bpf_jit.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. /*
  2. * Just-In-Time compiler for BPF filters on MIPS
  3. *
  4. * Copyright (c) 2014 Imagination Technologies Ltd.
  5. * Author: Markos Chandras <markos.chandras@imgtec.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the
  9. * Free Software Foundation; version 2 of the License.
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/compiler.h>
  13. #include <linux/errno.h>
  14. #include <linux/filter.h>
  15. #include <linux/if_vlan.h>
  16. #include <linux/moduleloader.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/string.h>
  19. #include <linux/slab.h>
  20. #include <linux/types.h>
  21. #include <asm/asm.h>
  22. #include <asm/bitops.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/cpu-features.h>
  25. #include <asm/uasm.h>
  26. #include "bpf_jit.h"
  27. /* ABI
  28. * r_skb_hl SKB header length
  29. * r_data SKB data pointer
  30. * r_off Offset
  31. * r_A BPF register A
  32. * r_X BPF register X
  33. * r_skb *skb
  34. * r_M *scratch memory
  35. * r_skb_len SKB length
  36. *
  37. * On entry (*bpf_func)(*skb, *filter)
  38. * a0 = MIPS_R_A0 = skb;
  39. * a1 = MIPS_R_A1 = filter;
  40. *
  41. * Stack
  42. * ...
  43. * M[15]
  44. * M[14]
  45. * M[13]
  46. * ...
  47. * M[0] <-- r_M
  48. * saved reg k-1
  49. * saved reg k-2
  50. * ...
  51. * saved reg 0 <-- r_sp
  52. * <no argument area>
  53. *
  54. * Packet layout
  55. *
  56. * <--------------------- len ------------------------>
  57. * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
  58. * ----------------------------------------------------
  59. * | skb->data |
  60. * ----------------------------------------------------
  61. */
  62. #define ptr typeof(unsigned long)
  63. #define SCRATCH_OFF(k) (4 * (k))
  64. /* JIT flags */
  65. #define SEEN_CALL (1 << BPF_MEMWORDS)
  66. #define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
  67. #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
  68. #define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
  69. #define SEEN_OFF SEEN_SREG(2)
  70. #define SEEN_A SEEN_SREG(3)
  71. #define SEEN_X SEEN_SREG(4)
  72. #define SEEN_SKB SEEN_SREG(5)
  73. #define SEEN_MEM SEEN_SREG(6)
  74. /* SEEN_SK_DATA also implies skb_hl an skb_len */
  75. #define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
  76. /* Arguments used by JIT */
  77. #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
  78. #define SBIT(x) (1 << (x)) /* Signed version of BIT() */
  79. /**
  80. * struct jit_ctx - JIT context
  81. * @skf: The sk_filter
  82. * @prologue_bytes: Number of bytes for prologue
  83. * @idx: Instruction index
  84. * @flags: JIT flags
  85. * @offsets: Instruction offsets
  86. * @target: Memory location for the compiled filter
  87. */
  88. struct jit_ctx {
  89. const struct bpf_prog *skf;
  90. unsigned int prologue_bytes;
  91. u32 idx;
  92. u32 flags;
  93. u32 *offsets;
  94. u32 *target;
  95. };
  96. static inline int optimize_div(u32 *k)
  97. {
  98. /* power of 2 divides can be implemented with right shift */
  99. if (!(*k & (*k-1))) {
  100. *k = ilog2(*k);
  101. return 1;
  102. }
  103. return 0;
  104. }
  105. static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
  106. /* Simply emit the instruction if the JIT memory space has been allocated */
  107. #define emit_instr(ctx, func, ...) \
  108. do { \
  109. if ((ctx)->target != NULL) { \
  110. u32 *p = &(ctx)->target[ctx->idx]; \
  111. uasm_i_##func(&p, ##__VA_ARGS__); \
  112. } \
  113. (ctx)->idx++; \
  114. } while (0)
  115. /*
  116. * Similar to emit_instr but it must be used when we need to emit
  117. * 32-bit or 64-bit instructions
  118. */
  119. #define emit_long_instr(ctx, func, ...) \
  120. do { \
  121. if ((ctx)->target != NULL) { \
  122. u32 *p = &(ctx)->target[ctx->idx]; \
  123. UASM_i_##func(&p, ##__VA_ARGS__); \
  124. } \
  125. (ctx)->idx++; \
  126. } while (0)
  127. /* Determine if immediate is within the 16-bit signed range */
  128. static inline bool is_range16(s32 imm)
  129. {
  130. return !(imm >= SBIT(15) || imm < -SBIT(15));
  131. }
  132. static inline void emit_addu(unsigned int dst, unsigned int src1,
  133. unsigned int src2, struct jit_ctx *ctx)
  134. {
  135. emit_instr(ctx, addu, dst, src1, src2);
  136. }
  137. static inline void emit_nop(struct jit_ctx *ctx)
  138. {
  139. emit_instr(ctx, nop);
  140. }
  141. /* Load a u32 immediate to a register */
  142. static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
  143. {
  144. if (ctx->target != NULL) {
  145. /* addiu can only handle s16 */
  146. if (!is_range16(imm)) {
  147. u32 *p = &ctx->target[ctx->idx];
  148. uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
  149. p = &ctx->target[ctx->idx + 1];
  150. uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
  151. } else {
  152. u32 *p = &ctx->target[ctx->idx];
  153. uasm_i_addiu(&p, dst, r_zero, imm);
  154. }
  155. }
  156. ctx->idx++;
  157. if (!is_range16(imm))
  158. ctx->idx++;
  159. }
  160. static inline void emit_or(unsigned int dst, unsigned int src1,
  161. unsigned int src2, struct jit_ctx *ctx)
  162. {
  163. emit_instr(ctx, or, dst, src1, src2);
  164. }
  165. static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
  166. struct jit_ctx *ctx)
  167. {
  168. if (imm >= BIT(16)) {
  169. emit_load_imm(r_tmp, imm, ctx);
  170. emit_or(dst, src, r_tmp, ctx);
  171. } else {
  172. emit_instr(ctx, ori, dst, src, imm);
  173. }
  174. }
  175. static inline void emit_daddiu(unsigned int dst, unsigned int src,
  176. int imm, struct jit_ctx *ctx)
  177. {
  178. /*
  179. * Only used for stack, so the imm is relatively small
  180. * and it fits in 15-bits
  181. */
  182. emit_instr(ctx, daddiu, dst, src, imm);
  183. }
  184. static inline void emit_addiu(unsigned int dst, unsigned int src,
  185. u32 imm, struct jit_ctx *ctx)
  186. {
  187. if (!is_range16(imm)) {
  188. emit_load_imm(r_tmp, imm, ctx);
  189. emit_addu(dst, r_tmp, src, ctx);
  190. } else {
  191. emit_instr(ctx, addiu, dst, src, imm);
  192. }
  193. }
  194. static inline void emit_and(unsigned int dst, unsigned int src1,
  195. unsigned int src2, struct jit_ctx *ctx)
  196. {
  197. emit_instr(ctx, and, dst, src1, src2);
  198. }
  199. static inline void emit_andi(unsigned int dst, unsigned int src,
  200. u32 imm, struct jit_ctx *ctx)
  201. {
  202. /* If imm does not fit in u16 then load it to register */
  203. if (imm >= BIT(16)) {
  204. emit_load_imm(r_tmp, imm, ctx);
  205. emit_and(dst, src, r_tmp, ctx);
  206. } else {
  207. emit_instr(ctx, andi, dst, src, imm);
  208. }
  209. }
  210. static inline void emit_xor(unsigned int dst, unsigned int src1,
  211. unsigned int src2, struct jit_ctx *ctx)
  212. {
  213. emit_instr(ctx, xor, dst, src1, src2);
  214. }
  215. static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
  216. {
  217. /* If imm does not fit in u16 then load it to register */
  218. if (imm >= BIT(16)) {
  219. emit_load_imm(r_tmp, imm, ctx);
  220. emit_xor(dst, src, r_tmp, ctx);
  221. } else {
  222. emit_instr(ctx, xori, dst, src, imm);
  223. }
  224. }
  225. static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
  226. {
  227. emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
  228. }
  229. static inline void emit_subu(unsigned int dst, unsigned int src1,
  230. unsigned int src2, struct jit_ctx *ctx)
  231. {
  232. emit_instr(ctx, subu, dst, src1, src2);
  233. }
  234. static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
  235. {
  236. emit_subu(reg, r_zero, reg, ctx);
  237. }
  238. static inline void emit_sllv(unsigned int dst, unsigned int src,
  239. unsigned int sa, struct jit_ctx *ctx)
  240. {
  241. emit_instr(ctx, sllv, dst, src, sa);
  242. }
  243. static inline void emit_sll(unsigned int dst, unsigned int src,
  244. unsigned int sa, struct jit_ctx *ctx)
  245. {
  246. /* sa is 5-bits long */
  247. if (sa >= BIT(5))
  248. /* Shifting >= 32 results in zero */
  249. emit_jit_reg_move(dst, r_zero, ctx);
  250. else
  251. emit_instr(ctx, sll, dst, src, sa);
  252. }
  253. static inline void emit_srlv(unsigned int dst, unsigned int src,
  254. unsigned int sa, struct jit_ctx *ctx)
  255. {
  256. emit_instr(ctx, srlv, dst, src, sa);
  257. }
  258. static inline void emit_srl(unsigned int dst, unsigned int src,
  259. unsigned int sa, struct jit_ctx *ctx)
  260. {
  261. /* sa is 5-bits long */
  262. if (sa >= BIT(5))
  263. /* Shifting >= 32 results in zero */
  264. emit_jit_reg_move(dst, r_zero, ctx);
  265. else
  266. emit_instr(ctx, srl, dst, src, sa);
  267. }
  268. static inline void emit_slt(unsigned int dst, unsigned int src1,
  269. unsigned int src2, struct jit_ctx *ctx)
  270. {
  271. emit_instr(ctx, slt, dst, src1, src2);
  272. }
  273. static inline void emit_sltu(unsigned int dst, unsigned int src1,
  274. unsigned int src2, struct jit_ctx *ctx)
  275. {
  276. emit_instr(ctx, sltu, dst, src1, src2);
  277. }
  278. static inline void emit_sltiu(unsigned dst, unsigned int src,
  279. unsigned int imm, struct jit_ctx *ctx)
  280. {
  281. /* 16 bit immediate */
  282. if (!is_range16((s32)imm)) {
  283. emit_load_imm(r_tmp, imm, ctx);
  284. emit_sltu(dst, src, r_tmp, ctx);
  285. } else {
  286. emit_instr(ctx, sltiu, dst, src, imm);
  287. }
  288. }
  289. /* Store register on the stack */
  290. static inline void emit_store_stack_reg(ptr reg, ptr base,
  291. unsigned int offset,
  292. struct jit_ctx *ctx)
  293. {
  294. emit_long_instr(ctx, SW, reg, offset, base);
  295. }
  296. static inline void emit_store(ptr reg, ptr base, unsigned int offset,
  297. struct jit_ctx *ctx)
  298. {
  299. emit_instr(ctx, sw, reg, offset, base);
  300. }
  301. static inline void emit_load_stack_reg(ptr reg, ptr base,
  302. unsigned int offset,
  303. struct jit_ctx *ctx)
  304. {
  305. emit_long_instr(ctx, LW, reg, offset, base);
  306. }
  307. static inline void emit_load(unsigned int reg, unsigned int base,
  308. unsigned int offset, struct jit_ctx *ctx)
  309. {
  310. emit_instr(ctx, lw, reg, offset, base);
  311. }
  312. static inline void emit_load_byte(unsigned int reg, unsigned int base,
  313. unsigned int offset, struct jit_ctx *ctx)
  314. {
  315. emit_instr(ctx, lb, reg, offset, base);
  316. }
  317. static inline void emit_half_load(unsigned int reg, unsigned int base,
  318. unsigned int offset, struct jit_ctx *ctx)
  319. {
  320. emit_instr(ctx, lh, reg, offset, base);
  321. }
  322. static inline void emit_mul(unsigned int dst, unsigned int src1,
  323. unsigned int src2, struct jit_ctx *ctx)
  324. {
  325. emit_instr(ctx, mul, dst, src1, src2);
  326. }
  327. static inline void emit_div(unsigned int dst, unsigned int src,
  328. struct jit_ctx *ctx)
  329. {
  330. if (ctx->target != NULL) {
  331. u32 *p = &ctx->target[ctx->idx];
  332. uasm_i_divu(&p, dst, src);
  333. p = &ctx->target[ctx->idx + 1];
  334. uasm_i_mflo(&p, dst);
  335. }
  336. ctx->idx += 2; /* 2 insts */
  337. }
  338. static inline void emit_mod(unsigned int dst, unsigned int src,
  339. struct jit_ctx *ctx)
  340. {
  341. if (ctx->target != NULL) {
  342. u32 *p = &ctx->target[ctx->idx];
  343. uasm_i_divu(&p, dst, src);
  344. p = &ctx->target[ctx->idx + 1];
  345. uasm_i_mfhi(&p, dst);
  346. }
  347. ctx->idx += 2; /* 2 insts */
  348. }
  349. static inline void emit_dsll(unsigned int dst, unsigned int src,
  350. unsigned int sa, struct jit_ctx *ctx)
  351. {
  352. emit_instr(ctx, dsll, dst, src, sa);
  353. }
  354. static inline void emit_dsrl32(unsigned int dst, unsigned int src,
  355. unsigned int sa, struct jit_ctx *ctx)
  356. {
  357. emit_instr(ctx, dsrl32, dst, src, sa);
  358. }
  359. static inline void emit_wsbh(unsigned int dst, unsigned int src,
  360. struct jit_ctx *ctx)
  361. {
  362. emit_instr(ctx, wsbh, dst, src);
  363. }
  364. /* load pointer to register */
  365. static inline void emit_load_ptr(unsigned int dst, unsigned int src,
  366. int imm, struct jit_ctx *ctx)
  367. {
  368. /* src contains the base addr of the 32/64-pointer */
  369. emit_long_instr(ctx, LW, dst, imm, src);
  370. }
  371. /* load a function pointer to register */
  372. static inline void emit_load_func(unsigned int reg, ptr imm,
  373. struct jit_ctx *ctx)
  374. {
  375. if (IS_ENABLED(CONFIG_64BIT)) {
  376. /* At this point imm is always 64-bit */
  377. emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
  378. emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
  379. emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
  380. emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
  381. emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
  382. } else {
  383. emit_load_imm(reg, imm, ctx);
  384. }
  385. }
  386. /* Move to real MIPS register */
  387. static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
  388. {
  389. emit_long_instr(ctx, ADDU, dst, src, r_zero);
  390. }
  391. /* Move to JIT (32-bit) register */
  392. static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
  393. {
  394. emit_addu(dst, src, r_zero, ctx);
  395. }
  396. /* Compute the immediate value for PC-relative branches. */
  397. static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
  398. {
  399. if (ctx->target == NULL)
  400. return 0;
  401. /*
  402. * We want a pc-relative branch. We only do forward branches
  403. * so tgt is always after pc. tgt is the instruction offset
  404. * we want to jump to.
  405. * Branch on MIPS:
  406. * I: target_offset <- sign_extend(offset)
  407. * I+1: PC += target_offset (delay slot)
  408. *
  409. * ctx->idx currently points to the branch instruction
  410. * but the offset is added to the delay slot so we need
  411. * to subtract 4.
  412. */
  413. return ctx->offsets[tgt] -
  414. (ctx->idx * 4 - ctx->prologue_bytes) - 4;
  415. }
  416. static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
  417. unsigned int imm, struct jit_ctx *ctx)
  418. {
  419. if (ctx->target != NULL) {
  420. u32 *p = &ctx->target[ctx->idx];
  421. switch (cond) {
  422. case MIPS_COND_EQ:
  423. uasm_i_beq(&p, reg1, reg2, imm);
  424. break;
  425. case MIPS_COND_NE:
  426. uasm_i_bne(&p, reg1, reg2, imm);
  427. break;
  428. case MIPS_COND_ALL:
  429. uasm_i_b(&p, imm);
  430. break;
  431. default:
  432. pr_warn("%s: Unhandled branch conditional: %d\n",
  433. __func__, cond);
  434. }
  435. }
  436. ctx->idx++;
  437. }
  438. static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
  439. {
  440. emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
  441. }
  442. static inline void emit_jalr(unsigned int link, unsigned int reg,
  443. struct jit_ctx *ctx)
  444. {
  445. emit_instr(ctx, jalr, link, reg);
  446. }
  447. static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
  448. {
  449. emit_instr(ctx, jr, reg);
  450. }
  451. static inline u16 align_sp(unsigned int num)
  452. {
  453. /* Double word alignment for 32-bit, quadword for 64-bit */
  454. unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
  455. num = (num + (align - 1)) & -align;
  456. return num;
  457. }
  458. static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
  459. {
  460. int i = 0, real_off = 0;
  461. u32 sflags, tmp_flags;
  462. /* Adjust the stack pointer */
  463. emit_stack_offset(-align_sp(offset), ctx);
  464. tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
  465. /* sflags is essentially a bitmap */
  466. while (tmp_flags) {
  467. if ((sflags >> i) & 0x1) {
  468. emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
  469. ctx);
  470. real_off += SZREG;
  471. }
  472. i++;
  473. tmp_flags >>= 1;
  474. }
  475. /* save return address */
  476. if (ctx->flags & SEEN_CALL) {
  477. emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
  478. real_off += SZREG;
  479. }
  480. /* Setup r_M leaving the alignment gap if necessary */
  481. if (ctx->flags & SEEN_MEM) {
  482. if (real_off % (SZREG * 2))
  483. real_off += SZREG;
  484. emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
  485. }
  486. }
  487. static void restore_bpf_jit_regs(struct jit_ctx *ctx,
  488. unsigned int offset)
  489. {
  490. int i, real_off = 0;
  491. u32 sflags, tmp_flags;
  492. tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
  493. /* sflags is a bitmap */
  494. i = 0;
  495. while (tmp_flags) {
  496. if ((sflags >> i) & 0x1) {
  497. emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
  498. ctx);
  499. real_off += SZREG;
  500. }
  501. i++;
  502. tmp_flags >>= 1;
  503. }
  504. /* restore return address */
  505. if (ctx->flags & SEEN_CALL)
  506. emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
  507. /* Restore the sp and discard the scrach memory */
  508. emit_stack_offset(align_sp(offset), ctx);
  509. }
  510. static unsigned int get_stack_depth(struct jit_ctx *ctx)
  511. {
  512. int sp_off = 0;
  513. /* How may s* regs do we need to preserved? */
  514. sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
  515. if (ctx->flags & SEEN_MEM)
  516. sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
  517. if (ctx->flags & SEEN_CALL)
  518. sp_off += SZREG; /* Space for our ra register */
  519. return sp_off;
  520. }
  521. static void build_prologue(struct jit_ctx *ctx)
  522. {
  523. int sp_off;
  524. /* Calculate the total offset for the stack pointer */
  525. sp_off = get_stack_depth(ctx);
  526. save_bpf_jit_regs(ctx, sp_off);
  527. if (ctx->flags & SEEN_SKB)
  528. emit_reg_move(r_skb, MIPS_R_A0, ctx);
  529. if (ctx->flags & SEEN_SKB_DATA) {
  530. /* Load packet length */
  531. emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
  532. ctx);
  533. emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
  534. ctx);
  535. /* Load the data pointer */
  536. emit_load_ptr(r_skb_data, r_skb,
  537. offsetof(struct sk_buff, data), ctx);
  538. /* Load the header length */
  539. emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
  540. }
  541. if (ctx->flags & SEEN_X)
  542. emit_jit_reg_move(r_X, r_zero, ctx);
  543. /* Do not leak kernel data to userspace */
  544. if (bpf_needs_clear_a(&ctx->skf->insns[0]))
  545. emit_jit_reg_move(r_A, r_zero, ctx);
  546. }
  547. static void build_epilogue(struct jit_ctx *ctx)
  548. {
  549. unsigned int sp_off;
  550. /* Calculate the total offset for the stack pointer */
  551. sp_off = get_stack_depth(ctx);
  552. restore_bpf_jit_regs(ctx, sp_off);
  553. /* Return */
  554. emit_jr(r_ra, ctx);
  555. emit_nop(ctx);
  556. }
  557. #define CHOOSE_LOAD_FUNC(K, func) \
  558. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
  559. func##_positive)
  560. static int build_body(struct jit_ctx *ctx)
  561. {
  562. const struct bpf_prog *prog = ctx->skf;
  563. const struct sock_filter *inst;
  564. unsigned int i, off, condt;
  565. u32 k, b_off __maybe_unused;
  566. u8 (*sk_load_func)(unsigned long *skb, int offset);
  567. for (i = 0; i < prog->len; i++) {
  568. u16 code;
  569. inst = &(prog->insns[i]);
  570. pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
  571. __func__, inst->code, inst->jt, inst->jf, inst->k);
  572. k = inst->k;
  573. code = bpf_anc_helper(inst);
  574. if (ctx->target == NULL)
  575. ctx->offsets[i] = ctx->idx * 4;
  576. switch (code) {
  577. case BPF_LD | BPF_IMM:
  578. /* A <- k ==> li r_A, k */
  579. ctx->flags |= SEEN_A;
  580. emit_load_imm(r_A, k, ctx);
  581. break;
  582. case BPF_LD | BPF_W | BPF_LEN:
  583. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  584. /* A <- len ==> lw r_A, offset(skb) */
  585. ctx->flags |= SEEN_SKB | SEEN_A;
  586. off = offsetof(struct sk_buff, len);
  587. emit_load(r_A, r_skb, off, ctx);
  588. break;
  589. case BPF_LD | BPF_MEM:
  590. /* A <- M[k] ==> lw r_A, offset(M) */
  591. ctx->flags |= SEEN_MEM | SEEN_A;
  592. emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
  593. break;
  594. case BPF_LD | BPF_W | BPF_ABS:
  595. /* A <- P[k:4] */
  596. sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
  597. goto load;
  598. case BPF_LD | BPF_H | BPF_ABS:
  599. /* A <- P[k:2] */
  600. sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
  601. goto load;
  602. case BPF_LD | BPF_B | BPF_ABS:
  603. /* A <- P[k:1] */
  604. sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
  605. load:
  606. emit_load_imm(r_off, k, ctx);
  607. load_common:
  608. ctx->flags |= SEEN_CALL | SEEN_OFF |
  609. SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
  610. emit_load_func(r_s0, (ptr)sk_load_func, ctx);
  611. emit_reg_move(MIPS_R_A0, r_skb, ctx);
  612. emit_jalr(MIPS_R_RA, r_s0, ctx);
  613. /* Load second argument to delay slot */
  614. emit_reg_move(MIPS_R_A1, r_off, ctx);
  615. /* Check the error value */
  616. emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
  617. ctx);
  618. /* Load return register on DS for failures */
  619. emit_reg_move(r_ret, r_zero, ctx);
  620. /* Return with error */
  621. emit_b(b_imm(prog->len, ctx), ctx);
  622. emit_nop(ctx);
  623. break;
  624. case BPF_LD | BPF_W | BPF_IND:
  625. /* A <- P[X + k:4] */
  626. sk_load_func = sk_load_word;
  627. goto load_ind;
  628. case BPF_LD | BPF_H | BPF_IND:
  629. /* A <- P[X + k:2] */
  630. sk_load_func = sk_load_half;
  631. goto load_ind;
  632. case BPF_LD | BPF_B | BPF_IND:
  633. /* A <- P[X + k:1] */
  634. sk_load_func = sk_load_byte;
  635. load_ind:
  636. ctx->flags |= SEEN_OFF | SEEN_X;
  637. emit_addiu(r_off, r_X, k, ctx);
  638. goto load_common;
  639. case BPF_LDX | BPF_IMM:
  640. /* X <- k */
  641. ctx->flags |= SEEN_X;
  642. emit_load_imm(r_X, k, ctx);
  643. break;
  644. case BPF_LDX | BPF_MEM:
  645. /* X <- M[k] */
  646. ctx->flags |= SEEN_X | SEEN_MEM;
  647. emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
  648. break;
  649. case BPF_LDX | BPF_W | BPF_LEN:
  650. /* X <- len */
  651. ctx->flags |= SEEN_X | SEEN_SKB;
  652. off = offsetof(struct sk_buff, len);
  653. emit_load(r_X, r_skb, off, ctx);
  654. break;
  655. case BPF_LDX | BPF_B | BPF_MSH:
  656. /* X <- 4 * (P[k:1] & 0xf) */
  657. ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
  658. /* Load offset to a1 */
  659. emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
  660. /*
  661. * This may emit two instructions so it may not fit
  662. * in the delay slot. So use a0 in the delay slot.
  663. */
  664. emit_load_imm(MIPS_R_A1, k, ctx);
  665. emit_jalr(MIPS_R_RA, r_s0, ctx);
  666. emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
  667. /* Check the error value */
  668. emit_bcond(MIPS_COND_NE, r_ret, 0,
  669. b_imm(prog->len, ctx), ctx);
  670. emit_reg_move(r_ret, r_zero, ctx);
  671. /* We are good */
  672. /* X <- P[1:K] & 0xf */
  673. emit_andi(r_X, r_A, 0xf, ctx);
  674. /* X << 2 */
  675. emit_b(b_imm(i + 1, ctx), ctx);
  676. emit_sll(r_X, r_X, 2, ctx); /* delay slot */
  677. break;
  678. case BPF_ST:
  679. /* M[k] <- A */
  680. ctx->flags |= SEEN_MEM | SEEN_A;
  681. emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
  682. break;
  683. case BPF_STX:
  684. /* M[k] <- X */
  685. ctx->flags |= SEEN_MEM | SEEN_X;
  686. emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
  687. break;
  688. case BPF_ALU | BPF_ADD | BPF_K:
  689. /* A += K */
  690. ctx->flags |= SEEN_A;
  691. emit_addiu(r_A, r_A, k, ctx);
  692. break;
  693. case BPF_ALU | BPF_ADD | BPF_X:
  694. /* A += X */
  695. ctx->flags |= SEEN_A | SEEN_X;
  696. emit_addu(r_A, r_A, r_X, ctx);
  697. break;
  698. case BPF_ALU | BPF_SUB | BPF_K:
  699. /* A -= K */
  700. ctx->flags |= SEEN_A;
  701. emit_addiu(r_A, r_A, -k, ctx);
  702. break;
  703. case BPF_ALU | BPF_SUB | BPF_X:
  704. /* A -= X */
  705. ctx->flags |= SEEN_A | SEEN_X;
  706. emit_subu(r_A, r_A, r_X, ctx);
  707. break;
  708. case BPF_ALU | BPF_MUL | BPF_K:
  709. /* A *= K */
  710. /* Load K to scratch register before MUL */
  711. ctx->flags |= SEEN_A;
  712. emit_load_imm(r_s0, k, ctx);
  713. emit_mul(r_A, r_A, r_s0, ctx);
  714. break;
  715. case BPF_ALU | BPF_MUL | BPF_X:
  716. /* A *= X */
  717. ctx->flags |= SEEN_A | SEEN_X;
  718. emit_mul(r_A, r_A, r_X, ctx);
  719. break;
  720. case BPF_ALU | BPF_DIV | BPF_K:
  721. /* A /= k */
  722. if (k == 1)
  723. break;
  724. if (optimize_div(&k)) {
  725. ctx->flags |= SEEN_A;
  726. emit_srl(r_A, r_A, k, ctx);
  727. break;
  728. }
  729. ctx->flags |= SEEN_A;
  730. emit_load_imm(r_s0, k, ctx);
  731. emit_div(r_A, r_s0, ctx);
  732. break;
  733. case BPF_ALU | BPF_MOD | BPF_K:
  734. /* A %= k */
  735. if (k == 1) {
  736. ctx->flags |= SEEN_A;
  737. emit_jit_reg_move(r_A, r_zero, ctx);
  738. } else {
  739. ctx->flags |= SEEN_A;
  740. emit_load_imm(r_s0, k, ctx);
  741. emit_mod(r_A, r_s0, ctx);
  742. }
  743. break;
  744. case BPF_ALU | BPF_DIV | BPF_X:
  745. /* A /= X */
  746. ctx->flags |= SEEN_X | SEEN_A;
  747. /* Check if r_X is zero */
  748. emit_bcond(MIPS_COND_EQ, r_X, r_zero,
  749. b_imm(prog->len, ctx), ctx);
  750. emit_load_imm(r_ret, 0, ctx); /* delay slot */
  751. emit_div(r_A, r_X, ctx);
  752. break;
  753. case BPF_ALU | BPF_MOD | BPF_X:
  754. /* A %= X */
  755. ctx->flags |= SEEN_X | SEEN_A;
  756. /* Check if r_X is zero */
  757. emit_bcond(MIPS_COND_EQ, r_X, r_zero,
  758. b_imm(prog->len, ctx), ctx);
  759. emit_load_imm(r_ret, 0, ctx); /* delay slot */
  760. emit_mod(r_A, r_X, ctx);
  761. break;
  762. case BPF_ALU | BPF_OR | BPF_K:
  763. /* A |= K */
  764. ctx->flags |= SEEN_A;
  765. emit_ori(r_A, r_A, k, ctx);
  766. break;
  767. case BPF_ALU | BPF_OR | BPF_X:
  768. /* A |= X */
  769. ctx->flags |= SEEN_A;
  770. emit_ori(r_A, r_A, r_X, ctx);
  771. break;
  772. case BPF_ALU | BPF_XOR | BPF_K:
  773. /* A ^= k */
  774. ctx->flags |= SEEN_A;
  775. emit_xori(r_A, r_A, k, ctx);
  776. break;
  777. case BPF_ANC | SKF_AD_ALU_XOR_X:
  778. case BPF_ALU | BPF_XOR | BPF_X:
  779. /* A ^= X */
  780. ctx->flags |= SEEN_A;
  781. emit_xor(r_A, r_A, r_X, ctx);
  782. break;
  783. case BPF_ALU | BPF_AND | BPF_K:
  784. /* A &= K */
  785. ctx->flags |= SEEN_A;
  786. emit_andi(r_A, r_A, k, ctx);
  787. break;
  788. case BPF_ALU | BPF_AND | BPF_X:
  789. /* A &= X */
  790. ctx->flags |= SEEN_A | SEEN_X;
  791. emit_and(r_A, r_A, r_X, ctx);
  792. break;
  793. case BPF_ALU | BPF_LSH | BPF_K:
  794. /* A <<= K */
  795. ctx->flags |= SEEN_A;
  796. emit_sll(r_A, r_A, k, ctx);
  797. break;
  798. case BPF_ALU | BPF_LSH | BPF_X:
  799. /* A <<= X */
  800. ctx->flags |= SEEN_A | SEEN_X;
  801. emit_sllv(r_A, r_A, r_X, ctx);
  802. break;
  803. case BPF_ALU | BPF_RSH | BPF_K:
  804. /* A >>= K */
  805. ctx->flags |= SEEN_A;
  806. emit_srl(r_A, r_A, k, ctx);
  807. break;
  808. case BPF_ALU | BPF_RSH | BPF_X:
  809. ctx->flags |= SEEN_A | SEEN_X;
  810. emit_srlv(r_A, r_A, r_X, ctx);
  811. break;
  812. case BPF_ALU | BPF_NEG:
  813. /* A = -A */
  814. ctx->flags |= SEEN_A;
  815. emit_neg(r_A, ctx);
  816. break;
  817. case BPF_JMP | BPF_JA:
  818. /* pc += K */
  819. emit_b(b_imm(i + k + 1, ctx), ctx);
  820. emit_nop(ctx);
  821. break;
  822. case BPF_JMP | BPF_JEQ | BPF_K:
  823. /* pc += ( A == K ) ? pc->jt : pc->jf */
  824. condt = MIPS_COND_EQ | MIPS_COND_K;
  825. goto jmp_cmp;
  826. case BPF_JMP | BPF_JEQ | BPF_X:
  827. ctx->flags |= SEEN_X;
  828. /* pc += ( A == X ) ? pc->jt : pc->jf */
  829. condt = MIPS_COND_EQ | MIPS_COND_X;
  830. goto jmp_cmp;
  831. case BPF_JMP | BPF_JGE | BPF_K:
  832. /* pc += ( A >= K ) ? pc->jt : pc->jf */
  833. condt = MIPS_COND_GE | MIPS_COND_K;
  834. goto jmp_cmp;
  835. case BPF_JMP | BPF_JGE | BPF_X:
  836. ctx->flags |= SEEN_X;
  837. /* pc += ( A >= X ) ? pc->jt : pc->jf */
  838. condt = MIPS_COND_GE | MIPS_COND_X;
  839. goto jmp_cmp;
  840. case BPF_JMP | BPF_JGT | BPF_K:
  841. /* pc += ( A > K ) ? pc->jt : pc->jf */
  842. condt = MIPS_COND_GT | MIPS_COND_K;
  843. goto jmp_cmp;
  844. case BPF_JMP | BPF_JGT | BPF_X:
  845. ctx->flags |= SEEN_X;
  846. /* pc += ( A > X ) ? pc->jt : pc->jf */
  847. condt = MIPS_COND_GT | MIPS_COND_X;
  848. jmp_cmp:
  849. /* Greater or Equal */
  850. if ((condt & MIPS_COND_GE) ||
  851. (condt & MIPS_COND_GT)) {
  852. if (condt & MIPS_COND_K) { /* K */
  853. ctx->flags |= SEEN_A;
  854. emit_sltiu(r_s0, r_A, k, ctx);
  855. } else { /* X */
  856. ctx->flags |= SEEN_A |
  857. SEEN_X;
  858. emit_sltu(r_s0, r_A, r_X, ctx);
  859. }
  860. /* A < (K|X) ? r_scrach = 1 */
  861. b_off = b_imm(i + inst->jf + 1, ctx);
  862. emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
  863. ctx);
  864. emit_nop(ctx);
  865. /* A > (K|X) ? scratch = 0 */
  866. if (condt & MIPS_COND_GT) {
  867. /* Checking for equality */
  868. ctx->flags |= SEEN_A | SEEN_X;
  869. if (condt & MIPS_COND_K)
  870. emit_load_imm(r_s0, k, ctx);
  871. else
  872. emit_jit_reg_move(r_s0, r_X,
  873. ctx);
  874. b_off = b_imm(i + inst->jf + 1, ctx);
  875. emit_bcond(MIPS_COND_EQ, r_A, r_s0,
  876. b_off, ctx);
  877. emit_nop(ctx);
  878. /* Finally, A > K|X */
  879. b_off = b_imm(i + inst->jt + 1, ctx);
  880. emit_b(b_off, ctx);
  881. emit_nop(ctx);
  882. } else {
  883. /* A >= (K|X) so jump */
  884. b_off = b_imm(i + inst->jt + 1, ctx);
  885. emit_b(b_off, ctx);
  886. emit_nop(ctx);
  887. }
  888. } else {
  889. /* A == K|X */
  890. if (condt & MIPS_COND_K) { /* K */
  891. ctx->flags |= SEEN_A;
  892. emit_load_imm(r_s0, k, ctx);
  893. /* jump true */
  894. b_off = b_imm(i + inst->jt + 1, ctx);
  895. emit_bcond(MIPS_COND_EQ, r_A, r_s0,
  896. b_off, ctx);
  897. emit_nop(ctx);
  898. /* jump false */
  899. b_off = b_imm(i + inst->jf + 1,
  900. ctx);
  901. emit_bcond(MIPS_COND_NE, r_A, r_s0,
  902. b_off, ctx);
  903. emit_nop(ctx);
  904. } else { /* X */
  905. /* jump true */
  906. ctx->flags |= SEEN_A | SEEN_X;
  907. b_off = b_imm(i + inst->jt + 1,
  908. ctx);
  909. emit_bcond(MIPS_COND_EQ, r_A, r_X,
  910. b_off, ctx);
  911. emit_nop(ctx);
  912. /* jump false */
  913. b_off = b_imm(i + inst->jf + 1, ctx);
  914. emit_bcond(MIPS_COND_NE, r_A, r_X,
  915. b_off, ctx);
  916. emit_nop(ctx);
  917. }
  918. }
  919. break;
  920. case BPF_JMP | BPF_JSET | BPF_K:
  921. ctx->flags |= SEEN_A;
  922. /* pc += (A & K) ? pc -> jt : pc -> jf */
  923. emit_load_imm(r_s1, k, ctx);
  924. emit_and(r_s0, r_A, r_s1, ctx);
  925. /* jump true */
  926. b_off = b_imm(i + inst->jt + 1, ctx);
  927. emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
  928. emit_nop(ctx);
  929. /* jump false */
  930. b_off = b_imm(i + inst->jf + 1, ctx);
  931. emit_b(b_off, ctx);
  932. emit_nop(ctx);
  933. break;
  934. case BPF_JMP | BPF_JSET | BPF_X:
  935. ctx->flags |= SEEN_X | SEEN_A;
  936. /* pc += (A & X) ? pc -> jt : pc -> jf */
  937. emit_and(r_s0, r_A, r_X, ctx);
  938. /* jump true */
  939. b_off = b_imm(i + inst->jt + 1, ctx);
  940. emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
  941. emit_nop(ctx);
  942. /* jump false */
  943. b_off = b_imm(i + inst->jf + 1, ctx);
  944. emit_b(b_off, ctx);
  945. emit_nop(ctx);
  946. break;
  947. case BPF_RET | BPF_A:
  948. ctx->flags |= SEEN_A;
  949. if (i != prog->len - 1)
  950. /*
  951. * If this is not the last instruction
  952. * then jump to the epilogue
  953. */
  954. emit_b(b_imm(prog->len, ctx), ctx);
  955. emit_reg_move(r_ret, r_A, ctx); /* delay slot */
  956. break;
  957. case BPF_RET | BPF_K:
  958. /*
  959. * It can emit two instructions so it does not fit on
  960. * the delay slot.
  961. */
  962. emit_load_imm(r_ret, k, ctx);
  963. if (i != prog->len - 1) {
  964. /*
  965. * If this is not the last instruction
  966. * then jump to the epilogue
  967. */
  968. emit_b(b_imm(prog->len, ctx), ctx);
  969. emit_nop(ctx);
  970. }
  971. break;
  972. case BPF_MISC | BPF_TAX:
  973. /* X = A */
  974. ctx->flags |= SEEN_X | SEEN_A;
  975. emit_jit_reg_move(r_X, r_A, ctx);
  976. break;
  977. case BPF_MISC | BPF_TXA:
  978. /* A = X */
  979. ctx->flags |= SEEN_A | SEEN_X;
  980. emit_jit_reg_move(r_A, r_X, ctx);
  981. break;
  982. /* AUX */
  983. case BPF_ANC | SKF_AD_PROTOCOL:
  984. /* A = ntohs(skb->protocol */
  985. ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
  986. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
  987. protocol) != 2);
  988. off = offsetof(struct sk_buff, protocol);
  989. emit_half_load(r_A, r_skb, off, ctx);
  990. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  991. /* This needs little endian fixup */
  992. if (cpu_has_wsbh) {
  993. /* R2 and later have the wsbh instruction */
  994. emit_wsbh(r_A, r_A, ctx);
  995. } else {
  996. /* Get first byte */
  997. emit_andi(r_tmp_imm, r_A, 0xff, ctx);
  998. /* Shift it */
  999. emit_sll(r_tmp, r_tmp_imm, 8, ctx);
  1000. /* Get second byte */
  1001. emit_srl(r_tmp_imm, r_A, 8, ctx);
  1002. emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
  1003. /* Put everyting together in r_A */
  1004. emit_or(r_A, r_tmp, r_tmp_imm, ctx);
  1005. }
  1006. #endif
  1007. break;
  1008. case BPF_ANC | SKF_AD_CPU:
  1009. ctx->flags |= SEEN_A | SEEN_OFF;
  1010. /* A = current_thread_info()->cpu */
  1011. BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info,
  1012. cpu) != 4);
  1013. off = offsetof(struct thread_info, cpu);
  1014. /* $28/gp points to the thread_info struct */
  1015. emit_load(r_A, 28, off, ctx);
  1016. break;
  1017. case BPF_ANC | SKF_AD_IFINDEX:
  1018. /* A = skb->dev->ifindex */
  1019. ctx->flags |= SEEN_SKB | SEEN_A;
  1020. off = offsetof(struct sk_buff, dev);
  1021. /* Load *dev pointer */
  1022. emit_load_ptr(r_s0, r_skb, off, ctx);
  1023. /* error (0) in the delay slot */
  1024. emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
  1025. b_imm(prog->len, ctx), ctx);
  1026. emit_reg_move(r_ret, r_zero, ctx);
  1027. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
  1028. ifindex) != 4);
  1029. off = offsetof(struct net_device, ifindex);
  1030. emit_load(r_A, r_s0, off, ctx);
  1031. break;
  1032. case BPF_ANC | SKF_AD_MARK:
  1033. ctx->flags |= SEEN_SKB | SEEN_A;
  1034. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  1035. off = offsetof(struct sk_buff, mark);
  1036. emit_load(r_A, r_skb, off, ctx);
  1037. break;
  1038. case BPF_ANC | SKF_AD_RXHASH:
  1039. ctx->flags |= SEEN_SKB | SEEN_A;
  1040. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
  1041. off = offsetof(struct sk_buff, hash);
  1042. emit_load(r_A, r_skb, off, ctx);
  1043. break;
  1044. case BPF_ANC | SKF_AD_VLAN_TAG:
  1045. case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
  1046. ctx->flags |= SEEN_SKB | SEEN_A;
  1047. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
  1048. vlan_tci) != 2);
  1049. off = offsetof(struct sk_buff, vlan_tci);
  1050. emit_half_load(r_s0, r_skb, off, ctx);
  1051. if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
  1052. emit_andi(r_A, r_s0, (u16)~VLAN_TAG_PRESENT, ctx);
  1053. } else {
  1054. emit_andi(r_A, r_s0, VLAN_TAG_PRESENT, ctx);
  1055. /* return 1 if present */
  1056. emit_sltu(r_A, r_zero, r_A, ctx);
  1057. }
  1058. break;
  1059. case BPF_ANC | SKF_AD_PKTTYPE:
  1060. ctx->flags |= SEEN_SKB;
  1061. emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
  1062. /* Keep only the last 3 bits */
  1063. emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
  1064. #ifdef __BIG_ENDIAN_BITFIELD
  1065. /* Get the actual packet type to the lower 3 bits */
  1066. emit_srl(r_A, r_A, 5, ctx);
  1067. #endif
  1068. break;
  1069. case BPF_ANC | SKF_AD_QUEUE:
  1070. ctx->flags |= SEEN_SKB | SEEN_A;
  1071. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
  1072. queue_mapping) != 2);
  1073. BUILD_BUG_ON(offsetof(struct sk_buff,
  1074. queue_mapping) > 0xff);
  1075. off = offsetof(struct sk_buff, queue_mapping);
  1076. emit_half_load(r_A, r_skb, off, ctx);
  1077. break;
  1078. default:
  1079. pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
  1080. inst->code);
  1081. return -1;
  1082. }
  1083. }
  1084. /* compute offsets only during the first pass */
  1085. if (ctx->target == NULL)
  1086. ctx->offsets[i] = ctx->idx * 4;
  1087. return 0;
  1088. }
  1089. int bpf_jit_enable __read_mostly;
  1090. void bpf_jit_compile(struct bpf_prog *fp)
  1091. {
  1092. struct jit_ctx ctx;
  1093. unsigned int alloc_size, tmp_idx;
  1094. if (!bpf_jit_enable)
  1095. return;
  1096. memset(&ctx, 0, sizeof(ctx));
  1097. ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
  1098. if (ctx.offsets == NULL)
  1099. return;
  1100. ctx.skf = fp;
  1101. if (build_body(&ctx))
  1102. goto out;
  1103. tmp_idx = ctx.idx;
  1104. build_prologue(&ctx);
  1105. ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
  1106. /* just to complete the ctx.idx count */
  1107. build_epilogue(&ctx);
  1108. alloc_size = 4 * ctx.idx;
  1109. ctx.target = module_alloc(alloc_size);
  1110. if (ctx.target == NULL)
  1111. goto out;
  1112. /* Clean it */
  1113. memset(ctx.target, 0, alloc_size);
  1114. ctx.idx = 0;
  1115. /* Generate the actual JIT code */
  1116. build_prologue(&ctx);
  1117. build_body(&ctx);
  1118. build_epilogue(&ctx);
  1119. /* Update the icache */
  1120. flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
  1121. if (bpf_jit_enable > 1)
  1122. /* Dump JIT code */
  1123. bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
  1124. fp->bpf_func = (void *)ctx.target;
  1125. fp->jited = 1;
  1126. out:
  1127. kfree(ctx.offsets);
  1128. }
  1129. void bpf_jit_free(struct bpf_prog *fp)
  1130. {
  1131. if (fp->jited)
  1132. module_memfree(fp->bpf_func);
  1133. bpf_prog_unlock_free(fp);
  1134. }