1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249 |
- /*
- * Stack-less Just-In-Time compiler
- *
- * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without modification, are
- * permitted provided that the following conditions are met:
- *
- * 1. Redistributions of source code must retain the above copyright notice, this list of
- * conditions and the following disclaimer.
- *
- * 2. Redistributions in binary form must reproduce the above copyright notice, this list
- * of conditions and the following disclaimer in the documentation and/or other materials
- * provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
- * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
- * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifndef _SLJIT_LIR_H_
- #define _SLJIT_LIR_H_
- /*
- ------------------------------------------------------------------------
- Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
- ------------------------------------------------------------------------
- Short description
- Advantages:
- - The execution can be continued from any LIR instruction. In other
- words, it is possible to jump to any label from anywhere, even from
- a code fragment, which is compiled later, if both compiled code
- shares the same context. See sljit_emit_enter for more details
- - Supports self modifying code: target of (conditional) jump and call
- instructions and some constant values can be dynamically modified
- during runtime
- - although it is not suggested to do it frequently
- - can be used for inline caching: save an important value once
- in the instruction stream
- - since this feature limits the optimization possibilities, a
- special flag must be passed at compile time when these
- instructions are emitted
- - A fixed stack space can be allocated for local variables
- - The compiler is thread-safe
- - The compiler is highly configurable through preprocessor macros.
- You can disable unneeded features (multithreading in single
- threaded applications), and you can use your own system functions
- (including memory allocators). See sljitConfig.h
- Disadvantages:
- - No automatic register allocation, and temporary results are
- not stored on the stack. (hence the name comes)
- In practice:
- - This approach is very effective for interpreters
- - One of the saved registers typically points to a stack interface
- - It can jump to any exception handler anytime (even if it belongs
- to another function)
- - Hot paths can be modified during runtime reflecting the changes
- of the fastest execution path of the dynamic language
- - SLJIT supports complex memory addressing modes
- - mainly position and context independent code (except some cases)
- For valgrind users:
- - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
- */
- #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
- #include "sljitConfig.h"
- #endif
- /* The following header file defines useful macros for fine tuning
- sljit based code generators. They are listed in the beginning
- of sljitConfigInternal.h */
- #include "sljitConfigInternal.h"
- /* --------------------------------------------------------------------- */
- /* Error codes */
- /* --------------------------------------------------------------------- */
- /* Indicates no error. */
- #define SLJIT_SUCCESS 0
- /* After the call of sljit_generate_code(), the error code of the compiler
- is set to this value to avoid future sljit calls (in debug mode at least).
- The complier should be freed after sljit_generate_code(). */
- #define SLJIT_ERR_COMPILED 1
- /* Cannot allocate non executable memory. */
- #define SLJIT_ERR_ALLOC_FAILED 2
- /* Cannot allocate executable memory.
- Only for sljit_generate_code() */
- #define SLJIT_ERR_EX_ALLOC_FAILED 3
- /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
- #define SLJIT_ERR_UNSUPPORTED 4
- /* An ivalid argument is passed to any SLJIT function. */
- #define SLJIT_ERR_BAD_ARGUMENT 5
- /* --------------------------------------------------------------------- */
- /* Registers */
- /* --------------------------------------------------------------------- */
- /*
- Scratch (R) registers: registers whose may not preserve their values
- across function calls.
- Saved (S) registers: registers whose preserve their values across
- function calls.
- The scratch and saved register sets are overlap. The last scratch register
- is the first saved register, the one before the last is the second saved
- register, and so on.
- If an architecture provides two scratch and three saved registers,
- its scratch and saved register sets are the following:
- R0 | [S4] | R0 and S4 represent the same physical register
- R1 | [S3] | R1 and S3 represent the same physical register
- [R2] | S2 | R2 and S2 represent the same physical register
- [R3] | S1 | R3 and S1 represent the same physical register
- [R4] | S0 | R4 and S0 represent the same physical register
- Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
- SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
- Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
- and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
- are virtual on x86-32. See below.
- The purpose of this definition is convenience. Although a register
- is either scratch register or saved register, SLJIT allows accessing
- them from the other set. For example, four registers can be used as
- scratch registers and the fifth one as saved register on the architecture
- above. Of course the last two scratch registers (R2 and R3) from this
- four will be saved on the stack, because they are defined as saved
- registers in the application binary interface. Still R2 and R3 can be
- used for referencing to these registers instead of S2 and S1, which
- makes easier to write platform independent code. Scratch registers
- can be saved registers in a similar way, but these extra saved
- registers will not be preserved across function calls! Hence the
- application must save them on those platforms, where the number of
- saved registers is too low. This can be done by copy them onto
- the stack and restore them after a function call.
- Note: To emphasize that registers assigned to R2-R4 are saved
- registers, they are enclosed by square brackets. S3-S4
- are marked in a similar way.
- Note: sljit_emit_enter and sljit_set_context defines whether a register
- is S or R register. E.g: when 3 scratches and 1 saved is mapped
- by sljit_emit_enter, the allowed register set will be: R0-R2 and
- S0. Although S2 is mapped to the same position as R2, it does not
- available in the current configuration. Furthermore the R3 (S1)
- register does not available as well.
- */
- /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
- #define SLJIT_UNUSED 0
- /* Scratch registers. */
- #define SLJIT_R0 1
- #define SLJIT_R1 2
- #define SLJIT_R2 3
- /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
- are allocated on the stack). These registers are called virtual
- and cannot be used for memory addressing (cannot be part of
- any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
- limitation on other CPUs. See sljit_get_register_index(). */
- #define SLJIT_R3 4
- #define SLJIT_R4 5
- #define SLJIT_R5 6
- #define SLJIT_R6 7
- #define SLJIT_R7 8
- #define SLJIT_R8 9
- #define SLJIT_R9 10
- /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
- The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
- #define SLJIT_R(i) (1 + (i))
- /* Saved registers. */
- #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
- #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
- #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
- /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
- are allocated on the stack). These registers are called virtual
- and cannot be used for memory addressing (cannot be part of
- any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
- limitation on other CPUs. See sljit_get_register_index(). */
- #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
- #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
- #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
- #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
- #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
- #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
- #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
- /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
- The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
- #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
- /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
- #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
- /* The SLJIT_SP provides direct access to the linear stack space allocated by
- sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
- The immediate offset is extended by the relative stack offset automatically.
- The sljit_get_local_base can be used to obtain the absolute offset. */
- #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
- /* Return with machine word. */
- #define SLJIT_RETURN_REG SLJIT_R0
- /* x86 prefers specific registers for special purposes. In case of shift
- by register it supports only SLJIT_R2 for shift argument
- (which is the src2 argument of sljit_emit_op2). If another register is
- used, sljit must exchange data between registers which cause a minor
- slowdown. Other architectures has no such limitation. */
- #define SLJIT_PREF_SHIFT_REG SLJIT_R2
- /* --------------------------------------------------------------------- */
- /* Floating point registers */
- /* --------------------------------------------------------------------- */
- /* Each floating point register can store a double or single precision
- value. The FR and FS register sets are overlap in the same way as R
- and S register sets. See above. */
- /* Note: SLJIT_UNUSED as destination is not valid for floating point
- operations, since they cannot be used for setting flags. */
- /* Floating point scratch registers. */
- #define SLJIT_FR0 1
- #define SLJIT_FR1 2
- #define SLJIT_FR2 3
- #define SLJIT_FR3 4
- #define SLJIT_FR4 5
- #define SLJIT_FR5 6
- /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
- The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
- #define SLJIT_FR(i) (1 + (i))
- /* Floating point saved registers. */
- #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
- #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
- #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
- #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
- #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
- #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
- /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
- The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
- #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
- /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
- #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
- /* --------------------------------------------------------------------- */
- /* Main structures and functions */
- /* --------------------------------------------------------------------- */
- /*
- The following structures are private, and can be changed in the
- future. Keeping them here allows code inlining.
- */
- struct sljit_memory_fragment {
- struct sljit_memory_fragment *next;
- sljit_uw used_size;
- /* Must be aligned to sljit_sw. */
- sljit_ub memory[1];
- };
- struct sljit_label {
- struct sljit_label *next;
- sljit_uw addr;
- /* The maximum size difference. */
- sljit_uw size;
- };
- struct sljit_jump {
- struct sljit_jump *next;
- sljit_uw addr;
- sljit_sw flags;
- union {
- sljit_uw target;
- struct sljit_label* label;
- } u;
- };
- struct sljit_const {
- struct sljit_const *next;
- sljit_uw addr;
- };
- struct sljit_compiler {
- sljit_si error;
- sljit_si options;
- struct sljit_label *labels;
- struct sljit_jump *jumps;
- struct sljit_const *consts;
- struct sljit_label *last_label;
- struct sljit_jump *last_jump;
- struct sljit_const *last_const;
- void *allocator_data;
- struct sljit_memory_fragment *buf;
- struct sljit_memory_fragment *abuf;
- /* Used scratch registers. */
- sljit_si scratches;
- /* Used saved registers. */
- sljit_si saveds;
- /* Used float scratch registers. */
- sljit_si fscratches;
- /* Used float saved registers. */
- sljit_si fsaveds;
- /* Local stack size. */
- sljit_si local_size;
- /* Code size. */
- sljit_uw size;
- /* For statistical purposes. */
- sljit_uw executable_size;
- #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
- sljit_si args;
- #endif
- #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
- sljit_si mode32;
- #endif
- #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
- sljit_si flags_saved;
- #endif
- #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
- /* Constant pool handling. */
- sljit_uw *cpool;
- sljit_ub *cpool_unique;
- sljit_uw cpool_diff;
- sljit_uw cpool_fill;
- /* Other members. */
- /* Contains pointer, "ldr pc, [...]" pairs. */
- sljit_uw patches;
- #endif
- #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
- /* Temporary fields. */
- sljit_uw shift_imm;
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
- sljit_sw imm;
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
- sljit_si delay_slot;
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
- sljit_si delay_slot;
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
- sljit_si cache_arg;
- sljit_sw cache_argw;
- #endif
- #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
- FILE* verbose;
- #endif
- #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
- || (defined SLJIT_DEBUG && SLJIT_DEBUG)
- /* Local size passed to the functions. */
- sljit_si logical_local_size;
- #endif
- #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
- || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
- || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
- sljit_si skip_checks;
- #endif
- };
- /* --------------------------------------------------------------------- */
- /* Main functions */
- /* --------------------------------------------------------------------- */
- /* Creates an sljit compiler. The allocator_data is required by some
- custom memory managers. This pointer is passed to SLJIT_MALLOC
- and SLJIT_FREE macros. Most allocators (including the default
- one) ignores this value, and it is recommended to pass NULL
- as a dummy value for allocator_data.
- Returns NULL if failed. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
- /* Frees everything except the compiled machine code. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
- /* Returns the current error code. If an error is occurred, future sljit
- calls which uses the same compiler argument returns early with the same
- error code. Thus there is no need for checking the error after every
- call, it is enough to do it before the code is compiled. Removing
- these checks increases the performance of the compiling process. */
- static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
- /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
- if an error was detected before. After the error code is set
- the compiler behaves as if the allocation failure happened
- during an sljit function call. This can greatly simplify error
- checking, since only the compiler status needs to be checked
- after the compilation. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
- /*
- Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
- and <= 128 bytes on 64 bit architectures. The memory area is owned by the
- compiler, and freed by sljit_free_compiler. The returned pointer is
- sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
- the compiling, and no need to worry about freeing them. The size is
- enough to contain at most 16 pointers. If the size is outside of the range,
- the function will return with NULL. However, this return value does not
- indicate that there is no more memory (does not set the current error code
- of the compiler to out-of-memory status).
- */
- SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
- #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
- /* Passing NULL disables verbose. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
- #endif
- SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
- SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
- /*
- After the machine code generation is finished we can retrieve the allocated
- executable memory size, although this area may not be fully filled with
- instructions depending on some optimizations. This function is useful only
- for statistical purposes.
- Before a successful code generation, this function returns with 0.
- */
- static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
- /* Instruction generation. Returns with any error code. If there is no
- error, they return with SLJIT_SUCCESS. */
- /*
- The executable code is a function call from the viewpoint of the C
- language. The function calls must obey to the ABI (Application
- Binary Interface) of the platform, which specify the purpose of
- all machine registers and stack handling among other things. The
- sljit_emit_enter function emits the necessary instructions for
- setting up a new context for the executable code and moves function
- arguments to the saved registers. Furthermore the options argument
- can be used to pass configuration options to the compiler. The
- available options are listed before sljit_emit_enter.
- The number of sljit_sw arguments passed to the generated function
- are specified in the "args" parameter. The number of arguments must
- be less than or equal to 3. The first argument goes to SLJIT_S0,
- the second goes to SLJIT_S1 and so on. The register set used by
- the function must be declared as well. The number of scratch and
- saved registers used by the function must be passed to sljit_emit_enter.
- Only R registers between R0 and "scratches" argument can be used
- later. E.g. if "scratches" is set to 2, the register set will be
- limited to R0 and R1. The S registers and the floating point
- registers ("fscratches" and "fsaveds") are specified in a similar
- way. The sljit_emit_enter is also capable of allocating a stack
- space for local variables. The "local_size" argument contains the
- size in bytes of this local area and its staring address is stored
- in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
- SLJIT_SP + local_size (exclusive) can be modified freely until
- the function returns. The stack space is not initialized.
- Note: the following conditions must met:
- 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
- 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
- scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
- 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
- 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
- fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
- Note: every call of sljit_emit_enter and sljit_set_context
- overwrites the previous context.
- */
- /* The absolute address returned by sljit_get_local_base with
- offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
- #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
- /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
- #define SLJIT_MAX_LOCAL_SIZE 65536
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
- sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
- sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
- /* The machine code has a context (which contains the local stack space size,
- number of used registers, etc.) which initialized by sljit_emit_enter. Several
- functions (like sljit_emit_return) requres this context to be able to generate
- the appropriate code. However, some code fragments (like inline cache) may have
- no normal entry point so their context is unknown for the compiler. Their context
- can be provided to the compiler by the sljit_set_context function.
- Note: every call of sljit_emit_enter and sljit_set_context overwrites
- the previous context. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
- sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
- sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
- /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
- function does not return with anything or any opcode between SLJIT_MOV and
- SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
- is SLJIT_UNUSED, otherwise see below the description about source and
- destination arguments. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
- sljit_si src, sljit_sw srcw);
- /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
- even the stack frame is passed to the callee. The return address is preserved in
- dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
- is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
- /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
- instructions are needed. Excellent for small uility functions, where saving registers
- and setting up a new stack frame would cost too much performance. However, it is still
- possible to return to the address of the caller (or anywhere else). */
- /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
- /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
- since many architectures do clever branch prediction on call / return instruction pairs. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
- /*
- Source and destination values for arithmetical instructions
- imm - a simple immediate value (cannot be used as a destination)
- reg - any of the registers (immediate argument must be 0)
- [imm] - absolute immediate memory address
- [reg+imm] - indirect memory address
- [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
- useful for (byte, half, int, sljit_sw) array access
- (fully supported by both x86 and ARM architectures, and cheap operation on others)
- */
- /*
- IMPORATNT NOTE: memory access MUST be naturally aligned except
- SLJIT_UNALIGNED macro is defined and its value is 1.
- length | alignment
- ---------+-----------
- byte | 1 byte (any physical_address is accepted)
- half | 2 byte (physical_address & 0x1 == 0)
- int | 4 byte (physical_address & 0x3 == 0)
- word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
- | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
- pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
- | on 64 bit machines)
- Note: Different architectures have different addressing limitations.
- A single instruction is enough for the following addressing
- modes. Other adrressing modes are emulated by instruction
- sequences. This information could help to improve those code
- generators which focuses only a few architectures.
- x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
- [reg+(reg<<imm)] is supported
- [imm], -2^32+1 <= imm <= 2^32-1 is supported
- Write-back is not supported
- arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
- bytes, any halfs or floating point values)
- [reg+(reg<<imm)] is supported
- Write-back is supported
- arm-t2: [reg+imm], -255 <= imm <= 4095
- [reg+(reg<<imm)] is supported
- Write back is supported only for [reg+imm], where -255 <= imm <= 255
- ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
- signed load on 64 bit requires immediates divisible by 4.
- [reg+imm] is not supported for signed 8 bit values.
- [reg+reg] is supported
- Write-back is supported except for one instruction: 32 bit signed
- load with [reg+imm] addressing mode on 64 bit.
- mips: [reg+imm], -65536 <= imm <= 65535
- sparc: [reg+imm], -4096 <= imm <= 4095
- [reg+reg] is supported
- */
- /* Register output: simply the name of the register.
- For destination, you can use SLJIT_UNUSED as well. */
- #define SLJIT_MEM 0x80
- #define SLJIT_MEM0() (SLJIT_MEM)
- #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
- #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
- #define SLJIT_IMM 0x40
- /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
- 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
- lower 32 bit of the input register(s), and set the CPU status flags according
- to the 32 bit result. The higher 32 bits are undefined for both the input and
- output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
- expects it to be the sign extension of the lower 32 bit. All 32 bit operations
- are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
- is specified, all register arguments must be the result of other operations with
- the same SLJIT_INT_OP flag. In other words, although a register can hold either
- a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
- SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
- which can convert any source argument to SLJIT_INT_OP compatible result. This
- conversion might be unnecessary on some CPUs like x86-64, since the upper 32
- bit is always ignored. In this case SLJIT is clever enough to not generate any
- instructions if the source and destination operands are the same registers.
- Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
- #define SLJIT_INT_OP 0x100
- /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
- it applies to floating point registers (it is even the same bit). When
- this flag is passed, the CPU performs single precision floating point
- operations. Similar to SLJIT_INT_OP, all register arguments must be the
- result of other floating point operations with this flag. Affects
- sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
- #define SLJIT_SINGLE_OP 0x100
- /* Common CPU status flags for all architectures (x86, ARM, PPC)
- - carry flag
- - overflow flag
- - zero flag
- - negative/positive flag (depends on arc)
- On mips, these flags are emulated by software. */
- /* By default, the instructions may, or may not set the CPU status flags.
- Forcing to set or keep status flags can be done with the following flags: */
- /* Note: sljit tries to emit the minimum number of instructions. Using these
- flags can increase them, so use them wisely to avoid unnecessary code generation. */
- /* Set Equal (Zero) status flag (E). */
- #define SLJIT_SET_E 0x0200
- /* Set unsigned status flag (U). */
- #define SLJIT_SET_U 0x0400
- /* Set signed status flag (S). */
- #define SLJIT_SET_S 0x0800
- /* Set signed overflow flag (O). */
- #define SLJIT_SET_O 0x1000
- /* Set carry flag (C).
- Note: Kinda unsigned overflow, but behaves differently on various cpus. */
- #define SLJIT_SET_C 0x2000
- /* Do not modify the flags (K).
- Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
- #define SLJIT_KEEP_FLAGS 0x4000
- /* Notes:
- - you cannot postpone conditional jump instructions except if noted that
- the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
- - flag combinations: '|' means 'logical or'. */
- /* Starting index of opcodes for sljit_emit_op0. */
- #define SLJIT_OP0_BASE 0
- /* Flags: - (never set any flags)
- Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
- It falls back to SLJIT_NOP in those cases. */
- #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
- /* Flags: - (never set any flags)
- Note: may or may not cause an extra cycle wait
- it can even decrease the runtime in a few cases. */
- #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
- /* Flags: - (may destroy flags)
- Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
- Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
- #define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
- /* Flags: - (may destroy flags)
- Signed multiplication of SLJIT_R0 and SLJIT_R1.
- Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
- #define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
- /* Flags: I - (may destroy flags)
- Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
- The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
- Note: if SLJIT_R1 is 0, the behaviour is undefined. */
- #define SLJIT_UDIVMOD (SLJIT_OP0_BASE + 4)
- #define SLJIT_IUDIVMOD (SLJIT_UDIVMOD | SLJIT_INT_OP)
- /* Flags: I - (may destroy flags)
- Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
- The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
- Note: if SLJIT_R1 is 0, the behaviour is undefined.
- Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
- the behaviour is undefined. */
- #define SLJIT_SDIVMOD (SLJIT_OP0_BASE + 5)
- #define SLJIT_ISDIVMOD (SLJIT_SDIVMOD | SLJIT_INT_OP)
- /* Flags: I - (may destroy flags)
- Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
- The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
- Note: if SLJIT_R1 is 0, the behaviour is undefined.
- Note: SLJIT_SDIV is single precision divide. */
- #define SLJIT_UDIVI (SLJIT_OP0_BASE + 6)
- #define SLJIT_IUDIVI (SLJIT_UDIVI | SLJIT_INT_OP)
- /* Flags: I - (may destroy flags)
- Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
- The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
- Note: if SLJIT_R1 is 0, the behaviour is undefined.
- Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
- the behaviour is undefined.
- Note: SLJIT_SDIV is single precision divide. */
- #define SLJIT_SDIVI (SLJIT_OP0_BASE + 7)
- #define SLJIT_ISDIVI (SLJIT_SDIVI | SLJIT_INT_OP)
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
- /* Starting index of opcodes for sljit_emit_op1. */
- #define SLJIT_OP1_BASE 32
- /* Notes for MOV instructions:
- U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
- or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
- UB = unsigned byte (8 bit)
- SB = signed byte (8 bit)
- UH = unsigned half (16 bit)
- SH = signed half (16 bit)
- UI = unsigned int (32 bit)
- SI = signed int (32 bit)
- P = pointer (sljit_p) size */
- /* Flags: - (never set any flags) */
- #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
- #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
- #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
- #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
- #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
- /* Flags: I - (never set any flags)
- Note: see SLJIT_INT_OP for further details. */
- #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
- /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
- /* Flags: I - (never set any flags)
- Note: see SLJIT_INT_OP for further details. */
- #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
- #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
- /* Flags: - (never set any flags) */
- #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
- /* Flags: - (never set any flags) */
- #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
- #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
- #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
- #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
- /* Flags: I - (never set any flags) */
- #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
- #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
- /* Flags: I - (never set any flags)
- Note: see SLJIT_INT_OP for further details. */
- #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
- /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
- /* Flags: I - (never set any flags)
- Note: see SLJIT_INT_OP for further details. */
- #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
- #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
- /* Flags: - (never set any flags) */
- #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
- /* Flags: I | E | K */
- #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
- #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
- /* Flags: I | E | O | K */
- #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
- #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
- /* Count leading zeroes
- Flags: I | E | K
- Important note! Sparc 32 does not support K flag, since
- the required popc instruction is introduced only in sparc 64. */
- #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
- #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
- sljit_si dst, sljit_sw dstw,
- sljit_si src, sljit_sw srcw);
- /* Starting index of opcodes for sljit_emit_op2. */
- #define SLJIT_OP2_BASE 96
- /* Flags: I | E | O | C | K */
- #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
- #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
- /* Flags: I | C | K */
- #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
- #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
- /* Flags: I | E | U | S | O | C | K */
- #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
- #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
- /* Flags: I | C | K */
- #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
- #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
- /* Note: integer mul
- Flags: I | O (see SLJIT_C_MUL_*) | K */
- #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
- #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
- /* Flags: I | E | K */
- #define SLJIT_AND (SLJIT_OP2_BASE + 5)
- #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
- /* Flags: I | E | K */
- #define SLJIT_OR (SLJIT_OP2_BASE + 6)
- #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
- /* Flags: I | E | K */
- #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
- #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
- /* Flags: I | E | K
- Let bit_length be the length of the shift operation: 32 or 64.
- If src2 is immediate, src2w is masked by (bit_length - 1).
- Otherwise, if the content of src2 is outside the range from 0
- to bit_length - 1, the result is undefined. */
- #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
- #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
- /* Flags: I | E | K
- Let bit_length be the length of the shift operation: 32 or 64.
- If src2 is immediate, src2w is masked by (bit_length - 1).
- Otherwise, if the content of src2 is outside the range from 0
- to bit_length - 1, the result is undefined. */
- #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
- #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
- /* Flags: I | E | K
- Let bit_length be the length of the shift operation: 32 or 64.
- If src2 is immediate, src2w is masked by (bit_length - 1).
- Otherwise, if the content of src2 is outside the range from 0
- to bit_length - 1, the result is undefined. */
- #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
- #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
- sljit_si dst, sljit_sw dstw,
- sljit_si src1, sljit_sw src1w,
- sljit_si src2, sljit_sw src2w);
- /* Returns with non-zero if fpu is available. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
- /* Starting index of opcodes for sljit_emit_fop1. */
- #define SLJIT_FOP1_BASE 128
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
- #define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
- /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
- SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
- Rounding mode when the destination is W or I: round towards zero. */
- /* Flags: SP - (never set any flags) */
- #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
- #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
- #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
- #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
- #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
- #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
- /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
- Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
- is set, the comparison result is unpredictable.
- Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
- #define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
- #define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
- #define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
- #define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
- sljit_si dst, sljit_sw dstw,
- sljit_si src, sljit_sw srcw);
- /* Starting index of opcodes for sljit_emit_fop2. */
- #define SLJIT_FOP2_BASE 160
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
- #define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
- #define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
- #define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
- /* Flags: SP - (never set any flags) */
- #define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
- #define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
- sljit_si dst, sljit_sw dstw,
- sljit_si src1, sljit_sw src1w,
- sljit_si src2, sljit_sw src2w);
- /* Label and jump instructions. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
- /* Invert (negate) conditional type: xor (^) with 0x1 */
- /* Integer comparison types. */
- #define SLJIT_EQUAL 0
- #define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
- #define SLJIT_ZERO 0
- #define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
- #define SLJIT_NOT_EQUAL 1
- #define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
- #define SLJIT_NOT_ZERO 1
- #define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
- #define SLJIT_LESS 2
- #define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
- #define SLJIT_GREATER_EQUAL 3
- #define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
- #define SLJIT_GREATER 4
- #define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
- #define SLJIT_LESS_EQUAL 5
- #define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
- #define SLJIT_SIG_LESS 6
- #define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
- #define SLJIT_SIG_GREATER_EQUAL 7
- #define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
- #define SLJIT_SIG_GREATER 8
- #define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
- #define SLJIT_SIG_LESS_EQUAL 9
- #define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
- #define SLJIT_OVERFLOW 10
- #define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
- #define SLJIT_NOT_OVERFLOW 11
- #define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
- #define SLJIT_MUL_OVERFLOW 12
- #define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
- #define SLJIT_MUL_NOT_OVERFLOW 13
- #define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
- /* Floating point comparison types. */
- #define SLJIT_D_EQUAL 14
- #define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
- #define SLJIT_D_NOT_EQUAL 15
- #define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
- #define SLJIT_D_LESS 16
- #define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
- #define SLJIT_D_GREATER_EQUAL 17
- #define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
- #define SLJIT_D_GREATER 18
- #define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
- #define SLJIT_D_LESS_EQUAL 19
- #define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
- #define SLJIT_D_UNORDERED 20
- #define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
- #define SLJIT_D_ORDERED 21
- #define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
- /* Unconditional jump types. */
- #define SLJIT_JUMP 22
- #define SLJIT_FAST_CALL 23
- #define SLJIT_CALL0 24
- #define SLJIT_CALL1 25
- #define SLJIT_CALL2 26
- #define SLJIT_CALL3 27
- /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
- /* The target can be changed during runtime (see: sljit_set_jump_addr). */
- #define SLJIT_REWRITABLE_JUMP 0x1000
- /* Emit a jump instruction. The destination is not set, only the type of the jump.
- type must be between SLJIT_EQUAL and SLJIT_CALL3
- type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
- Flags: - (never set any flags) for both conditional and unconditional jumps.
- Flags: destroy all flags for calls. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
- /* Basic arithmetic comparison. In most architectures it is implemented as
- an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
- appropriate flags) followed by a sljit_emit_jump. However some
- architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
- It is suggested to use this comparison form when appropriate.
- type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
- type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
- Flags: destroy flags. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
- sljit_si src1, sljit_sw src1w,
- sljit_si src2, sljit_sw src2w);
- /* Basic floating point comparison. In most architectures it is implemented as
- an SLJIT_FCMP operation (setting appropriate flags) followed by a
- sljit_emit_jump. However some architectures (i.e: MIPS) may employ
- special optimizations here. It is suggested to use this comparison form
- when appropriate.
- type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
- type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
- Flags: destroy flags.
- Note: if either operand is NaN, the behaviour is undefined for
- types up to SLJIT_S_LESS_EQUAL. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
- sljit_si src1, sljit_sw src1w,
- sljit_si src2, sljit_sw src2w);
- /* Set the destination of the jump to this label. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
- /* Set the destination address of the jump to this label. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
- /* Call function or jump anywhere. Both direct and indirect form
- type must be between SLJIT_JUMP and SLJIT_CALL3
- Direct form: set src to SLJIT_IMM() and srcw to the address
- Indirect form: any other valid addressing mode
- Flags: - (never set any flags) for unconditional jumps.
- Flags: destroy all flags for calls. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
- /* Perform the operation using the conditional flags as the second argument.
- Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
- represented by the type is 1, if the condition represented by the type
- is fulfilled, and 0 otherwise.
- If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
- Set dst to the value represented by the type (0 or 1).
- Src must be SLJIT_UNUSED, and srcw must be 0
- Flags: - (never set any flags)
- If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
- Performs the binary operation using src as the first, and the value
- represented by type as the second argument.
- Important note: only dst=src and dstw=srcw is supported at the moment!
- Flags: I | E | K
- Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
- sljit_si dst, sljit_sw dstw,
- sljit_si src, sljit_sw srcw,
- sljit_si type);
- /* Copies the base address of SLJIT_SP + offset to dst.
- Flags: - (never set any flags) */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
- /* The constant can be changed runtime (see: sljit_set_const)
- Flags: - (never set any flags) */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
- /* After the code generation the address for label, jump and const instructions
- are computed. Since these structures are freed by sljit_free_compiler, the
- addresses must be preserved by the user program elsewere. */
- static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
- static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
- static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
- /* Only the address is required to rewrite the code. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
- /* --------------------------------------------------------------------- */
- /* Miscellaneous utility functions */
- /* --------------------------------------------------------------------- */
- #define SLJIT_MAJOR_VERSION 0
- #define SLJIT_MINOR_VERSION 93
- /* Get the human readable name of the platform. Can be useful on platforms
- like ARM, where ARM and Thumb2 functions can be mixed, and
- it is useful to know the type of the code generator. */
- SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
- /* Portable helper function to get an offset of a member. */
- #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
- #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
- /* This global lock is useful to compile common functions. */
- SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
- SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
- #endif
- #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
- /* The sljit_stack is a utiliy feature of sljit, which allocates a
- writable memory region between base (inclusive) and limit (exclusive).
- Both base and limit is a pointer, and base is always <= than limit.
- This feature uses the "address space reserve" feature
- of modern operating systems. Basically we don't need to allocate a
- huge memory block in one step for the worst case, we can start with
- a smaller chunk and extend it later. Since the address space is
- reserved, the data never copied to other regions, thus it is safe
- to store pointers here. */
- /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
- Note: stack growing should not happen in small steps: 4k, 16k or even
- bigger growth is better.
- Note: this structure may not be supported by all operating systems.
- Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
- is not defined. */
- struct sljit_stack {
- /* User data, anything can be stored here.
- Starting with the same value as base. */
- sljit_uw top;
- /* These members are read only. */
- sljit_uw base;
- sljit_uw limit;
- sljit_uw max_limit;
- };
- /* Returns NULL if unsuccessful.
- Note: limit and max_limit contains the size for stack allocation.
- Note: the top field is initialized to base.
- Note: see sljit_create_compiler for the explanation of allocator_data. */
- SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit, void *allocator_data);
- SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
- /* Can be used to increase (allocate) or decrease (free) the memory area.
- Returns with a non-zero value if unsuccessful. If new_limit is greater than
- max_limit, it will fail. It is very easy to implement a stack data structure,
- since the growth ratio can be added to the current limit, and sljit_stack_resize
- will do all the necessary checks. The fields of the stack are not changed if
- sljit_stack_resize fails. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack *stack, sljit_uw new_limit);
- #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
- #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
- /* Get the entry address of a given function. */
- #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
- #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
- /* All JIT related code should be placed in the same context (library, binary, etc.). */
- #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
- /* For powerpc64, the function pointers point to a context descriptor. */
- struct sljit_function_context {
- sljit_sw addr;
- sljit_sw r2;
- sljit_sw r11;
- };
- /* Fill the context arguments using the addr and the function.
- If func_ptr is NULL, it will not be set to the address of context
- If addr is NULL, the function address also comes from the func pointer. */
- SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
- #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
- /* --------------------------------------------------------------------- */
- /* CPU specific functions */
- /* --------------------------------------------------------------------- */
- /* The following function is a helper function for sljit_emit_op_custom.
- It returns with the real machine register index ( >=0 ) of any SLJIT_R,
- SLJIT_S and SLJIT_SP registers.
- Note: it returns with -1 for virtual registers (only on x86-32). */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
- /* The following function is a helper function for sljit_emit_op_custom.
- It returns with the real machine register index of any SLJIT_FLOAT register.
- Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
- /* Any instruction can be inserted into the instruction stream by
- sljit_emit_op_custom. It has a similar purpose as inline assembly.
- The size parameter must match to the instruction size of the target
- architecture:
- x86: 0 < size <= 15. The instruction argument can be byte aligned.
- Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
- if size == 4, the instruction argument must be 4 byte aligned.
- Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
- void *instruction, sljit_si size);
- #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
- /* Returns with non-zero if sse2 is available. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_is_sse2_available(void);
- /* Returns with non-zero if cmov instruction is available. */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_is_cmov_available(void);
- /* Emit a conditional mov instruction on x86 CPUs. This instruction
- moves src to destination, if the condition is satisfied. Unlike
- other arithmetic instructions, destination must be a register.
- Before such instructions are emitted, cmov support should be
- checked by sljit_x86_is_cmov_available function.
- type must be between SLJIT_EQUAL and SLJIT_S_ORDERED
- dst_reg must be a valid register and it can be combined
- with SLJIT_INT_OP to perform 32 bit arithmetic
- Flags: I - (never set any flags)
- */
- SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_x86_emit_cmov(struct sljit_compiler *compiler,
- sljit_si type,
- sljit_si dst_reg,
- sljit_si src, sljit_sw srcw);
- #endif
- #endif /* _SLJIT_LIR_H_ */
|