crypt_freesec.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /*
  2. * This version is derived from the original implementation of FreeSec
  3. * (release 1.1) by David Burren. I've reviewed the changes made in
  4. * OpenBSD (as of 2.7) and modified the original code in a similar way
  5. * where applicable. I've also made it reentrant and made a number of
  6. * other changes.
  7. * - Solar Designer <solar at openwall.com>
  8. */
  9. /*
  10. * FreeSec: libcrypt for NetBSD
  11. *
  12. * Copyright (c) 1994 David Burren
  13. * All rights reserved.
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. * 1. Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * 2. Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in the
  22. * documentation and/or other materials provided with the distribution.
  23. * 3. Neither the name of the author nor the names of other contributors
  24. * may be used to endorse or promote products derived from this software
  25. * without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  28. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  29. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  30. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  31. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  33. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  34. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  35. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  36. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  37. * SUCH DAMAGE.
  38. *
  39. * $Owl: Owl/packages/glibc/crypt_freesec.c,v 1.4 2005/11/16 13:08:32 solar Exp $
  40. *
  41. * This is an original implementation of the DES and the crypt(3) interfaces
  42. * by David Burren <davidb at werj.com.au>.
  43. *
  44. * An excellent reference on the underlying algorithm (and related
  45. * algorithms) is:
  46. *
  47. * B. Schneier, Applied Cryptography: protocols, algorithms,
  48. * and source code in C, John Wiley & Sons, 1994.
  49. *
  50. * Note that in that book's description of DES the lookups for the initial,
  51. * pbox, and final permutations are inverted (this has been brought to the
  52. * attention of the author). A list of errata for this book has been
  53. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  54. *
  55. * ARCHITECTURE ASSUMPTIONS:
  56. * This code used to have some nasty ones, but these have been removed
  57. * by now. The code requires a 32-bit integer type, though.
  58. */
  59. #include <sys/types.h>
  60. #include <string.h>
  61. #ifdef TEST
  62. #include <stdio.h>
  63. #endif
  64. #include "crypt_freesec.h"
  65. #define _PASSWORD_EFMT1 '_'
  66. static const u_char IP[64] = {
  67. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  68. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  69. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  70. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  71. };
  72. static const u_char key_perm[56] = {
  73. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  74. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  75. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  76. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  77. };
  78. static const u_char key_shifts[16] = {
  79. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  80. };
  81. static const u_char comp_perm[48] = {
  82. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  83. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  84. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  85. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  86. };
  87. /*
  88. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  89. */
  90. static const u_char sbox[8][64] = {
  91. {
  92. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  93. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  94. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  95. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  96. },
  97. {
  98. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  99. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  100. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  101. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  102. },
  103. {
  104. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  105. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  106. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  107. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  108. },
  109. {
  110. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  111. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  112. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  113. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  114. },
  115. {
  116. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  117. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  118. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  119. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  120. },
  121. {
  122. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  123. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  124. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  125. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  126. },
  127. {
  128. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  129. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  130. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  131. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  132. },
  133. {
  134. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  135. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  136. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  137. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  138. }
  139. };
  140. static const u_char pbox[32] = {
  141. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  142. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  143. };
  144. static const uint32_t bits32[32] =
  145. {
  146. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  147. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  148. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  149. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  150. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  151. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  152. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  153. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  154. };
  155. static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  156. static const unsigned char ascii64[] =
  157. "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  158. /* 0000000000111111111122222222223333333333444444444455555555556666 */
  159. /* 0123456789012345678901234567890123456789012345678901234567890123 */
  160. static u_char m_sbox[4][4096];
  161. static uint32_t psbox[4][256];
  162. static uint32_t ip_maskl[8][256], ip_maskr[8][256];
  163. static uint32_t fp_maskl[8][256], fp_maskr[8][256];
  164. static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
  165. static uint32_t comp_maskl[8][128], comp_maskr[8][128];
  166. static inline int
  167. ascii_to_bin(char ch)
  168. {
  169. signed char sch = ch;
  170. int retval;
  171. retval = sch - '.';
  172. if (sch >= 'A') {
  173. retval = sch - ('A' - 12);
  174. if (sch >= 'a')
  175. retval = sch - ('a' - 38);
  176. }
  177. retval &= 0x3f;
  178. return(retval);
  179. }
  180. /*
  181. * When we choose to "support" invalid salts, nevertheless disallow those
  182. * containing characters that would violate the passwd file format.
  183. */
  184. static inline int
  185. ascii_is_unsafe(char ch)
  186. {
  187. return !ch || ch == '\n' || ch == ':';
  188. }
  189. void
  190. _crypt_extended_init(void)
  191. {
  192. int i, j, b, k, inbit, obit;
  193. uint32_t *p, *il, *ir, *fl, *fr;
  194. const uint32_t *bits28, *bits24;
  195. u_char inv_key_perm[64];
  196. u_char inv_comp_perm[56];
  197. u_char init_perm[64], final_perm[64];
  198. u_char u_sbox[8][64];
  199. u_char un_pbox[32];
  200. bits24 = (bits28 = bits32 + 4) + 4;
  201. /*
  202. * Invert the S-boxes, reordering the input bits.
  203. */
  204. for (i = 0; i < 8; i++)
  205. for (j = 0; j < 64; j++) {
  206. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  207. u_sbox[i][j] = sbox[i][b];
  208. }
  209. /*
  210. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  211. * Each will handle 12 bits of the S-box input.
  212. */
  213. for (b = 0; b < 4; b++)
  214. for (i = 0; i < 64; i++)
  215. for (j = 0; j < 64; j++)
  216. m_sbox[b][(i << 6) | j] =
  217. (u_sbox[(b << 1)][i] << 4) |
  218. u_sbox[(b << 1) + 1][j];
  219. /*
  220. * Set up the initial & final permutations into a useful form, and
  221. * initialise the inverted key permutation.
  222. */
  223. for (i = 0; i < 64; i++) {
  224. init_perm[final_perm[i] = IP[i] - 1] = i;
  225. inv_key_perm[i] = 255;
  226. }
  227. /*
  228. * Invert the key permutation and initialise the inverted key
  229. * compression permutation.
  230. */
  231. for (i = 0; i < 56; i++) {
  232. inv_key_perm[key_perm[i] - 1] = i;
  233. inv_comp_perm[i] = 255;
  234. }
  235. /*
  236. * Invert the key compression permutation.
  237. */
  238. for (i = 0; i < 48; i++) {
  239. inv_comp_perm[comp_perm[i] - 1] = i;
  240. }
  241. /*
  242. * Set up the OR-mask arrays for the initial and final permutations,
  243. * and for the key initial and compression permutations.
  244. */
  245. for (k = 0; k < 8; k++) {
  246. for (i = 0; i < 256; i++) {
  247. *(il = &ip_maskl[k][i]) = 0;
  248. *(ir = &ip_maskr[k][i]) = 0;
  249. *(fl = &fp_maskl[k][i]) = 0;
  250. *(fr = &fp_maskr[k][i]) = 0;
  251. for (j = 0; j < 8; j++) {
  252. inbit = 8 * k + j;
  253. if (i & bits8[j]) {
  254. if ((obit = init_perm[inbit]) < 32)
  255. *il |= bits32[obit];
  256. else
  257. *ir |= bits32[obit-32];
  258. if ((obit = final_perm[inbit]) < 32)
  259. *fl |= bits32[obit];
  260. else
  261. *fr |= bits32[obit - 32];
  262. }
  263. }
  264. }
  265. for (i = 0; i < 128; i++) {
  266. *(il = &key_perm_maskl[k][i]) = 0;
  267. *(ir = &key_perm_maskr[k][i]) = 0;
  268. for (j = 0; j < 7; j++) {
  269. inbit = 8 * k + j;
  270. if (i & bits8[j + 1]) {
  271. if ((obit = inv_key_perm[inbit]) == 255)
  272. continue;
  273. if (obit < 28)
  274. *il |= bits28[obit];
  275. else
  276. *ir |= bits28[obit - 28];
  277. }
  278. }
  279. *(il = &comp_maskl[k][i]) = 0;
  280. *(ir = &comp_maskr[k][i]) = 0;
  281. for (j = 0; j < 7; j++) {
  282. inbit = 7 * k + j;
  283. if (i & bits8[j + 1]) {
  284. if ((obit=inv_comp_perm[inbit]) == 255)
  285. continue;
  286. if (obit < 24)
  287. *il |= bits24[obit];
  288. else
  289. *ir |= bits24[obit - 24];
  290. }
  291. }
  292. }
  293. }
  294. /*
  295. * Invert the P-box permutation, and convert into OR-masks for
  296. * handling the output of the S-box arrays setup above.
  297. */
  298. for (i = 0; i < 32; i++)
  299. un_pbox[pbox[i] - 1] = i;
  300. for (b = 0; b < 4; b++)
  301. for (i = 0; i < 256; i++) {
  302. *(p = &psbox[b][i]) = 0;
  303. for (j = 0; j < 8; j++) {
  304. if (i & bits8[j])
  305. *p |= bits32[un_pbox[8 * b + j]];
  306. }
  307. }
  308. }
  309. static void
  310. des_init_local(struct php_crypt_extended_data *data)
  311. {
  312. data->old_rawkey0 = data->old_rawkey1 = 0;
  313. data->saltbits = 0;
  314. data->old_salt = 0;
  315. data->initialized = 1;
  316. }
  317. static void
  318. setup_salt(uint32_t salt, struct php_crypt_extended_data *data)
  319. {
  320. uint32_t obit, saltbit, saltbits;
  321. int i;
  322. if (salt == data->old_salt)
  323. return;
  324. data->old_salt = salt;
  325. saltbits = 0;
  326. saltbit = 1;
  327. obit = 0x800000;
  328. for (i = 0; i < 24; i++) {
  329. if (salt & saltbit)
  330. saltbits |= obit;
  331. saltbit <<= 1;
  332. obit >>= 1;
  333. }
  334. data->saltbits = saltbits;
  335. }
  336. static int
  337. des_setkey(const char *key, struct php_crypt_extended_data *data)
  338. {
  339. uint32_t k0, k1, rawkey0, rawkey1;
  340. int shifts, round;
  341. rawkey0 =
  342. (uint32_t)(u_char)key[3] |
  343. ((uint32_t)(u_char)key[2] << 8) |
  344. ((uint32_t)(u_char)key[1] << 16) |
  345. ((uint32_t)(u_char)key[0] << 24);
  346. rawkey1 =
  347. (uint32_t)(u_char)key[7] |
  348. ((uint32_t)(u_char)key[6] << 8) |
  349. ((uint32_t)(u_char)key[5] << 16) |
  350. ((uint32_t)(u_char)key[4] << 24);
  351. if ((rawkey0 | rawkey1)
  352. && rawkey0 == data->old_rawkey0
  353. && rawkey1 == data->old_rawkey1) {
  354. /*
  355. * Already setup for this key.
  356. * This optimisation fails on a zero key (which is weak and
  357. * has bad parity anyway) in order to simplify the starting
  358. * conditions.
  359. */
  360. return(0);
  361. }
  362. data->old_rawkey0 = rawkey0;
  363. data->old_rawkey1 = rawkey1;
  364. /*
  365. * Do key permutation and split into two 28-bit subkeys.
  366. */
  367. k0 = key_perm_maskl[0][rawkey0 >> 25]
  368. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  369. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  370. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  371. | key_perm_maskl[4][rawkey1 >> 25]
  372. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  373. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  374. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  375. k1 = key_perm_maskr[0][rawkey0 >> 25]
  376. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  377. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  378. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  379. | key_perm_maskr[4][rawkey1 >> 25]
  380. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  381. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  382. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  383. /*
  384. * Rotate subkeys and do compression permutation.
  385. */
  386. shifts = 0;
  387. for (round = 0; round < 16; round++) {
  388. uint32_t t0, t1;
  389. shifts += key_shifts[round];
  390. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  391. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  392. data->de_keysl[15 - round] =
  393. data->en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  394. | comp_maskl[1][(t0 >> 14) & 0x7f]
  395. | comp_maskl[2][(t0 >> 7) & 0x7f]
  396. | comp_maskl[3][t0 & 0x7f]
  397. | comp_maskl[4][(t1 >> 21) & 0x7f]
  398. | comp_maskl[5][(t1 >> 14) & 0x7f]
  399. | comp_maskl[6][(t1 >> 7) & 0x7f]
  400. | comp_maskl[7][t1 & 0x7f];
  401. data->de_keysr[15 - round] =
  402. data->en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  403. | comp_maskr[1][(t0 >> 14) & 0x7f]
  404. | comp_maskr[2][(t0 >> 7) & 0x7f]
  405. | comp_maskr[3][t0 & 0x7f]
  406. | comp_maskr[4][(t1 >> 21) & 0x7f]
  407. | comp_maskr[5][(t1 >> 14) & 0x7f]
  408. | comp_maskr[6][(t1 >> 7) & 0x7f]
  409. | comp_maskr[7][t1 & 0x7f];
  410. }
  411. return(0);
  412. }
  413. static int
  414. do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out,
  415. int count, struct php_crypt_extended_data *data)
  416. {
  417. /*
  418. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  419. */
  420. uint32_t l, r, *kl, *kr, *kl1, *kr1;
  421. uint32_t f, r48l, r48r, saltbits;
  422. int round;
  423. if (count == 0) {
  424. return(1);
  425. } else if (count > 0) {
  426. /*
  427. * Encrypting
  428. */
  429. kl1 = data->en_keysl;
  430. kr1 = data->en_keysr;
  431. } else {
  432. /*
  433. * Decrypting
  434. */
  435. count = -count;
  436. kl1 = data->de_keysl;
  437. kr1 = data->de_keysr;
  438. }
  439. /*
  440. * Do initial permutation (IP).
  441. */
  442. l = ip_maskl[0][l_in >> 24]
  443. | ip_maskl[1][(l_in >> 16) & 0xff]
  444. | ip_maskl[2][(l_in >> 8) & 0xff]
  445. | ip_maskl[3][l_in & 0xff]
  446. | ip_maskl[4][r_in >> 24]
  447. | ip_maskl[5][(r_in >> 16) & 0xff]
  448. | ip_maskl[6][(r_in >> 8) & 0xff]
  449. | ip_maskl[7][r_in & 0xff];
  450. r = ip_maskr[0][l_in >> 24]
  451. | ip_maskr[1][(l_in >> 16) & 0xff]
  452. | ip_maskr[2][(l_in >> 8) & 0xff]
  453. | ip_maskr[3][l_in & 0xff]
  454. | ip_maskr[4][r_in >> 24]
  455. | ip_maskr[5][(r_in >> 16) & 0xff]
  456. | ip_maskr[6][(r_in >> 8) & 0xff]
  457. | ip_maskr[7][r_in & 0xff];
  458. saltbits = data->saltbits;
  459. while (count--) {
  460. /*
  461. * Do each round.
  462. */
  463. kl = kl1;
  464. kr = kr1;
  465. round = 16;
  466. while (round--) {
  467. /*
  468. * Expand R to 48 bits (simulate the E-box).
  469. */
  470. r48l = ((r & 0x00000001) << 23)
  471. | ((r & 0xf8000000) >> 9)
  472. | ((r & 0x1f800000) >> 11)
  473. | ((r & 0x01f80000) >> 13)
  474. | ((r & 0x001f8000) >> 15);
  475. r48r = ((r & 0x0001f800) << 7)
  476. | ((r & 0x00001f80) << 5)
  477. | ((r & 0x000001f8) << 3)
  478. | ((r & 0x0000001f) << 1)
  479. | ((r & 0x80000000) >> 31);
  480. /*
  481. * Do salting for crypt() and friends, and
  482. * XOR with the permuted key.
  483. */
  484. f = (r48l ^ r48r) & saltbits;
  485. r48l ^= f ^ *kl++;
  486. r48r ^= f ^ *kr++;
  487. /*
  488. * Do sbox lookups (which shrink it back to 32 bits)
  489. * and do the pbox permutation at the same time.
  490. */
  491. f = psbox[0][m_sbox[0][r48l >> 12]]
  492. | psbox[1][m_sbox[1][r48l & 0xfff]]
  493. | psbox[2][m_sbox[2][r48r >> 12]]
  494. | psbox[3][m_sbox[3][r48r & 0xfff]];
  495. /*
  496. * Now that we've permuted things, complete f().
  497. */
  498. f ^= l;
  499. l = r;
  500. r = f;
  501. }
  502. r = l;
  503. l = f;
  504. }
  505. /*
  506. * Do final permutation (inverse of IP).
  507. */
  508. *l_out = fp_maskl[0][l >> 24]
  509. | fp_maskl[1][(l >> 16) & 0xff]
  510. | fp_maskl[2][(l >> 8) & 0xff]
  511. | fp_maskl[3][l & 0xff]
  512. | fp_maskl[4][r >> 24]
  513. | fp_maskl[5][(r >> 16) & 0xff]
  514. | fp_maskl[6][(r >> 8) & 0xff]
  515. | fp_maskl[7][r & 0xff];
  516. *r_out = fp_maskr[0][l >> 24]
  517. | fp_maskr[1][(l >> 16) & 0xff]
  518. | fp_maskr[2][(l >> 8) & 0xff]
  519. | fp_maskr[3][l & 0xff]
  520. | fp_maskr[4][r >> 24]
  521. | fp_maskr[5][(r >> 16) & 0xff]
  522. | fp_maskr[6][(r >> 8) & 0xff]
  523. | fp_maskr[7][r & 0xff];
  524. return(0);
  525. }
  526. static int
  527. des_cipher(const char *in, char *out, uint32_t salt, int count,
  528. struct php_crypt_extended_data *data)
  529. {
  530. uint32_t l_out = 0, r_out = 0, rawl, rawr;
  531. int retval;
  532. setup_salt(salt, data);
  533. rawl =
  534. (uint32_t)(u_char)in[3] |
  535. ((uint32_t)(u_char)in[2] << 8) |
  536. ((uint32_t)(u_char)in[1] << 16) |
  537. ((uint32_t)(u_char)in[0] << 24);
  538. rawr =
  539. (uint32_t)(u_char)in[7] |
  540. ((uint32_t)(u_char)in[6] << 8) |
  541. ((uint32_t)(u_char)in[5] << 16) |
  542. ((uint32_t)(u_char)in[4] << 24);
  543. retval = do_des(rawl, rawr, &l_out, &r_out, count, data);
  544. out[0] = l_out >> 24;
  545. out[1] = l_out >> 16;
  546. out[2] = l_out >> 8;
  547. out[3] = l_out;
  548. out[4] = r_out >> 24;
  549. out[5] = r_out >> 16;
  550. out[6] = r_out >> 8;
  551. out[7] = r_out;
  552. return(retval);
  553. }
  554. char *
  555. _crypt_extended_r(const char *key, const char *setting,
  556. struct php_crypt_extended_data *data)
  557. {
  558. int i;
  559. uint32_t count, salt, l, r0, r1, keybuf[2];
  560. u_char *p, *q;
  561. if (!data->initialized)
  562. des_init_local(data);
  563. /*
  564. * Copy the key, shifting each character up by one bit
  565. * and padding with zeros.
  566. */
  567. q = (u_char *) keybuf;
  568. while ((size_t)(q - (u_char *) keybuf) < sizeof(keybuf)) {
  569. *q++ = *key << 1;
  570. if (*key)
  571. key++;
  572. }
  573. if (des_setkey((char *) keybuf, data))
  574. return(NULL);
  575. if (*setting == _PASSWORD_EFMT1) {
  576. /*
  577. * "new"-style:
  578. * setting - underscore, 4 chars of count, 4 chars of salt
  579. * key - unlimited characters
  580. */
  581. for (i = 1, count = 0; i < 5; i++) {
  582. int value = ascii_to_bin(setting[i]);
  583. if (ascii64[value] != setting[i])
  584. return(NULL);
  585. count |= value << (i - 1) * 6;
  586. }
  587. if (!count)
  588. return(NULL);
  589. for (i = 5, salt = 0; i < 9; i++) {
  590. int value = ascii_to_bin(setting[i]);
  591. if (ascii64[value] != setting[i])
  592. return(NULL);
  593. salt |= value << (i - 5) * 6;
  594. }
  595. while (*key) {
  596. /*
  597. * Encrypt the key with itself.
  598. */
  599. if (des_cipher((char *) keybuf, (char *) keybuf,
  600. 0, 1, data))
  601. return(NULL);
  602. /*
  603. * And XOR with the next 8 characters of the key.
  604. */
  605. q = (u_char *) keybuf;
  606. while ((size_t)(q - (u_char *) keybuf) < sizeof(keybuf) && *key)
  607. *q++ ^= *key++ << 1;
  608. if (des_setkey((char *) keybuf, data))
  609. return(NULL);
  610. }
  611. memcpy(data->output, setting, 9);
  612. data->output[9] = '\0';
  613. p = (u_char *) data->output + 9;
  614. } else {
  615. /*
  616. * "old"-style:
  617. * setting - 2 chars of salt
  618. * key - up to 8 characters
  619. */
  620. count = 25;
  621. if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
  622. return(NULL);
  623. salt = (ascii_to_bin(setting[1]) << 6)
  624. | ascii_to_bin(setting[0]);
  625. data->output[0] = setting[0];
  626. data->output[1] = setting[1];
  627. p = (u_char *) data->output + 2;
  628. }
  629. setup_salt(salt, data);
  630. /*
  631. * Do it.
  632. */
  633. if (do_des(0, 0, &r0, &r1, count, data))
  634. return(NULL);
  635. /*
  636. * Now encode the result...
  637. */
  638. l = (r0 >> 8);
  639. *p++ = ascii64[(l >> 18) & 0x3f];
  640. *p++ = ascii64[(l >> 12) & 0x3f];
  641. *p++ = ascii64[(l >> 6) & 0x3f];
  642. *p++ = ascii64[l & 0x3f];
  643. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  644. *p++ = ascii64[(l >> 18) & 0x3f];
  645. *p++ = ascii64[(l >> 12) & 0x3f];
  646. *p++ = ascii64[(l >> 6) & 0x3f];
  647. *p++ = ascii64[l & 0x3f];
  648. l = r1 << 2;
  649. *p++ = ascii64[(l >> 12) & 0x3f];
  650. *p++ = ascii64[(l >> 6) & 0x3f];
  651. *p++ = ascii64[l & 0x3f];
  652. *p = 0;
  653. return(data->output);
  654. }
  655. #ifdef TEST
  656. static char *
  657. _crypt_extended(const char *key, const char *setting)
  658. {
  659. static int initialized = 0;
  660. static struct php_crypt_extended_data data;
  661. if (!initialized) {
  662. _crypt_extended_init();
  663. initialized = 1;
  664. data.initialized = 0;
  665. }
  666. return _crypt_extended_r(key, setting, &data);
  667. }
  668. #define crypt _crypt_extended
  669. static const struct {
  670. const char *hash;
  671. const char *pw;
  672. } tests[] = {
  673. /* "new"-style */
  674. {"_J9..CCCCXBrJUJV154M", "U*U*U*U*"},
  675. {"_J9..CCCCXUhOBTXzaiE", "U*U***U"},
  676. {"_J9..CCCC4gQ.mB/PffM", "U*U***U*"},
  677. {"_J9..XXXXvlzQGqpPPdk", "*U*U*U*U"},
  678. {"_J9..XXXXsqM/YSSP..Y", "*U*U*U*U*"},
  679. {"_J9..XXXXVL7qJCnku0I", "*U*U*U*U*U*U*U*U"},
  680. {"_J9..XXXXAj8cFbP5scI", "*U*U*U*U*U*U*U*U*"},
  681. {"_J9..SDizh.vll5VED9g", "ab1234567"},
  682. {"_J9..SDizRjWQ/zePPHc", "cr1234567"},
  683. {"_J9..SDizxmRI1GjnQuE", "zxyDPWgydbQjgq"},
  684. {"_K9..SaltNrQgIYUAeoY", "726 even"},
  685. {"_J9..SDSD5YGyRCr4W4c", ""},
  686. /* "old"-style, valid salts */
  687. {"CCNf8Sbh3HDfQ", "U*U*U*U*"},
  688. {"CCX.K.MFy4Ois", "U*U***U"},
  689. {"CC4rMpbg9AMZ.", "U*U***U*"},
  690. {"XXxzOu6maQKqQ", "*U*U*U*U"},
  691. {"SDbsugeBiC58A", ""},
  692. {"./xZjzHv5vzVE", "password"},
  693. {"0A2hXM1rXbYgo", "password"},
  694. {"A9RXdR23Y.cY6", "password"},
  695. {"ZziFATVXHo2.6", "password"},
  696. {"zZDDIZ0NOlPzw", "password"},
  697. /* "old"-style, "reasonable" invalid salts, UFC-crypt behavior expected */
  698. {"\001\002wyd0KZo65Jo", "password"},
  699. {"a_C10Dk/ExaG.", "password"},
  700. {"~\377.5OTsRVjwLo", "password"},
  701. /* The below are erroneous inputs, so NULL return is expected/required */
  702. {"", ""}, /* no salt */
  703. {" ", ""}, /* setting string is too short */
  704. {"a:", ""}, /* unsafe character */
  705. {"\na", ""}, /* unsafe character */
  706. {"_/......", ""}, /* setting string is too short for its type */
  707. {"_........", ""}, /* zero iteration count */
  708. {"_/!......", ""}, /* invalid character in count */
  709. {"_/......!", ""}, /* invalid character in salt */
  710. {NULL}
  711. };
  712. int main(void)
  713. {
  714. int i;
  715. for (i = 0; tests[i].hash; i++) {
  716. char *hash = crypt(tests[i].pw, tests[i].hash);
  717. if (!hash && strlen(tests[i].hash) < 13)
  718. continue; /* expected failure */
  719. if (!strcmp(hash, tests[i].hash))
  720. continue; /* expected success */
  721. puts("FAILED");
  722. return 1;
  723. }
  724. puts("PASSED");
  725. return 0;
  726. }
  727. #endif