sljitNativePPC_64.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * Stack-less Just-In-Time compiler
  3. *
  4. * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without modification, are
  7. * permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this list of
  10. * conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice, this list
  13. * of conditions and the following disclaimer in the documentation and/or other materials
  14. * provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
  17. * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  18. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
  19. * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  20. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
  21. * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  22. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  23. * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  24. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. /* ppc 64-bit arch dependent functions. */
  27. #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
  28. #define ASM_SLJIT_CLZ(src, dst) \
  29. __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
  30. #elif defined(__xlc__)
  31. #error "Please enable GCC syntax for inline assembly statements"
  32. #else
  33. #error "Must implement count leading zeroes"
  34. #endif
  35. #define RLDI(dst, src, sh, mb, type) \
  36. (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
  37. #define PUSH_RLDICR(reg, shift) \
  38. push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
  39. static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si reg, sljit_sw imm)
  40. {
  41. sljit_uw tmp;
  42. sljit_uw shift;
  43. sljit_uw tmp2;
  44. sljit_uw shift2;
  45. if (imm <= SIMM_MAX && imm >= SIMM_MIN)
  46. return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
  47. if (!(imm & ~0xffff))
  48. return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
  49. if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
  50. FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
  51. return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
  52. }
  53. /* Count leading zeroes. */
  54. tmp = (imm >= 0) ? imm : ~imm;
  55. ASM_SLJIT_CLZ(tmp, shift);
  56. SLJIT_ASSERT(shift > 0);
  57. shift--;
  58. tmp = (imm << shift);
  59. if ((tmp & ~0xffff000000000000ul) == 0) {
  60. FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
  61. shift += 15;
  62. return PUSH_RLDICR(reg, shift);
  63. }
  64. if ((tmp & ~0xffffffff00000000ul) == 0) {
  65. FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
  66. FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
  67. shift += 31;
  68. return PUSH_RLDICR(reg, shift);
  69. }
  70. /* Cut out the 16 bit from immediate. */
  71. shift += 15;
  72. tmp2 = imm & ((1ul << (63 - shift)) - 1);
  73. if (tmp2 <= 0xffff) {
  74. FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
  75. FAIL_IF(PUSH_RLDICR(reg, shift));
  76. return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
  77. }
  78. if (tmp2 <= 0xffffffff) {
  79. FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
  80. FAIL_IF(PUSH_RLDICR(reg, shift));
  81. FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
  82. return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
  83. }
  84. ASM_SLJIT_CLZ(tmp2, shift2);
  85. tmp2 <<= shift2;
  86. if ((tmp2 & ~0xffff000000000000ul) == 0) {
  87. FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
  88. shift2 += 15;
  89. shift += (63 - shift2);
  90. FAIL_IF(PUSH_RLDICR(reg, shift));
  91. FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
  92. return PUSH_RLDICR(reg, shift2);
  93. }
  94. /* The general version. */
  95. FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
  96. FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
  97. FAIL_IF(PUSH_RLDICR(reg, 31));
  98. FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
  99. return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
  100. }
  101. /* Simplified mnemonics: clrldi. */
  102. #define INS_CLEAR_LEFT(dst, src, from) \
  103. (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
  104. /* Sign extension for integer operations. */
  105. #define UN_EXTS() \
  106. if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
  107. FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
  108. src2 = TMP_REG2; \
  109. }
  110. #define BIN_EXTS() \
  111. if (flags & ALT_SIGN_EXT) { \
  112. if (flags & REG1_SOURCE) { \
  113. FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
  114. src1 = TMP_REG1; \
  115. } \
  116. if (flags & REG2_SOURCE) { \
  117. FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
  118. src2 = TMP_REG2; \
  119. } \
  120. }
  121. #define BIN_IMM_EXTS() \
  122. if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
  123. FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
  124. src1 = TMP_REG1; \
  125. }
  126. static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
  127. sljit_si dst, sljit_si src1, sljit_si src2)
  128. {
  129. switch (op) {
  130. case SLJIT_MOV:
  131. case SLJIT_MOV_P:
  132. SLJIT_ASSERT(src1 == TMP_REG1);
  133. if (dst != src2)
  134. return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
  135. return SLJIT_SUCCESS;
  136. case SLJIT_MOV_UI:
  137. case SLJIT_MOV_SI:
  138. SLJIT_ASSERT(src1 == TMP_REG1);
  139. if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
  140. if (op == SLJIT_MOV_SI)
  141. return push_inst(compiler, EXTSW | S(src2) | A(dst));
  142. return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
  143. }
  144. else {
  145. SLJIT_ASSERT(dst == src2);
  146. }
  147. return SLJIT_SUCCESS;
  148. case SLJIT_MOV_UB:
  149. case SLJIT_MOV_SB:
  150. SLJIT_ASSERT(src1 == TMP_REG1);
  151. if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
  152. if (op == SLJIT_MOV_SB)
  153. return push_inst(compiler, EXTSB | S(src2) | A(dst));
  154. return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
  155. }
  156. else if ((flags & REG_DEST) && op == SLJIT_MOV_SB)
  157. return push_inst(compiler, EXTSB | S(src2) | A(dst));
  158. else {
  159. SLJIT_ASSERT(dst == src2);
  160. }
  161. return SLJIT_SUCCESS;
  162. case SLJIT_MOV_UH:
  163. case SLJIT_MOV_SH:
  164. SLJIT_ASSERT(src1 == TMP_REG1);
  165. if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
  166. if (op == SLJIT_MOV_SH)
  167. return push_inst(compiler, EXTSH | S(src2) | A(dst));
  168. return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
  169. }
  170. else {
  171. SLJIT_ASSERT(dst == src2);
  172. }
  173. return SLJIT_SUCCESS;
  174. case SLJIT_NOT:
  175. SLJIT_ASSERT(src1 == TMP_REG1);
  176. UN_EXTS();
  177. return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
  178. case SLJIT_NEG:
  179. SLJIT_ASSERT(src1 == TMP_REG1);
  180. UN_EXTS();
  181. return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
  182. case SLJIT_CLZ:
  183. SLJIT_ASSERT(src1 == TMP_REG1);
  184. if (flags & ALT_FORM1)
  185. return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
  186. return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
  187. case SLJIT_ADD:
  188. if (flags & ALT_FORM1) {
  189. /* Flags does not set: BIN_IMM_EXTS unnecessary. */
  190. SLJIT_ASSERT(src2 == TMP_REG2);
  191. return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
  192. }
  193. if (flags & ALT_FORM2) {
  194. /* Flags does not set: BIN_IMM_EXTS unnecessary. */
  195. SLJIT_ASSERT(src2 == TMP_REG2);
  196. return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
  197. }
  198. if (flags & ALT_FORM3) {
  199. SLJIT_ASSERT(src2 == TMP_REG2);
  200. BIN_IMM_EXTS();
  201. return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
  202. }
  203. if (flags & ALT_FORM4) {
  204. /* Flags does not set: BIN_IMM_EXTS unnecessary. */
  205. FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
  206. return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
  207. }
  208. if (!(flags & ALT_SET_FLAGS))
  209. return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
  210. BIN_EXTS();
  211. return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
  212. case SLJIT_ADDC:
  213. if (flags & ALT_FORM1) {
  214. FAIL_IF(push_inst(compiler, MFXER | D(0)));
  215. FAIL_IF(push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2)));
  216. return push_inst(compiler, MTXER | S(0));
  217. }
  218. BIN_EXTS();
  219. return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
  220. case SLJIT_SUB:
  221. if (flags & ALT_FORM1) {
  222. /* Flags does not set: BIN_IMM_EXTS unnecessary. */
  223. SLJIT_ASSERT(src2 == TMP_REG2);
  224. return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
  225. }
  226. if (flags & (ALT_FORM2 | ALT_FORM3)) {
  227. SLJIT_ASSERT(src2 == TMP_REG2);
  228. if (flags & ALT_FORM2)
  229. FAIL_IF(push_inst(compiler, CMPI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
  230. if (flags & ALT_FORM3)
  231. return push_inst(compiler, CMPLI | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
  232. return SLJIT_SUCCESS;
  233. }
  234. if (flags & (ALT_FORM4 | ALT_FORM5)) {
  235. if (flags & ALT_FORM4)
  236. FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
  237. if (flags & ALT_FORM5)
  238. return push_inst(compiler, CMP | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
  239. return SLJIT_SUCCESS;
  240. }
  241. if (!(flags & ALT_SET_FLAGS))
  242. return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
  243. BIN_EXTS();
  244. if (flags & ALT_FORM6)
  245. FAIL_IF(push_inst(compiler, CMPL | CRD(4 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
  246. return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
  247. case SLJIT_SUBC:
  248. if (flags & ALT_FORM1) {
  249. FAIL_IF(push_inst(compiler, MFXER | D(0)));
  250. FAIL_IF(push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1)));
  251. return push_inst(compiler, MTXER | S(0));
  252. }
  253. BIN_EXTS();
  254. return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
  255. case SLJIT_MUL:
  256. if (flags & ALT_FORM1) {
  257. SLJIT_ASSERT(src2 == TMP_REG2);
  258. return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
  259. }
  260. BIN_EXTS();
  261. if (flags & ALT_FORM2)
  262. return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
  263. return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
  264. case SLJIT_AND:
  265. if (flags & ALT_FORM1) {
  266. SLJIT_ASSERT(src2 == TMP_REG2);
  267. return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
  268. }
  269. if (flags & ALT_FORM2) {
  270. SLJIT_ASSERT(src2 == TMP_REG2);
  271. return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
  272. }
  273. return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
  274. case SLJIT_OR:
  275. if (flags & ALT_FORM1) {
  276. SLJIT_ASSERT(src2 == TMP_REG2);
  277. return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
  278. }
  279. if (flags & ALT_FORM2) {
  280. SLJIT_ASSERT(src2 == TMP_REG2);
  281. return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
  282. }
  283. if (flags & ALT_FORM3) {
  284. SLJIT_ASSERT(src2 == TMP_REG2);
  285. FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
  286. return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
  287. }
  288. return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
  289. case SLJIT_XOR:
  290. if (flags & ALT_FORM1) {
  291. SLJIT_ASSERT(src2 == TMP_REG2);
  292. return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
  293. }
  294. if (flags & ALT_FORM2) {
  295. SLJIT_ASSERT(src2 == TMP_REG2);
  296. return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
  297. }
  298. if (flags & ALT_FORM3) {
  299. SLJIT_ASSERT(src2 == TMP_REG2);
  300. FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
  301. return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
  302. }
  303. return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
  304. case SLJIT_SHL:
  305. if (flags & ALT_FORM1) {
  306. SLJIT_ASSERT(src2 == TMP_REG2);
  307. if (flags & ALT_FORM2) {
  308. compiler->imm &= 0x1f;
  309. return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
  310. }
  311. else {
  312. compiler->imm &= 0x3f;
  313. return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
  314. }
  315. }
  316. return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
  317. case SLJIT_LSHR:
  318. if (flags & ALT_FORM1) {
  319. SLJIT_ASSERT(src2 == TMP_REG2);
  320. if (flags & ALT_FORM2) {
  321. compiler->imm &= 0x1f;
  322. return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
  323. }
  324. else {
  325. compiler->imm &= 0x3f;
  326. return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
  327. }
  328. }
  329. return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
  330. case SLJIT_ASHR:
  331. if (flags & ALT_FORM3)
  332. FAIL_IF(push_inst(compiler, MFXER | D(0)));
  333. if (flags & ALT_FORM1) {
  334. SLJIT_ASSERT(src2 == TMP_REG2);
  335. if (flags & ALT_FORM2) {
  336. compiler->imm &= 0x1f;
  337. FAIL_IF(push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11)));
  338. }
  339. else {
  340. compiler->imm &= 0x3f;
  341. FAIL_IF(push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4)));
  342. }
  343. }
  344. else
  345. FAIL_IF(push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2)));
  346. return (flags & ALT_FORM3) ? push_inst(compiler, MTXER | S(0)) : SLJIT_SUCCESS;
  347. }
  348. SLJIT_ASSERT_STOP();
  349. return SLJIT_SUCCESS;
  350. }
  351. static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si reg, sljit_sw init_value)
  352. {
  353. FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
  354. FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
  355. FAIL_IF(PUSH_RLDICR(reg, 31));
  356. FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
  357. return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
  358. }
  359. SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
  360. {
  361. sljit_ins *inst = (sljit_ins*)addr;
  362. inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
  363. inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
  364. inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
  365. inst[4] = (inst[4] & 0xffff0000) | (new_addr & 0xffff);
  366. SLJIT_CACHE_FLUSH(inst, inst + 5);
  367. }
  368. SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
  369. {
  370. sljit_ins *inst = (sljit_ins*)addr;
  371. inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
  372. inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
  373. inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
  374. inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
  375. SLJIT_CACHE_FLUSH(inst, inst + 5);
  376. }