tlb_nohash.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. /*
  2. * This file contains the routines for TLB flushing.
  3. * On machines where the MMU does not use a hash table to store virtual to
  4. * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
  5. * this does -not- include 603 however which shares the implementation with
  6. * hash based processors)
  7. *
  8. * -- BenH
  9. *
  10. * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
  11. * IBM Corp.
  12. *
  13. * Derived from arch/ppc/mm/init.c:
  14. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  15. *
  16. * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  17. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  18. * Copyright (C) 1996 Paul Mackerras
  19. *
  20. * Derived from "arch/i386/mm/init.c"
  21. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  22. *
  23. * This program is free software; you can redistribute it and/or
  24. * modify it under the terms of the GNU General Public License
  25. * as published by the Free Software Foundation; either version
  26. * 2 of the License, or (at your option) any later version.
  27. *
  28. */
  29. #include <linux/kernel.h>
  30. #include <linux/export.h>
  31. #include <linux/mm.h>
  32. #include <linux/init.h>
  33. #include <linux/highmem.h>
  34. #include <linux/pagemap.h>
  35. #include <linux/preempt.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/memblock.h>
  38. #include <linux/of_fdt.h>
  39. #include <linux/hugetlb.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/tlb.h>
  42. #include <asm/code-patching.h>
  43. #include <asm/cputhreads.h>
  44. #include <asm/hugetlb.h>
  45. #include <asm/paca.h>
  46. #include "mmu_decl.h"
  47. /*
  48. * This struct lists the sw-supported page sizes. The hardawre MMU may support
  49. * other sizes not listed here. The .ind field is only used on MMUs that have
  50. * indirect page table entries.
  51. */
  52. #ifdef CONFIG_PPC_BOOK3E_MMU
  53. #ifdef CONFIG_PPC_FSL_BOOK3E
  54. struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
  55. [MMU_PAGE_4K] = {
  56. .shift = 12,
  57. .enc = BOOK3E_PAGESZ_4K,
  58. },
  59. [MMU_PAGE_2M] = {
  60. .shift = 21,
  61. .enc = BOOK3E_PAGESZ_2M,
  62. },
  63. [MMU_PAGE_4M] = {
  64. .shift = 22,
  65. .enc = BOOK3E_PAGESZ_4M,
  66. },
  67. [MMU_PAGE_16M] = {
  68. .shift = 24,
  69. .enc = BOOK3E_PAGESZ_16M,
  70. },
  71. [MMU_PAGE_64M] = {
  72. .shift = 26,
  73. .enc = BOOK3E_PAGESZ_64M,
  74. },
  75. [MMU_PAGE_256M] = {
  76. .shift = 28,
  77. .enc = BOOK3E_PAGESZ_256M,
  78. },
  79. [MMU_PAGE_1G] = {
  80. .shift = 30,
  81. .enc = BOOK3E_PAGESZ_1GB,
  82. },
  83. };
  84. #else
  85. struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
  86. [MMU_PAGE_4K] = {
  87. .shift = 12,
  88. .ind = 20,
  89. .enc = BOOK3E_PAGESZ_4K,
  90. },
  91. [MMU_PAGE_16K] = {
  92. .shift = 14,
  93. .enc = BOOK3E_PAGESZ_16K,
  94. },
  95. [MMU_PAGE_64K] = {
  96. .shift = 16,
  97. .ind = 28,
  98. .enc = BOOK3E_PAGESZ_64K,
  99. },
  100. [MMU_PAGE_1M] = {
  101. .shift = 20,
  102. .enc = BOOK3E_PAGESZ_1M,
  103. },
  104. [MMU_PAGE_16M] = {
  105. .shift = 24,
  106. .ind = 36,
  107. .enc = BOOK3E_PAGESZ_16M,
  108. },
  109. [MMU_PAGE_256M] = {
  110. .shift = 28,
  111. .enc = BOOK3E_PAGESZ_256M,
  112. },
  113. [MMU_PAGE_1G] = {
  114. .shift = 30,
  115. .enc = BOOK3E_PAGESZ_1GB,
  116. },
  117. };
  118. #endif /* CONFIG_FSL_BOOKE */
  119. static inline int mmu_get_tsize(int psize)
  120. {
  121. return mmu_psize_defs[psize].enc;
  122. }
  123. #else
  124. static inline int mmu_get_tsize(int psize)
  125. {
  126. /* This isn't used on !Book3E for now */
  127. return 0;
  128. }
  129. #endif /* CONFIG_PPC_BOOK3E_MMU */
  130. /* The variables below are currently only used on 64-bit Book3E
  131. * though this will probably be made common with other nohash
  132. * implementations at some point
  133. */
  134. #ifdef CONFIG_PPC64
  135. int mmu_linear_psize; /* Page size used for the linear mapping */
  136. int mmu_pte_psize; /* Page size used for PTE pages */
  137. int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
  138. int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
  139. unsigned long linear_map_top; /* Top of linear mapping */
  140. /*
  141. * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
  142. * exceptions. This is used for bolted and e6500 TLB miss handlers which
  143. * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
  144. * this is set to zero.
  145. */
  146. int extlb_level_exc;
  147. #endif /* CONFIG_PPC64 */
  148. #ifdef CONFIG_PPC_FSL_BOOK3E
  149. /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
  150. DEFINE_PER_CPU(int, next_tlbcam_idx);
  151. EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
  152. #endif
  153. /*
  154. * Base TLB flushing operations:
  155. *
  156. * - flush_tlb_mm(mm) flushes the specified mm context TLB's
  157. * - flush_tlb_page(vma, vmaddr) flushes one page
  158. * - flush_tlb_range(vma, start, end) flushes a range of pages
  159. * - flush_tlb_kernel_range(start, end) flushes kernel pages
  160. *
  161. * - local_* variants of page and mm only apply to the current
  162. * processor
  163. */
  164. /*
  165. * These are the base non-SMP variants of page and mm flushing
  166. */
  167. void local_flush_tlb_mm(struct mm_struct *mm)
  168. {
  169. unsigned int pid;
  170. preempt_disable();
  171. pid = mm->context.id;
  172. if (pid != MMU_NO_CONTEXT)
  173. _tlbil_pid(pid);
  174. preempt_enable();
  175. }
  176. EXPORT_SYMBOL(local_flush_tlb_mm);
  177. void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
  178. int tsize, int ind)
  179. {
  180. unsigned int pid;
  181. preempt_disable();
  182. pid = mm ? mm->context.id : 0;
  183. if (pid != MMU_NO_CONTEXT)
  184. _tlbil_va(vmaddr, pid, tsize, ind);
  185. preempt_enable();
  186. }
  187. void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
  188. {
  189. __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
  190. mmu_get_tsize(mmu_virtual_psize), 0);
  191. }
  192. EXPORT_SYMBOL(local_flush_tlb_page);
  193. /*
  194. * And here are the SMP non-local implementations
  195. */
  196. #ifdef CONFIG_SMP
  197. static DEFINE_RAW_SPINLOCK(tlbivax_lock);
  198. struct tlb_flush_param {
  199. unsigned long addr;
  200. unsigned int pid;
  201. unsigned int tsize;
  202. unsigned int ind;
  203. };
  204. static void do_flush_tlb_mm_ipi(void *param)
  205. {
  206. struct tlb_flush_param *p = param;
  207. _tlbil_pid(p ? p->pid : 0);
  208. }
  209. static void do_flush_tlb_page_ipi(void *param)
  210. {
  211. struct tlb_flush_param *p = param;
  212. _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
  213. }
  214. /* Note on invalidations and PID:
  215. *
  216. * We snapshot the PID with preempt disabled. At this point, it can still
  217. * change either because:
  218. * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
  219. * - we are invaliating some target that isn't currently running here
  220. * and is concurrently acquiring a new PID on another CPU
  221. * - some other CPU is re-acquiring a lost PID for this mm
  222. * etc...
  223. *
  224. * However, this shouldn't be a problem as we only guarantee
  225. * invalidation of TLB entries present prior to this call, so we
  226. * don't care about the PID changing, and invalidating a stale PID
  227. * is generally harmless.
  228. */
  229. void flush_tlb_mm(struct mm_struct *mm)
  230. {
  231. unsigned int pid;
  232. preempt_disable();
  233. pid = mm->context.id;
  234. if (unlikely(pid == MMU_NO_CONTEXT))
  235. goto no_context;
  236. if (!mm_is_core_local(mm)) {
  237. struct tlb_flush_param p = { .pid = pid };
  238. /* Ignores smp_processor_id() even if set. */
  239. smp_call_function_many(mm_cpumask(mm),
  240. do_flush_tlb_mm_ipi, &p, 1);
  241. }
  242. _tlbil_pid(pid);
  243. no_context:
  244. preempt_enable();
  245. }
  246. EXPORT_SYMBOL(flush_tlb_mm);
  247. void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
  248. int tsize, int ind)
  249. {
  250. struct cpumask *cpu_mask;
  251. unsigned int pid;
  252. /*
  253. * This function as well as __local_flush_tlb_page() must only be called
  254. * for user contexts.
  255. */
  256. if (unlikely(WARN_ON(!mm)))
  257. return;
  258. preempt_disable();
  259. pid = mm->context.id;
  260. if (unlikely(pid == MMU_NO_CONTEXT))
  261. goto bail;
  262. cpu_mask = mm_cpumask(mm);
  263. if (!mm_is_core_local(mm)) {
  264. /* If broadcast tlbivax is supported, use it */
  265. if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
  266. int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
  267. if (lock)
  268. raw_spin_lock(&tlbivax_lock);
  269. _tlbivax_bcast(vmaddr, pid, tsize, ind);
  270. if (lock)
  271. raw_spin_unlock(&tlbivax_lock);
  272. goto bail;
  273. } else {
  274. struct tlb_flush_param p = {
  275. .pid = pid,
  276. .addr = vmaddr,
  277. .tsize = tsize,
  278. .ind = ind,
  279. };
  280. /* Ignores smp_processor_id() even if set in cpu_mask */
  281. smp_call_function_many(cpu_mask,
  282. do_flush_tlb_page_ipi, &p, 1);
  283. }
  284. }
  285. _tlbil_va(vmaddr, pid, tsize, ind);
  286. bail:
  287. preempt_enable();
  288. }
  289. void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
  290. {
  291. #ifdef CONFIG_HUGETLB_PAGE
  292. if (vma && is_vm_hugetlb_page(vma))
  293. flush_hugetlb_page(vma, vmaddr);
  294. #endif
  295. __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
  296. mmu_get_tsize(mmu_virtual_psize), 0);
  297. }
  298. EXPORT_SYMBOL(flush_tlb_page);
  299. #endif /* CONFIG_SMP */
  300. #ifdef CONFIG_PPC_47x
  301. void __init early_init_mmu_47x(void)
  302. {
  303. #ifdef CONFIG_SMP
  304. unsigned long root = of_get_flat_dt_root();
  305. if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
  306. mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
  307. #endif /* CONFIG_SMP */
  308. }
  309. #endif /* CONFIG_PPC_47x */
  310. /*
  311. * Flush kernel TLB entries in the given range
  312. */
  313. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  314. {
  315. #ifdef CONFIG_SMP
  316. preempt_disable();
  317. smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
  318. _tlbil_pid(0);
  319. preempt_enable();
  320. #else
  321. _tlbil_pid(0);
  322. #endif
  323. }
  324. EXPORT_SYMBOL(flush_tlb_kernel_range);
  325. /*
  326. * Currently, for range flushing, we just do a full mm flush. This should
  327. * be optimized based on a threshold on the size of the range, since
  328. * some implementation can stack multiple tlbivax before a tlbsync but
  329. * for now, we keep it that way
  330. */
  331. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  332. unsigned long end)
  333. {
  334. flush_tlb_mm(vma->vm_mm);
  335. }
  336. EXPORT_SYMBOL(flush_tlb_range);
  337. void tlb_flush(struct mmu_gather *tlb)
  338. {
  339. flush_tlb_mm(tlb->mm);
  340. }
  341. /*
  342. * Below are functions specific to the 64-bit variant of Book3E though that
  343. * may change in the future
  344. */
  345. #ifdef CONFIG_PPC64
  346. /*
  347. * Handling of virtual linear page tables or indirect TLB entries
  348. * flushing when PTE pages are freed
  349. */
  350. void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
  351. {
  352. int tsize = mmu_psize_defs[mmu_pte_psize].enc;
  353. if (book3e_htw_mode != PPC_HTW_NONE) {
  354. unsigned long start = address & PMD_MASK;
  355. unsigned long end = address + PMD_SIZE;
  356. unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
  357. /* This isn't the most optimal, ideally we would factor out the
  358. * while preempt & CPU mask mucking around, or even the IPI but
  359. * it will do for now
  360. */
  361. while (start < end) {
  362. __flush_tlb_page(tlb->mm, start, tsize, 1);
  363. start += size;
  364. }
  365. } else {
  366. unsigned long rmask = 0xf000000000000000ul;
  367. unsigned long rid = (address & rmask) | 0x1000000000000000ul;
  368. unsigned long vpte = address & ~rmask;
  369. #ifdef CONFIG_PPC_64K_PAGES
  370. vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
  371. #else
  372. vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
  373. #endif
  374. vpte |= rid;
  375. __flush_tlb_page(tlb->mm, vpte, tsize, 0);
  376. }
  377. }
  378. static void setup_page_sizes(void)
  379. {
  380. unsigned int tlb0cfg;
  381. unsigned int tlb0ps;
  382. unsigned int eptcfg;
  383. int i, psize;
  384. #ifdef CONFIG_PPC_FSL_BOOK3E
  385. unsigned int mmucfg = mfspr(SPRN_MMUCFG);
  386. int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
  387. if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
  388. unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
  389. unsigned int min_pg, max_pg;
  390. min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
  391. max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
  392. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  393. struct mmu_psize_def *def;
  394. unsigned int shift;
  395. def = &mmu_psize_defs[psize];
  396. shift = def->shift;
  397. if (shift == 0 || shift & 1)
  398. continue;
  399. /* adjust to be in terms of 4^shift Kb */
  400. shift = (shift - 10) >> 1;
  401. if ((shift >= min_pg) && (shift <= max_pg))
  402. def->flags |= MMU_PAGE_SIZE_DIRECT;
  403. }
  404. goto out;
  405. }
  406. if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
  407. u32 tlb1cfg, tlb1ps;
  408. tlb0cfg = mfspr(SPRN_TLB0CFG);
  409. tlb1cfg = mfspr(SPRN_TLB1CFG);
  410. tlb1ps = mfspr(SPRN_TLB1PS);
  411. eptcfg = mfspr(SPRN_EPTCFG);
  412. if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
  413. book3e_htw_mode = PPC_HTW_E6500;
  414. /*
  415. * We expect 4K subpage size and unrestricted indirect size.
  416. * The lack of a restriction on indirect size is a Freescale
  417. * extension, indicated by PSn = 0 but SPSn != 0.
  418. */
  419. if (eptcfg != 2)
  420. book3e_htw_mode = PPC_HTW_NONE;
  421. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  422. struct mmu_psize_def *def = &mmu_psize_defs[psize];
  423. if (tlb1ps & (1U << (def->shift - 10))) {
  424. def->flags |= MMU_PAGE_SIZE_DIRECT;
  425. if (book3e_htw_mode && psize == MMU_PAGE_2M)
  426. def->flags |= MMU_PAGE_SIZE_INDIRECT;
  427. }
  428. }
  429. goto out;
  430. }
  431. #endif
  432. tlb0cfg = mfspr(SPRN_TLB0CFG);
  433. tlb0ps = mfspr(SPRN_TLB0PS);
  434. eptcfg = mfspr(SPRN_EPTCFG);
  435. /* Look for supported direct sizes */
  436. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  437. struct mmu_psize_def *def = &mmu_psize_defs[psize];
  438. if (tlb0ps & (1U << (def->shift - 10)))
  439. def->flags |= MMU_PAGE_SIZE_DIRECT;
  440. }
  441. /* Indirect page sizes supported ? */
  442. if ((tlb0cfg & TLBnCFG_IND) == 0 ||
  443. (tlb0cfg & TLBnCFG_PT) == 0)
  444. goto out;
  445. book3e_htw_mode = PPC_HTW_IBM;
  446. /* Now, we only deal with one IND page size for each
  447. * direct size. Hopefully all implementations today are
  448. * unambiguous, but we might want to be careful in the
  449. * future.
  450. */
  451. for (i = 0; i < 3; i++) {
  452. unsigned int ps, sps;
  453. sps = eptcfg & 0x1f;
  454. eptcfg >>= 5;
  455. ps = eptcfg & 0x1f;
  456. eptcfg >>= 5;
  457. if (!ps || !sps)
  458. continue;
  459. for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
  460. struct mmu_psize_def *def = &mmu_psize_defs[psize];
  461. if (ps == (def->shift - 10))
  462. def->flags |= MMU_PAGE_SIZE_INDIRECT;
  463. if (sps == (def->shift - 10))
  464. def->ind = ps + 10;
  465. }
  466. }
  467. out:
  468. /* Cleanup array and print summary */
  469. pr_info("MMU: Supported page sizes\n");
  470. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  471. struct mmu_psize_def *def = &mmu_psize_defs[psize];
  472. const char *__page_type_names[] = {
  473. "unsupported",
  474. "direct",
  475. "indirect",
  476. "direct & indirect"
  477. };
  478. if (def->flags == 0) {
  479. def->shift = 0;
  480. continue;
  481. }
  482. pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
  483. __page_type_names[def->flags & 0x3]);
  484. }
  485. }
  486. static void setup_mmu_htw(void)
  487. {
  488. /*
  489. * If we want to use HW tablewalk, enable it by patching the TLB miss
  490. * handlers to branch to the one dedicated to it.
  491. */
  492. switch (book3e_htw_mode) {
  493. case PPC_HTW_IBM:
  494. patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
  495. patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
  496. break;
  497. #ifdef CONFIG_PPC_FSL_BOOK3E
  498. case PPC_HTW_E6500:
  499. extlb_level_exc = EX_TLB_SIZE;
  500. patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
  501. patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
  502. break;
  503. #endif
  504. }
  505. pr_info("MMU: Book3E HW tablewalk %s\n",
  506. book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
  507. }
  508. /*
  509. * Early initialization of the MMU TLB code
  510. */
  511. static void early_init_this_mmu(void)
  512. {
  513. unsigned int mas4;
  514. /* Set MAS4 based on page table setting */
  515. mas4 = 0x4 << MAS4_WIMGED_SHIFT;
  516. switch (book3e_htw_mode) {
  517. case PPC_HTW_E6500:
  518. mas4 |= MAS4_INDD;
  519. mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
  520. mas4 |= MAS4_TLBSELD(1);
  521. mmu_pte_psize = MMU_PAGE_2M;
  522. break;
  523. case PPC_HTW_IBM:
  524. mas4 |= MAS4_INDD;
  525. #ifdef CONFIG_PPC_64K_PAGES
  526. mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
  527. mmu_pte_psize = MMU_PAGE_256M;
  528. #else
  529. mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
  530. mmu_pte_psize = MMU_PAGE_1M;
  531. #endif
  532. break;
  533. case PPC_HTW_NONE:
  534. #ifdef CONFIG_PPC_64K_PAGES
  535. mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
  536. #else
  537. mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
  538. #endif
  539. mmu_pte_psize = mmu_virtual_psize;
  540. break;
  541. }
  542. mtspr(SPRN_MAS4, mas4);
  543. #ifdef CONFIG_PPC_FSL_BOOK3E
  544. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
  545. unsigned int num_cams;
  546. int __maybe_unused cpu = smp_processor_id();
  547. bool map = true;
  548. /* use a quarter of the TLBCAM for bolted linear map */
  549. num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
  550. /*
  551. * Only do the mapping once per core, or else the
  552. * transient mapping would cause problems.
  553. */
  554. #ifdef CONFIG_SMP
  555. if (hweight32(get_tensr()) > 1)
  556. map = false;
  557. #endif
  558. if (map)
  559. linear_map_top = map_mem_in_cams(linear_map_top,
  560. num_cams, false);
  561. }
  562. #endif
  563. /* A sync won't hurt us after mucking around with
  564. * the MMU configuration
  565. */
  566. mb();
  567. }
  568. static void __init early_init_mmu_global(void)
  569. {
  570. /* XXX This will have to be decided at runtime, but right
  571. * now our boot and TLB miss code hard wires it. Ideally
  572. * we should find out a suitable page size and patch the
  573. * TLB miss code (either that or use the PACA to store
  574. * the value we want)
  575. */
  576. mmu_linear_psize = MMU_PAGE_1G;
  577. /* XXX This should be decided at runtime based on supported
  578. * page sizes in the TLB, but for now let's assume 16M is
  579. * always there and a good fit (which it probably is)
  580. *
  581. * Freescale booke only supports 4K pages in TLB0, so use that.
  582. */
  583. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
  584. mmu_vmemmap_psize = MMU_PAGE_4K;
  585. else
  586. mmu_vmemmap_psize = MMU_PAGE_16M;
  587. /* XXX This code only checks for TLB 0 capabilities and doesn't
  588. * check what page size combos are supported by the HW. It
  589. * also doesn't handle the case where a separate array holds
  590. * the IND entries from the array loaded by the PT.
  591. */
  592. /* Look for supported page sizes */
  593. setup_page_sizes();
  594. /* Look for HW tablewalk support */
  595. setup_mmu_htw();
  596. #ifdef CONFIG_PPC_FSL_BOOK3E
  597. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
  598. if (book3e_htw_mode == PPC_HTW_NONE) {
  599. extlb_level_exc = EX_TLB_SIZE;
  600. patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
  601. patch_exception(0x1e0,
  602. exc_instruction_tlb_miss_bolted_book3e);
  603. }
  604. }
  605. #endif
  606. /* Set the global containing the top of the linear mapping
  607. * for use by the TLB miss code
  608. */
  609. linear_map_top = memblock_end_of_DRAM();
  610. }
  611. static void __init early_mmu_set_memory_limit(void)
  612. {
  613. #ifdef CONFIG_PPC_FSL_BOOK3E
  614. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
  615. /*
  616. * Limit memory so we dont have linear faults.
  617. * Unlike memblock_set_current_limit, which limits
  618. * memory available during early boot, this permanently
  619. * reduces the memory available to Linux. We need to
  620. * do this because highmem is not supported on 64-bit.
  621. */
  622. memblock_enforce_memory_limit(linear_map_top);
  623. }
  624. #endif
  625. memblock_set_current_limit(linear_map_top);
  626. }
  627. /* boot cpu only */
  628. void __init early_init_mmu(void)
  629. {
  630. early_init_mmu_global();
  631. early_init_this_mmu();
  632. early_mmu_set_memory_limit();
  633. }
  634. void early_init_mmu_secondary(void)
  635. {
  636. early_init_this_mmu();
  637. }
  638. void setup_initial_memory_limit(phys_addr_t first_memblock_base,
  639. phys_addr_t first_memblock_size)
  640. {
  641. /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
  642. * the bolted TLB entry. We know for now that only 1G
  643. * entries are supported though that may eventually
  644. * change.
  645. *
  646. * on FSL Embedded 64-bit, usually all RAM is bolted, but with
  647. * unusual memory sizes it's possible for some RAM to not be mapped
  648. * (such RAM is not used at all by Linux, since we don't support
  649. * highmem on 64-bit). We limit ppc64_rma_size to what would be
  650. * mappable if this memblock is the only one. Additional memblocks
  651. * can only increase, not decrease, the amount that ends up getting
  652. * mapped. We still limit max to 1G even if we'll eventually map
  653. * more. This is due to what the early init code is set up to do.
  654. *
  655. * We crop it to the size of the first MEMBLOCK to
  656. * avoid going over total available memory just in case...
  657. */
  658. #ifdef CONFIG_PPC_FSL_BOOK3E
  659. if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
  660. unsigned long linear_sz;
  661. unsigned int num_cams;
  662. /* use a quarter of the TLBCAM for bolted linear map */
  663. num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
  664. linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
  665. true);
  666. ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
  667. } else
  668. #endif
  669. ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
  670. /* Finally limit subsequent allocations */
  671. memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
  672. }
  673. #else /* ! CONFIG_PPC64 */
  674. void __init early_init_mmu(void)
  675. {
  676. #ifdef CONFIG_PPC_47x
  677. early_init_mmu_47x();
  678. #endif
  679. }
  680. #endif /* CONFIG_PPC64 */