crypt_freesec.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. /*
  2. $Id$
  3. */
  4. /*
  5. * This version is derived from the original implementation of FreeSec
  6. * (release 1.1) by David Burren. I've reviewed the changes made in
  7. * OpenBSD (as of 2.7) and modified the original code in a similar way
  8. * where applicable. I've also made it reentrant and made a number of
  9. * other changes.
  10. * - Solar Designer <solar at openwall.com>
  11. */
  12. /*
  13. * FreeSec: libcrypt for NetBSD
  14. *
  15. * Copyright (c) 1994 David Burren
  16. * All rights reserved.
  17. *
  18. * Redistribution and use in source and binary forms, with or without
  19. * modification, are permitted provided that the following conditions
  20. * are met:
  21. * 1. Redistributions of source code must retain the above copyright
  22. * notice, this list of conditions and the following disclaimer.
  23. * 2. Redistributions in binary form must reproduce the above copyright
  24. * notice, this list of conditions and the following disclaimer in the
  25. * documentation and/or other materials provided with the distribution.
  26. * 3. Neither the name of the author nor the names of other contributors
  27. * may be used to endorse or promote products derived from this software
  28. * without specific prior written permission.
  29. *
  30. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  31. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  32. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  33. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  34. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  35. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  36. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  37. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  38. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  39. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  40. * SUCH DAMAGE.
  41. *
  42. * $Owl: Owl/packages/glibc/crypt_freesec.c,v 1.4 2005/11/16 13:08:32 solar Exp $
  43. * $Id$
  44. *
  45. * This is an original implementation of the DES and the crypt(3) interfaces
  46. * by David Burren <davidb at werj.com.au>.
  47. *
  48. * An excellent reference on the underlying algorithm (and related
  49. * algorithms) is:
  50. *
  51. * B. Schneier, Applied Cryptography: protocols, algorithms,
  52. * and source code in C, John Wiley & Sons, 1994.
  53. *
  54. * Note that in that book's description of DES the lookups for the initial,
  55. * pbox, and final permutations are inverted (this has been brought to the
  56. * attention of the author). A list of errata for this book has been
  57. * posted to the sci.crypt newsgroup by the author and is available for FTP.
  58. *
  59. * ARCHITECTURE ASSUMPTIONS:
  60. * This code used to have some nasty ones, but these have been removed
  61. * by now. The code requires a 32-bit integer type, though.
  62. */
  63. #include <sys/types.h>
  64. #include <string.h>
  65. #ifdef TEST
  66. #include <stdio.h>
  67. #endif
  68. #include "crypt_freesec.h"
  69. #define _PASSWORD_EFMT1 '_'
  70. static u_char IP[64] = {
  71. 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
  72. 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
  73. 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
  74. 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
  75. };
  76. static u_char key_perm[56] = {
  77. 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
  78. 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
  79. 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
  80. 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
  81. };
  82. static u_char key_shifts[16] = {
  83. 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
  84. };
  85. static u_char comp_perm[48] = {
  86. 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
  87. 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
  88. 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
  89. 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
  90. };
  91. /*
  92. * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
  93. */
  94. static u_char sbox[8][64] = {
  95. {
  96. 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
  97. 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
  98. 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
  99. 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
  100. },
  101. {
  102. 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
  103. 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
  104. 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
  105. 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
  106. },
  107. {
  108. 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
  109. 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
  110. 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
  111. 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
  112. },
  113. {
  114. 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
  115. 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
  116. 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
  117. 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
  118. },
  119. {
  120. 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
  121. 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
  122. 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
  123. 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
  124. },
  125. {
  126. 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
  127. 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
  128. 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
  129. 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
  130. },
  131. {
  132. 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
  133. 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
  134. 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
  135. 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
  136. },
  137. {
  138. 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
  139. 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
  140. 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
  141. 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
  142. }
  143. };
  144. static u_char pbox[32] = {
  145. 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
  146. 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
  147. };
  148. static uint32_t bits32[32] =
  149. {
  150. 0x80000000, 0x40000000, 0x20000000, 0x10000000,
  151. 0x08000000, 0x04000000, 0x02000000, 0x01000000,
  152. 0x00800000, 0x00400000, 0x00200000, 0x00100000,
  153. 0x00080000, 0x00040000, 0x00020000, 0x00010000,
  154. 0x00008000, 0x00004000, 0x00002000, 0x00001000,
  155. 0x00000800, 0x00000400, 0x00000200, 0x00000100,
  156. 0x00000080, 0x00000040, 0x00000020, 0x00000010,
  157. 0x00000008, 0x00000004, 0x00000002, 0x00000001
  158. };
  159. static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
  160. static unsigned char ascii64[] =
  161. "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  162. /* 0000000000111111111122222222223333333333444444444455555555556666 */
  163. /* 0123456789012345678901234567890123456789012345678901234567890123 */
  164. static u_char m_sbox[4][4096];
  165. static uint32_t psbox[4][256];
  166. static uint32_t ip_maskl[8][256], ip_maskr[8][256];
  167. static uint32_t fp_maskl[8][256], fp_maskr[8][256];
  168. static uint32_t key_perm_maskl[8][128], key_perm_maskr[8][128];
  169. static uint32_t comp_maskl[8][128], comp_maskr[8][128];
  170. static inline int
  171. ascii_to_bin(char ch)
  172. {
  173. signed char sch = ch;
  174. int retval;
  175. retval = sch - '.';
  176. if (sch >= 'A') {
  177. retval = sch - ('A' - 12);
  178. if (sch >= 'a')
  179. retval = sch - ('a' - 38);
  180. }
  181. retval &= 0x3f;
  182. return(retval);
  183. }
  184. /*
  185. * When we choose to "support" invalid salts, nevertheless disallow those
  186. * containing characters that would violate the passwd file format.
  187. */
  188. static inline int
  189. ascii_is_unsafe(char ch)
  190. {
  191. return !ch || ch == '\n' || ch == ':';
  192. }
  193. void
  194. _crypt_extended_init(void)
  195. {
  196. int i, j, b, k, inbit, obit;
  197. uint32_t *p, *il, *ir, *fl, *fr;
  198. uint32_t *bits28, *bits24;
  199. u_char inv_key_perm[64];
  200. u_char u_key_perm[56];
  201. u_char inv_comp_perm[56];
  202. u_char init_perm[64], final_perm[64];
  203. u_char u_sbox[8][64];
  204. u_char un_pbox[32];
  205. bits24 = (bits28 = bits32 + 4) + 4;
  206. /*
  207. * Invert the S-boxes, reordering the input bits.
  208. */
  209. for (i = 0; i < 8; i++)
  210. for (j = 0; j < 64; j++) {
  211. b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
  212. u_sbox[i][j] = sbox[i][b];
  213. }
  214. /*
  215. * Convert the inverted S-boxes into 4 arrays of 8 bits.
  216. * Each will handle 12 bits of the S-box input.
  217. */
  218. for (b = 0; b < 4; b++)
  219. for (i = 0; i < 64; i++)
  220. for (j = 0; j < 64; j++)
  221. m_sbox[b][(i << 6) | j] =
  222. (u_sbox[(b << 1)][i] << 4) |
  223. u_sbox[(b << 1) + 1][j];
  224. /*
  225. * Set up the initial & final permutations into a useful form, and
  226. * initialise the inverted key permutation.
  227. */
  228. for (i = 0; i < 64; i++) {
  229. init_perm[final_perm[i] = IP[i] - 1] = i;
  230. inv_key_perm[i] = 255;
  231. }
  232. /*
  233. * Invert the key permutation and initialise the inverted key
  234. * compression permutation.
  235. */
  236. for (i = 0; i < 56; i++) {
  237. u_key_perm[i] = key_perm[i] - 1;
  238. inv_key_perm[key_perm[i] - 1] = i;
  239. inv_comp_perm[i] = 255;
  240. }
  241. /*
  242. * Invert the key compression permutation.
  243. */
  244. for (i = 0; i < 48; i++) {
  245. inv_comp_perm[comp_perm[i] - 1] = i;
  246. }
  247. /*
  248. * Set up the OR-mask arrays for the initial and final permutations,
  249. * and for the key initial and compression permutations.
  250. */
  251. for (k = 0; k < 8; k++) {
  252. for (i = 0; i < 256; i++) {
  253. *(il = &ip_maskl[k][i]) = 0;
  254. *(ir = &ip_maskr[k][i]) = 0;
  255. *(fl = &fp_maskl[k][i]) = 0;
  256. *(fr = &fp_maskr[k][i]) = 0;
  257. for (j = 0; j < 8; j++) {
  258. inbit = 8 * k + j;
  259. if (i & bits8[j]) {
  260. if ((obit = init_perm[inbit]) < 32)
  261. *il |= bits32[obit];
  262. else
  263. *ir |= bits32[obit-32];
  264. if ((obit = final_perm[inbit]) < 32)
  265. *fl |= bits32[obit];
  266. else
  267. *fr |= bits32[obit - 32];
  268. }
  269. }
  270. }
  271. for (i = 0; i < 128; i++) {
  272. *(il = &key_perm_maskl[k][i]) = 0;
  273. *(ir = &key_perm_maskr[k][i]) = 0;
  274. for (j = 0; j < 7; j++) {
  275. inbit = 8 * k + j;
  276. if (i & bits8[j + 1]) {
  277. if ((obit = inv_key_perm[inbit]) == 255)
  278. continue;
  279. if (obit < 28)
  280. *il |= bits28[obit];
  281. else
  282. *ir |= bits28[obit - 28];
  283. }
  284. }
  285. *(il = &comp_maskl[k][i]) = 0;
  286. *(ir = &comp_maskr[k][i]) = 0;
  287. for (j = 0; j < 7; j++) {
  288. inbit = 7 * k + j;
  289. if (i & bits8[j + 1]) {
  290. if ((obit=inv_comp_perm[inbit]) == 255)
  291. continue;
  292. if (obit < 24)
  293. *il |= bits24[obit];
  294. else
  295. *ir |= bits24[obit - 24];
  296. }
  297. }
  298. }
  299. }
  300. /*
  301. * Invert the P-box permutation, and convert into OR-masks for
  302. * handling the output of the S-box arrays setup above.
  303. */
  304. for (i = 0; i < 32; i++)
  305. un_pbox[pbox[i] - 1] = i;
  306. for (b = 0; b < 4; b++)
  307. for (i = 0; i < 256; i++) {
  308. *(p = &psbox[b][i]) = 0;
  309. for (j = 0; j < 8; j++) {
  310. if (i & bits8[j])
  311. *p |= bits32[un_pbox[8 * b + j]];
  312. }
  313. }
  314. }
  315. static void
  316. des_init_local(struct php_crypt_extended_data *data)
  317. {
  318. data->old_rawkey0 = data->old_rawkey1 = 0;
  319. data->saltbits = 0;
  320. data->old_salt = 0;
  321. data->initialized = 1;
  322. }
  323. static void
  324. setup_salt(uint32_t salt, struct php_crypt_extended_data *data)
  325. {
  326. uint32_t obit, saltbit, saltbits;
  327. int i;
  328. if (salt == data->old_salt)
  329. return;
  330. data->old_salt = salt;
  331. saltbits = 0;
  332. saltbit = 1;
  333. obit = 0x800000;
  334. for (i = 0; i < 24; i++) {
  335. if (salt & saltbit)
  336. saltbits |= obit;
  337. saltbit <<= 1;
  338. obit >>= 1;
  339. }
  340. data->saltbits = saltbits;
  341. }
  342. static int
  343. des_setkey(const char *key, struct php_crypt_extended_data *data)
  344. {
  345. uint32_t k0, k1, rawkey0, rawkey1;
  346. int shifts, round;
  347. rawkey0 =
  348. (uint32_t)(u_char)key[3] |
  349. ((uint32_t)(u_char)key[2] << 8) |
  350. ((uint32_t)(u_char)key[1] << 16) |
  351. ((uint32_t)(u_char)key[0] << 24);
  352. rawkey1 =
  353. (uint32_t)(u_char)key[7] |
  354. ((uint32_t)(u_char)key[6] << 8) |
  355. ((uint32_t)(u_char)key[5] << 16) |
  356. ((uint32_t)(u_char)key[4] << 24);
  357. if ((rawkey0 | rawkey1)
  358. && rawkey0 == data->old_rawkey0
  359. && rawkey1 == data->old_rawkey1) {
  360. /*
  361. * Already setup for this key.
  362. * This optimisation fails on a zero key (which is weak and
  363. * has bad parity anyway) in order to simplify the starting
  364. * conditions.
  365. */
  366. return(0);
  367. }
  368. data->old_rawkey0 = rawkey0;
  369. data->old_rawkey1 = rawkey1;
  370. /*
  371. * Do key permutation and split into two 28-bit subkeys.
  372. */
  373. k0 = key_perm_maskl[0][rawkey0 >> 25]
  374. | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
  375. | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
  376. | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
  377. | key_perm_maskl[4][rawkey1 >> 25]
  378. | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
  379. | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
  380. | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
  381. k1 = key_perm_maskr[0][rawkey0 >> 25]
  382. | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
  383. | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
  384. | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
  385. | key_perm_maskr[4][rawkey1 >> 25]
  386. | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
  387. | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
  388. | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
  389. /*
  390. * Rotate subkeys and do compression permutation.
  391. */
  392. shifts = 0;
  393. for (round = 0; round < 16; round++) {
  394. uint32_t t0, t1;
  395. shifts += key_shifts[round];
  396. t0 = (k0 << shifts) | (k0 >> (28 - shifts));
  397. t1 = (k1 << shifts) | (k1 >> (28 - shifts));
  398. data->de_keysl[15 - round] =
  399. data->en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
  400. | comp_maskl[1][(t0 >> 14) & 0x7f]
  401. | comp_maskl[2][(t0 >> 7) & 0x7f]
  402. | comp_maskl[3][t0 & 0x7f]
  403. | comp_maskl[4][(t1 >> 21) & 0x7f]
  404. | comp_maskl[5][(t1 >> 14) & 0x7f]
  405. | comp_maskl[6][(t1 >> 7) & 0x7f]
  406. | comp_maskl[7][t1 & 0x7f];
  407. data->de_keysr[15 - round] =
  408. data->en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
  409. | comp_maskr[1][(t0 >> 14) & 0x7f]
  410. | comp_maskr[2][(t0 >> 7) & 0x7f]
  411. | comp_maskr[3][t0 & 0x7f]
  412. | comp_maskr[4][(t1 >> 21) & 0x7f]
  413. | comp_maskr[5][(t1 >> 14) & 0x7f]
  414. | comp_maskr[6][(t1 >> 7) & 0x7f]
  415. | comp_maskr[7][t1 & 0x7f];
  416. }
  417. return(0);
  418. }
  419. static int
  420. do_des(uint32_t l_in, uint32_t r_in, uint32_t *l_out, uint32_t *r_out,
  421. int count, struct php_crypt_extended_data *data)
  422. {
  423. /*
  424. * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
  425. */
  426. uint32_t l, r, *kl, *kr, *kl1, *kr1;
  427. uint32_t f, r48l, r48r, saltbits;
  428. int round;
  429. if (count == 0) {
  430. return(1);
  431. } else if (count > 0) {
  432. /*
  433. * Encrypting
  434. */
  435. kl1 = data->en_keysl;
  436. kr1 = data->en_keysr;
  437. } else {
  438. /*
  439. * Decrypting
  440. */
  441. count = -count;
  442. kl1 = data->de_keysl;
  443. kr1 = data->de_keysr;
  444. }
  445. /*
  446. * Do initial permutation (IP).
  447. */
  448. l = ip_maskl[0][l_in >> 24]
  449. | ip_maskl[1][(l_in >> 16) & 0xff]
  450. | ip_maskl[2][(l_in >> 8) & 0xff]
  451. | ip_maskl[3][l_in & 0xff]
  452. | ip_maskl[4][r_in >> 24]
  453. | ip_maskl[5][(r_in >> 16) & 0xff]
  454. | ip_maskl[6][(r_in >> 8) & 0xff]
  455. | ip_maskl[7][r_in & 0xff];
  456. r = ip_maskr[0][l_in >> 24]
  457. | ip_maskr[1][(l_in >> 16) & 0xff]
  458. | ip_maskr[2][(l_in >> 8) & 0xff]
  459. | ip_maskr[3][l_in & 0xff]
  460. | ip_maskr[4][r_in >> 24]
  461. | ip_maskr[5][(r_in >> 16) & 0xff]
  462. | ip_maskr[6][(r_in >> 8) & 0xff]
  463. | ip_maskr[7][r_in & 0xff];
  464. saltbits = data->saltbits;
  465. while (count--) {
  466. /*
  467. * Do each round.
  468. */
  469. kl = kl1;
  470. kr = kr1;
  471. round = 16;
  472. while (round--) {
  473. /*
  474. * Expand R to 48 bits (simulate the E-box).
  475. */
  476. r48l = ((r & 0x00000001) << 23)
  477. | ((r & 0xf8000000) >> 9)
  478. | ((r & 0x1f800000) >> 11)
  479. | ((r & 0x01f80000) >> 13)
  480. | ((r & 0x001f8000) >> 15);
  481. r48r = ((r & 0x0001f800) << 7)
  482. | ((r & 0x00001f80) << 5)
  483. | ((r & 0x000001f8) << 3)
  484. | ((r & 0x0000001f) << 1)
  485. | ((r & 0x80000000) >> 31);
  486. /*
  487. * Do salting for crypt() and friends, and
  488. * XOR with the permuted key.
  489. */
  490. f = (r48l ^ r48r) & saltbits;
  491. r48l ^= f ^ *kl++;
  492. r48r ^= f ^ *kr++;
  493. /*
  494. * Do sbox lookups (which shrink it back to 32 bits)
  495. * and do the pbox permutation at the same time.
  496. */
  497. f = psbox[0][m_sbox[0][r48l >> 12]]
  498. | psbox[1][m_sbox[1][r48l & 0xfff]]
  499. | psbox[2][m_sbox[2][r48r >> 12]]
  500. | psbox[3][m_sbox[3][r48r & 0xfff]];
  501. /*
  502. * Now that we've permuted things, complete f().
  503. */
  504. f ^= l;
  505. l = r;
  506. r = f;
  507. }
  508. r = l;
  509. l = f;
  510. }
  511. /*
  512. * Do final permutation (inverse of IP).
  513. */
  514. *l_out = fp_maskl[0][l >> 24]
  515. | fp_maskl[1][(l >> 16) & 0xff]
  516. | fp_maskl[2][(l >> 8) & 0xff]
  517. | fp_maskl[3][l & 0xff]
  518. | fp_maskl[4][r >> 24]
  519. | fp_maskl[5][(r >> 16) & 0xff]
  520. | fp_maskl[6][(r >> 8) & 0xff]
  521. | fp_maskl[7][r & 0xff];
  522. *r_out = fp_maskr[0][l >> 24]
  523. | fp_maskr[1][(l >> 16) & 0xff]
  524. | fp_maskr[2][(l >> 8) & 0xff]
  525. | fp_maskr[3][l & 0xff]
  526. | fp_maskr[4][r >> 24]
  527. | fp_maskr[5][(r >> 16) & 0xff]
  528. | fp_maskr[6][(r >> 8) & 0xff]
  529. | fp_maskr[7][r & 0xff];
  530. return(0);
  531. }
  532. static int
  533. des_cipher(const char *in, char *out, uint32_t salt, int count,
  534. struct php_crypt_extended_data *data)
  535. {
  536. uint32_t l_out, r_out, rawl, rawr;
  537. int retval;
  538. setup_salt(salt, data);
  539. rawl =
  540. (uint32_t)(u_char)in[3] |
  541. ((uint32_t)(u_char)in[2] << 8) |
  542. ((uint32_t)(u_char)in[1] << 16) |
  543. ((uint32_t)(u_char)in[0] << 24);
  544. rawr =
  545. (uint32_t)(u_char)in[7] |
  546. ((uint32_t)(u_char)in[6] << 8) |
  547. ((uint32_t)(u_char)in[5] << 16) |
  548. ((uint32_t)(u_char)in[4] << 24);
  549. retval = do_des(rawl, rawr, &l_out, &r_out, count, data);
  550. out[0] = l_out >> 24;
  551. out[1] = l_out >> 16;
  552. out[2] = l_out >> 8;
  553. out[3] = l_out;
  554. out[4] = r_out >> 24;
  555. out[5] = r_out >> 16;
  556. out[6] = r_out >> 8;
  557. out[7] = r_out;
  558. return(retval);
  559. }
  560. char *
  561. _crypt_extended_r(const char *key, const char *setting,
  562. struct php_crypt_extended_data *data)
  563. {
  564. int i;
  565. uint32_t count, salt, l, r0, r1, keybuf[2];
  566. u_char *p, *q;
  567. if (!data->initialized)
  568. des_init_local(data);
  569. /*
  570. * Copy the key, shifting each character up by one bit
  571. * and padding with zeros.
  572. */
  573. q = (u_char *) keybuf;
  574. while (q - (u_char *) keybuf < sizeof(keybuf)) {
  575. *q++ = *key << 1;
  576. if (*key)
  577. key++;
  578. }
  579. if (des_setkey((u_char *) keybuf, data))
  580. return(NULL);
  581. if (*setting == _PASSWORD_EFMT1) {
  582. /*
  583. * "new"-style:
  584. * setting - underscore, 4 chars of count, 4 chars of salt
  585. * key - unlimited characters
  586. */
  587. for (i = 1, count = 0; i < 5; i++) {
  588. int value = ascii_to_bin(setting[i]);
  589. if (ascii64[value] != setting[i])
  590. return(NULL);
  591. count |= value << (i - 1) * 6;
  592. }
  593. if (!count)
  594. return(NULL);
  595. for (i = 5, salt = 0; i < 9; i++) {
  596. int value = ascii_to_bin(setting[i]);
  597. if (ascii64[value] != setting[i])
  598. return(NULL);
  599. salt |= value << (i - 5) * 6;
  600. }
  601. while (*key) {
  602. /*
  603. * Encrypt the key with itself.
  604. */
  605. if (des_cipher((u_char *) keybuf, (u_char *) keybuf,
  606. 0, 1, data))
  607. return(NULL);
  608. /*
  609. * And XOR with the next 8 characters of the key.
  610. */
  611. q = (u_char *) keybuf;
  612. while (q - (u_char *) keybuf < sizeof(keybuf) && *key)
  613. *q++ ^= *key++ << 1;
  614. if (des_setkey((u_char *) keybuf, data))
  615. return(NULL);
  616. }
  617. memcpy(data->output, setting, 9);
  618. data->output[9] = '\0';
  619. p = (u_char *) data->output + 9;
  620. } else {
  621. /*
  622. * "old"-style:
  623. * setting - 2 chars of salt
  624. * key - up to 8 characters
  625. */
  626. count = 25;
  627. if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
  628. return(NULL);
  629. salt = (ascii_to_bin(setting[1]) << 6)
  630. | ascii_to_bin(setting[0]);
  631. data->output[0] = setting[0];
  632. data->output[1] = setting[1];
  633. p = (u_char *) data->output + 2;
  634. }
  635. setup_salt(salt, data);
  636. /*
  637. * Do it.
  638. */
  639. if (do_des(0, 0, &r0, &r1, count, data))
  640. return(NULL);
  641. /*
  642. * Now encode the result...
  643. */
  644. l = (r0 >> 8);
  645. *p++ = ascii64[(l >> 18) & 0x3f];
  646. *p++ = ascii64[(l >> 12) & 0x3f];
  647. *p++ = ascii64[(l >> 6) & 0x3f];
  648. *p++ = ascii64[l & 0x3f];
  649. l = (r0 << 16) | ((r1 >> 16) & 0xffff);
  650. *p++ = ascii64[(l >> 18) & 0x3f];
  651. *p++ = ascii64[(l >> 12) & 0x3f];
  652. *p++ = ascii64[(l >> 6) & 0x3f];
  653. *p++ = ascii64[l & 0x3f];
  654. l = r1 << 2;
  655. *p++ = ascii64[(l >> 12) & 0x3f];
  656. *p++ = ascii64[(l >> 6) & 0x3f];
  657. *p++ = ascii64[l & 0x3f];
  658. *p = 0;
  659. return(data->output);
  660. }
  661. #ifdef TEST
  662. static char *
  663. _crypt_extended(const char *key, const char *setting)
  664. {
  665. static int initialized = 0;
  666. static struct php_crypt_extended_data data;
  667. if (!initialized) {
  668. _crypt_extended_init();
  669. initialized = 1;
  670. data.initialized = 0;
  671. }
  672. return _crypt_extended_r(key, setting, &data);
  673. }
  674. #define crypt _crypt_extended
  675. static struct {
  676. char *hash;
  677. char *pw;
  678. } tests[] = {
  679. /* "new"-style */
  680. {"_J9..CCCCXBrJUJV154M", "U*U*U*U*"},
  681. {"_J9..CCCCXUhOBTXzaiE", "U*U***U"},
  682. {"_J9..CCCC4gQ.mB/PffM", "U*U***U*"},
  683. {"_J9..XXXXvlzQGqpPPdk", "*U*U*U*U"},
  684. {"_J9..XXXXsqM/YSSP..Y", "*U*U*U*U*"},
  685. {"_J9..XXXXVL7qJCnku0I", "*U*U*U*U*U*U*U*U"},
  686. {"_J9..XXXXAj8cFbP5scI", "*U*U*U*U*U*U*U*U*"},
  687. {"_J9..SDizh.vll5VED9g", "ab1234567"},
  688. {"_J9..SDizRjWQ/zePPHc", "cr1234567"},
  689. {"_J9..SDizxmRI1GjnQuE", "zxyDPWgydbQjgq"},
  690. {"_K9..SaltNrQgIYUAeoY", "726 even"},
  691. {"_J9..SDSD5YGyRCr4W4c", ""},
  692. /* "old"-style, valid salts */
  693. {"CCNf8Sbh3HDfQ", "U*U*U*U*"},
  694. {"CCX.K.MFy4Ois", "U*U***U"},
  695. {"CC4rMpbg9AMZ.", "U*U***U*"},
  696. {"XXxzOu6maQKqQ", "*U*U*U*U"},
  697. {"SDbsugeBiC58A", ""},
  698. {"./xZjzHv5vzVE", "password"},
  699. {"0A2hXM1rXbYgo", "password"},
  700. {"A9RXdR23Y.cY6", "password"},
  701. {"ZziFATVXHo2.6", "password"},
  702. {"zZDDIZ0NOlPzw", "password"},
  703. /* "old"-style, "reasonable" invalid salts, UFC-crypt behavior expected */
  704. {"\001\002wyd0KZo65Jo", "password"},
  705. {"a_C10Dk/ExaG.", "password"},
  706. {"~\377.5OTsRVjwLo", "password"},
  707. /* The below are erroneous inputs, so NULL return is expected/required */
  708. {"", ""}, /* no salt */
  709. {" ", ""}, /* setting string is too short */
  710. {"a:", ""}, /* unsafe character */
  711. {"\na", ""}, /* unsafe character */
  712. {"_/......", ""}, /* setting string is too short for its type */
  713. {"_........", ""}, /* zero iteration count */
  714. {"_/!......", ""}, /* invalid character in count */
  715. {"_/......!", ""}, /* invalid character in salt */
  716. {NULL}
  717. };
  718. int main(void)
  719. {
  720. int i;
  721. for (i = 0; tests[i].hash; i++) {
  722. char *hash = crypt(tests[i].pw, tests[i].hash);
  723. if (!hash && strlen(tests[i].hash) < 13)
  724. continue; /* expected failure */
  725. if (!strcmp(hash, tests[i].hash))
  726. continue; /* expected success */
  727. puts("FAILED");
  728. return 1;
  729. }
  730. puts("PASSED");
  731. return 0;
  732. }
  733. #endif