sljitNativeMIPS_64.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * Stack-less Just-In-Time compiler
  3. *
  4. * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
  5. *
  6. * Redistribution and use in source and binary forms, with or without modification, are
  7. * permitted provided that the following conditions are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright notice, this list of
  10. * conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright notice, this list
  13. * of conditions and the following disclaimer in the documentation and/or other materials
  14. * provided with the distribution.
  15. *
  16. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
  17. * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  18. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
  19. * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  20. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
  21. * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  22. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  23. * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  24. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. */
  26. /* mips 64-bit arch dependent functions. */
  27. static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
  28. {
  29. sljit_si shift = 32;
  30. sljit_si shift2;
  31. sljit_si inv = 0;
  32. sljit_ins ins;
  33. sljit_uw uimm;
  34. if (!(imm & ~0xffff))
  35. return push_inst(compiler, ORI | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
  36. if (imm < 0 && imm >= SIMM_MIN)
  37. return push_inst(compiler, ADDIU | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
  38. if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
  39. FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(imm >> 16), dst_ar));
  40. return (imm & 0xffff) ? push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar) : SLJIT_SUCCESS;
  41. }
  42. /* Zero extended number. */
  43. uimm = imm;
  44. if (imm < 0) {
  45. uimm = ~imm;
  46. inv = 1;
  47. }
  48. while (!(uimm & 0xff00000000000000l)) {
  49. shift -= 8;
  50. uimm <<= 8;
  51. }
  52. if (!(uimm & 0xf000000000000000l)) {
  53. shift -= 4;
  54. uimm <<= 4;
  55. }
  56. if (!(uimm & 0xc000000000000000l)) {
  57. shift -= 2;
  58. uimm <<= 2;
  59. }
  60. if ((sljit_sw)uimm < 0) {
  61. uimm >>= 1;
  62. shift += 1;
  63. }
  64. SLJIT_ASSERT(((uimm & 0xc000000000000000l) == 0x4000000000000000l) && (shift > 0) && (shift <= 32));
  65. if (inv)
  66. uimm = ~uimm;
  67. FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(uimm >> 48), dst_ar));
  68. if (uimm & 0x0000ffff00000000l)
  69. FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 32), dst_ar));
  70. imm &= (1l << shift) - 1;
  71. if (!(imm & ~0xffff)) {
  72. ins = (shift == 32) ? DSLL32 : DSLL;
  73. if (shift < 32)
  74. ins |= SH_IMM(shift);
  75. FAIL_IF(push_inst(compiler, ins | TA(dst_ar) | DA(dst_ar), dst_ar));
  76. return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar);
  77. }
  78. /* Double shifts needs to be performed. */
  79. uimm <<= 32;
  80. shift2 = shift - 16;
  81. while (!(uimm & 0xf000000000000000l)) {
  82. shift2 -= 4;
  83. uimm <<= 4;
  84. }
  85. if (!(uimm & 0xc000000000000000l)) {
  86. shift2 -= 2;
  87. uimm <<= 2;
  88. }
  89. if (!(uimm & 0x8000000000000000l)) {
  90. shift2--;
  91. uimm <<= 1;
  92. }
  93. SLJIT_ASSERT((uimm & 0x8000000000000000l) && (shift2 > 0) && (shift2 <= 16));
  94. FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift - shift2), dst_ar));
  95. FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 48), dst_ar));
  96. FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift2), dst_ar));
  97. imm &= (1l << shift2) - 1;
  98. return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar);
  99. }
  100. #define SELECT_OP(a, b) \
  101. (!(op & SLJIT_INT_OP) ? a : b)
  102. #define EMIT_LOGICAL(op_imm, op_norm) \
  103. if (flags & SRC2_IMM) { \
  104. if (op & SLJIT_SET_E) \
  105. FAIL_IF(push_inst(compiler, op_imm | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); \
  106. if (CHECK_FLAGS(SLJIT_SET_E)) \
  107. FAIL_IF(push_inst(compiler, op_imm | S(src1) | T(dst) | IMM(src2), DR(dst))); \
  108. } \
  109. else { \
  110. if (op & SLJIT_SET_E) \
  111. FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
  112. if (CHECK_FLAGS(SLJIT_SET_E)) \
  113. FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | D(dst), DR(dst))); \
  114. }
  115. #define EMIT_SHIFT(op_dimm, op_dimm32, op_imm, op_dv, op_v) \
  116. if (flags & SRC2_IMM) { \
  117. if (src2 >= 32) { \
  118. SLJIT_ASSERT(!(op & SLJIT_INT_OP)); \
  119. ins = op_dimm32; \
  120. src2 -= 32; \
  121. } \
  122. else \
  123. ins = (op & SLJIT_INT_OP) ? op_imm : op_dimm; \
  124. if (op & SLJIT_SET_E) \
  125. FAIL_IF(push_inst(compiler, ins | T(src1) | DA(EQUAL_FLAG) | SH_IMM(src2), EQUAL_FLAG)); \
  126. if (CHECK_FLAGS(SLJIT_SET_E)) \
  127. FAIL_IF(push_inst(compiler, ins | T(src1) | D(dst) | SH_IMM(src2), DR(dst))); \
  128. } \
  129. else { \
  130. ins = (op & SLJIT_INT_OP) ? op_v : op_dv; \
  131. if (op & SLJIT_SET_E) \
  132. FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
  133. if (CHECK_FLAGS(SLJIT_SET_E)) \
  134. FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | D(dst), DR(dst))); \
  135. }
  136. static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
  137. sljit_si dst, sljit_si src1, sljit_sw src2)
  138. {
  139. sljit_ins ins;
  140. switch (GET_OPCODE(op)) {
  141. case SLJIT_MOV:
  142. case SLJIT_MOV_P:
  143. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  144. if (dst != src2)
  145. return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(dst), DR(dst));
  146. return SLJIT_SUCCESS;
  147. case SLJIT_MOV_UB:
  148. case SLJIT_MOV_SB:
  149. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  150. if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
  151. if (op == SLJIT_MOV_SB) {
  152. FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(24), DR(dst)));
  153. return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(24), DR(dst));
  154. }
  155. return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xff), DR(dst));
  156. }
  157. else if (dst != src2)
  158. SLJIT_ASSERT_STOP();
  159. return SLJIT_SUCCESS;
  160. case SLJIT_MOV_UH:
  161. case SLJIT_MOV_SH:
  162. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  163. if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
  164. if (op == SLJIT_MOV_SH) {
  165. FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(16), DR(dst)));
  166. return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(16), DR(dst));
  167. }
  168. return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xffff), DR(dst));
  169. }
  170. else if (dst != src2)
  171. SLJIT_ASSERT_STOP();
  172. return SLJIT_SUCCESS;
  173. case SLJIT_MOV_UI:
  174. SLJIT_ASSERT(!(op & SLJIT_INT_OP));
  175. FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(0), DR(dst)));
  176. return push_inst(compiler, DSRL32 | T(dst) | D(dst) | SH_IMM(0), DR(dst));
  177. case SLJIT_MOV_SI:
  178. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  179. return push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(0), DR(dst));
  180. case SLJIT_NOT:
  181. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  182. if (op & SLJIT_SET_E)
  183. FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
  184. if (CHECK_FLAGS(SLJIT_SET_E))
  185. FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | D(dst), DR(dst)));
  186. return SLJIT_SUCCESS;
  187. case SLJIT_CLZ:
  188. SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
  189. #if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
  190. if (op & SLJIT_SET_E)
  191. FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
  192. if (CHECK_FLAGS(SLJIT_SET_E))
  193. FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | T(dst) | D(dst), DR(dst)));
  194. #else
  195. if (SLJIT_UNLIKELY(flags & UNUSED_DEST)) {
  196. FAIL_IF(push_inst(compiler, SELECT_OP(DSRL32, SRL) | T(src2) | DA(EQUAL_FLAG) | SH_IMM(31), EQUAL_FLAG));
  197. return push_inst(compiler, XORI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG);
  198. }
  199. /* Nearly all instructions are unmovable in the following sequence. */
  200. FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
  201. /* Check zero. */
  202. FAIL_IF(push_inst(compiler, BEQ | S(TMP_REG1) | TA(0) | IMM(5), UNMOVABLE_INS));
  203. FAIL_IF(push_inst(compiler, ORI | SA(0) | T(dst) | IMM((op & SLJIT_INT_OP) ? 32 : 64), UNMOVABLE_INS));
  204. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | T(dst) | IMM(-1), DR(dst)));
  205. /* Loop for searching the highest bit. */
  206. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(dst) | T(dst) | IMM(1), DR(dst)));
  207. FAIL_IF(push_inst(compiler, BGEZ | S(TMP_REG1) | IMM(-2), UNMOVABLE_INS));
  208. FAIL_IF(push_inst(compiler, SELECT_OP(DSLL, SLL) | T(TMP_REG1) | D(TMP_REG1) | SH_IMM(1), UNMOVABLE_INS));
  209. if (op & SLJIT_SET_E)
  210. return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG);
  211. #endif
  212. return SLJIT_SUCCESS;
  213. case SLJIT_ADD:
  214. if (flags & SRC2_IMM) {
  215. if (op & SLJIT_SET_O) {
  216. if (src2 >= 0)
  217. FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  218. else
  219. FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  220. }
  221. if (op & SLJIT_SET_E)
  222. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
  223. if (op & (SLJIT_SET_C | SLJIT_SET_O)) {
  224. if (src2 >= 0)
  225. FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
  226. else {
  227. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
  228. FAIL_IF(push_inst(compiler, OR | S(src1) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
  229. }
  230. }
  231. /* dst may be the same as src1 or src2. */
  232. if (CHECK_FLAGS(SLJIT_SET_E))
  233. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst)));
  234. }
  235. else {
  236. if (op & SLJIT_SET_O)
  237. FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  238. if (op & SLJIT_SET_E)
  239. FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
  240. if (op & (SLJIT_SET_C | SLJIT_SET_O))
  241. FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
  242. /* dst may be the same as src1 or src2. */
  243. if (CHECK_FLAGS(SLJIT_SET_E))
  244. FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst)));
  245. }
  246. /* a + b >= a | b (otherwise, the carry should be set to 1). */
  247. if (op & (SLJIT_SET_C | SLJIT_SET_O))
  248. FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
  249. if (!(op & SLJIT_SET_O))
  250. return SLJIT_SUCCESS;
  251. FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | D(TMP_REG1) | SH_IMM(31), DR(TMP_REG1)));
  252. FAIL_IF(push_inst(compiler, XOR | S(TMP_REG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  253. FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  254. return push_inst(compiler, SELECT_OP(DSRL32, SLL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG);
  255. case SLJIT_ADDC:
  256. if (flags & SRC2_IMM) {
  257. if (op & SLJIT_SET_C) {
  258. if (src2 >= 0)
  259. FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(OVERFLOW_FLAG) | IMM(src2), OVERFLOW_FLAG));
  260. else {
  261. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(OVERFLOW_FLAG) | IMM(src2), OVERFLOW_FLAG));
  262. FAIL_IF(push_inst(compiler, OR | S(src1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  263. }
  264. }
  265. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst)));
  266. } else {
  267. if (op & SLJIT_SET_C)
  268. FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  269. /* dst may be the same as src1 or src2. */
  270. FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst)));
  271. }
  272. if (op & SLJIT_SET_C)
  273. FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  274. FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
  275. if (!(op & SLJIT_SET_C))
  276. return SLJIT_SUCCESS;
  277. /* Set ULESS_FLAG (dst == 0) && (ULESS_FLAG == 1). */
  278. FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
  279. /* Set carry flag. */
  280. return push_inst(compiler, OR | SA(ULESS_FLAG) | TA(OVERFLOW_FLAG) | DA(ULESS_FLAG), ULESS_FLAG);
  281. case SLJIT_SUB:
  282. if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_MIN)) {
  283. FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
  284. src2 = TMP_REG2;
  285. flags &= ~SRC2_IMM;
  286. }
  287. if (flags & SRC2_IMM) {
  288. if (op & SLJIT_SET_O) {
  289. if (src2 >= 0)
  290. FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  291. else
  292. FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  293. }
  294. if (op & SLJIT_SET_E)
  295. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG));
  296. if (op & (SLJIT_SET_C | SLJIT_SET_O))
  297. FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
  298. /* dst may be the same as src1 or src2. */
  299. if (CHECK_FLAGS(SLJIT_SET_E))
  300. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst)));
  301. }
  302. else {
  303. if (op & SLJIT_SET_O)
  304. FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  305. if (op & SLJIT_SET_E)
  306. FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
  307. if (op & (SLJIT_SET_U | SLJIT_SET_C | SLJIT_SET_O))
  308. FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
  309. if (op & SLJIT_SET_U)
  310. FAIL_IF(push_inst(compiler, SLTU | S(src2) | T(src1) | DA(UGREATER_FLAG), UGREATER_FLAG));
  311. if (op & SLJIT_SET_S) {
  312. FAIL_IF(push_inst(compiler, SLT | S(src1) | T(src2) | DA(LESS_FLAG), LESS_FLAG));
  313. FAIL_IF(push_inst(compiler, SLT | S(src2) | T(src1) | DA(GREATER_FLAG), GREATER_FLAG));
  314. }
  315. /* dst may be the same as src1 or src2. */
  316. if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
  317. FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst)));
  318. }
  319. if (!(op & SLJIT_SET_O))
  320. return SLJIT_SUCCESS;
  321. FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | D(TMP_REG1) | SH_IMM(31), DR(TMP_REG1)));
  322. FAIL_IF(push_inst(compiler, XOR | S(TMP_REG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  323. FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  324. return push_inst(compiler, SELECT_OP(DSRL32, SRL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG);
  325. case SLJIT_SUBC:
  326. if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
  327. FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
  328. src2 = TMP_REG2;
  329. flags &= ~SRC2_IMM;
  330. }
  331. if (flags & SRC2_IMM) {
  332. if (op & SLJIT_SET_C)
  333. FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(OVERFLOW_FLAG) | IMM(src2), OVERFLOW_FLAG));
  334. /* dst may be the same as src1 or src2. */
  335. FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst)));
  336. }
  337. else {
  338. if (op & SLJIT_SET_C)
  339. FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
  340. /* dst may be the same as src1 or src2. */
  341. FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst)));
  342. }
  343. if (op & SLJIT_SET_C)
  344. FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(LESS_FLAG), LESS_FLAG));
  345. FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
  346. return (op & SLJIT_SET_C) ? push_inst(compiler, OR | SA(OVERFLOW_FLAG) | TA(LESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG) : SLJIT_SUCCESS;
  347. case SLJIT_MUL:
  348. SLJIT_ASSERT(!(flags & SRC2_IMM));
  349. if (!(op & SLJIT_SET_O)) {
  350. #if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
  351. if (op & SLJIT_INT_OP)
  352. return push_inst(compiler, MUL | S(src1) | T(src2) | D(dst), DR(dst));
  353. FAIL_IF(push_inst(compiler, DMULT | S(src1) | T(src2), MOVABLE_INS));
  354. return push_inst(compiler, MFLO | D(dst), DR(dst));
  355. #else
  356. FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS));
  357. return push_inst(compiler, MFLO | D(dst), DR(dst));
  358. #endif
  359. }
  360. FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS));
  361. FAIL_IF(push_inst(compiler, MFHI | DA(ULESS_FLAG), ULESS_FLAG));
  362. FAIL_IF(push_inst(compiler, MFLO | D(dst), DR(dst)));
  363. FAIL_IF(push_inst(compiler, SELECT_OP(DSRA32, SRA) | T(dst) | DA(UGREATER_FLAG) | SH_IMM(31), UGREATER_FLAG));
  364. return push_inst(compiler, SELECT_OP(DSUBU, SUBU) | SA(ULESS_FLAG) | TA(UGREATER_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG);
  365. case SLJIT_AND:
  366. EMIT_LOGICAL(ANDI, AND);
  367. return SLJIT_SUCCESS;
  368. case SLJIT_OR:
  369. EMIT_LOGICAL(ORI, OR);
  370. return SLJIT_SUCCESS;
  371. case SLJIT_XOR:
  372. EMIT_LOGICAL(XORI, XOR);
  373. return SLJIT_SUCCESS;
  374. case SLJIT_SHL:
  375. EMIT_SHIFT(DSLL, DSLL32, SLL, DSLLV, SLLV);
  376. return SLJIT_SUCCESS;
  377. case SLJIT_LSHR:
  378. EMIT_SHIFT(DSRL, DSRL32, SRL, DSRLV, SRLV);
  379. return SLJIT_SUCCESS;
  380. case SLJIT_ASHR:
  381. EMIT_SHIFT(DSRA, DSRA32, SRA, DSRAV, SRAV);
  382. return SLJIT_SUCCESS;
  383. }
  384. SLJIT_ASSERT_STOP();
  385. return SLJIT_SUCCESS;
  386. }
  387. static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw init_value)
  388. {
  389. FAIL_IF(push_inst(compiler, LUI | T(dst) | IMM(init_value >> 48), DR(dst)));
  390. FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 32), DR(dst)));
  391. FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst)));
  392. FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 16), DR(dst)));
  393. FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst)));
  394. return push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value), DR(dst));
  395. }
  396. SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
  397. {
  398. sljit_ins *inst = (sljit_ins*)addr;
  399. inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
  400. inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
  401. inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
  402. inst[5] = (inst[5] & 0xffff0000) | (new_addr & 0xffff);
  403. SLJIT_CACHE_FLUSH(inst, inst + 6);
  404. }
  405. SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
  406. {
  407. sljit_ins *inst = (sljit_ins*)addr;
  408. inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
  409. inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
  410. inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
  411. inst[5] = (inst[5] & 0xffff0000) | (new_constant & 0xffff);
  412. SLJIT_CACHE_FLUSH(inst, inst + 6);
  413. }