" },
  562. { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
  563. { 0x00, 0, 0 }
  564. };
  565. static void intel_tlb_lookup(const unsigned char desc)
  566. {
  567. unsigned char k;
  568. if (desc == 0)
  569. return;
  570. /* look up this descriptor in the table */
  571. for (k = 0; intel_tlb_table[k].descriptor != desc && \
  572. intel_tlb_table[k].descriptor != 0; k++)
  573. ;
  574. if (intel_tlb_table[k].tlb_type == 0)
  575. return;
  576. switch (intel_tlb_table[k].tlb_type) {
  577. case STLB_4K:
  578. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  579. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  580. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  581. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  582. break;
  583. case STLB_4K_2M:
  584. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  585. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  586. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  587. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  588. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  589. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  590. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  591. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  592. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  593. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  594. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  595. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  596. break;
  597. case TLB_INST_ALL:
  598. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  599. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  600. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  601. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  602. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  603. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  604. break;
  605. case TLB_INST_4K:
  606. if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
  607. tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
  608. break;
  609. case TLB_INST_4M:
  610. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  611. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  612. break;
  613. case TLB_INST_2M_4M:
  614. if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
  615. tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
  616. if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
  617. tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
  618. break;
  619. case TLB_DATA_4K:
  620. case TLB_DATA0_4K:
  621. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  622. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  623. break;
  624. case TLB_DATA_4M:
  625. case TLB_DATA0_4M:
  626. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  627. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  628. break;
  629. case TLB_DATA_2M_4M:
  630. case TLB_DATA0_2M_4M:
  631. if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
  632. tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
  633. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  634. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  635. break;
  636. case TLB_DATA_4K_4M:
  637. if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
  638. tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
  639. if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
  640. tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
  641. break;
  642. case TLB_DATA_1G:
  643. if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
  644. tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
  645. break;
  646. }
  647. }
  648. static void intel_detect_tlb(struct cpuinfo_x86 *c)
  649. {
  650. int i, j, n;
  651. unsigned int regs[4];
  652. unsigned char *desc = (unsigned char *)regs;
  653. if (c->cpuid_level < 2)
  654. return;
  655. /* Number of times to iterate */
  656. n = cpuid_eax(2) & 0xFF;
  657. for (i = 0 ; i < n ; i++) {
  658. cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
  659. /* If bit 31 is set, this is an unknown format */
  660. for (j = 0 ; j < 3 ; j++)
  661. if (regs[j] & (1 << 31))
  662. regs[j] = 0;
  663. /* Byte 0 is level count, not a descriptor */
  664. for (j = 1 ; j < 16 ; j++)
  665. intel_tlb_lookup(desc[j]);
  666. }
  667. }
  668. static const struct cpu_dev intel_cpu_dev = {
  669. .c_vendor = "Intel",
  670. .c_ident = { "GenuineIntel" },
  671. #ifdef CONFIG_X86_32
  672. .legacy_models = {
  673. { .family = 4, .model_names =
  674. {
  675. [0] = "486 DX-25/33",
  676. [1] = "486 DX-50",
  677. [2] = "486 SX",
  678. [3] = "486 DX/2",
  679. [4] = "486 SL",
  680. [5] = "486 SX/2",
  681. [7] = "486 DX/2-WB",
  682. [8] = "486 DX/4",
  683. [9] = "486 DX/4-WB"
  684. }
  685. },
  686. { .family = 5, .model_names =
  687. {
  688. [0] = "Pentium 60/66 A-step",
  689. [1] = "Pentium 60/66",
  690. [2] = "Pentium 75 - 200",
  691. [3] = "OverDrive PODP5V83",
  692. [4] = "Pentium MMX",
  693. [7] = "Mobile Pentium 75 - 200",
  694. [8] = "Mobile Pentium MMX",
  695. [9] = "Quark SoC X1000",
  696. }
  697. },
  698. { .family = 6, .model_names =
  699. {
  700. [0] = "Pentium Pro A-step",
  701. [1] = "Pentium Pro",
  702. [3] = "Pentium II (Klamath)",
  703. [4] = "Pentium II (Deschutes)",
  704. [5] = "Pentium II (Deschutes)",
  705. [6] = "Mobile Pentium II",
  706. [7] = "Pentium III (Katmai)",
  707. [8] = "Pentium III (Coppermine)",
  708. [10] = "Pentium III (Cascades)",
  709. [11] = "Pentium III (Tualatin)",
  710. }
  711. },
  712. { .family = 15, .model_names =
  713. {
  714. [0] = "Pentium 4 (Unknown)",
  715. [1] = "Pentium 4 (Willamette)",
  716. [2] = "Pentium 4 (Northwood)",
  717. [4] = "Pentium 4 (Foster)",
  718. [5] = "Pentium 4 (Foster)",
  719. }
  720. },
  721. },
  722. .legacy_cache_size = intel_size_cache,
  723. #endif
  724. .c_detect_tlb = intel_detect_tlb,
  725. .c_early_init = early_init_intel,
  726. .c_init = init_intel,
  727. .c_bsp_resume = intel_bsp_resume,
  728. .c_x86_vendor = X86_VENDOR_INTEL,
  729. };
  730. cpu_dev_register(intel_cpu_dev);