gd_matrix.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. #include "gd.h"
  2. #include <math.h>
  3. #ifndef M_PI
  4. # define M_PI 3.14159265358979323846
  5. #endif
  6. /**
  7. * Title: Matrix
  8. * Group: Affine Matrix
  9. */
  10. /**
  11. * Function: gdAffineApplyToPointF
  12. * Applies an affine transformation to a point (floating point
  13. * gdPointF)
  14. *
  15. *
  16. * Parameters:
  17. * dst - Where to store the resulting point
  18. * affine - Source Point
  19. * flip_horz - affine matrix
  20. *
  21. * Returns:
  22. * GD_TRUE if the affine is rectilinear or GD_FALSE
  23. */
  24. int gdAffineApplyToPointF (gdPointFPtr dst, const gdPointFPtr src,
  25. const double affine[6])
  26. {
  27. double x = src->x;
  28. double y = src->y;
  29. x = src->x;
  30. y = src->y;
  31. dst->x = x * affine[0] + y * affine[2] + affine[4];
  32. dst->y = x * affine[1] + y * affine[3] + affine[5];
  33. return GD_TRUE;
  34. }
  35. /**
  36. * Function: gdAffineInvert
  37. * Find the inverse of an affine transformation.
  38. *
  39. * All non-degenerate affine transforms are invertible. Applying the
  40. * inverted matrix will restore the original values. Multiplying <src>
  41. * by <dst> (commutative) will return the identity affine (rounding
  42. * error possible).
  43. *
  44. * Parameters:
  45. * dst - Where to store the resulting affine transform
  46. * src_affine - Original affine matrix
  47. * flip_horz - Whether or not to flip horizontally
  48. * flip_vert - Whether or not to flip vertically
  49. *
  50. * See also:
  51. * <gdAffineIdentity>
  52. *
  53. * Returns:
  54. * GD_TRUE if the affine is rectilinear or GD_FALSE
  55. */
  56. int gdAffineInvert (double dst[6], const double src[6])
  57. {
  58. double r_det = (src[0] * src[3] - src[1] * src[2]);
  59. if (r_det <= 0.0) {
  60. return GD_FALSE;
  61. }
  62. r_det = 1.0 / r_det;
  63. dst[0] = src[3] * r_det;
  64. dst[1] = -src[1] * r_det;
  65. dst[2] = -src[2] * r_det;
  66. dst[3] = src[0] * r_det;
  67. dst[4] = -src[4] * dst[0] - src[5] * dst[2];
  68. dst[5] = -src[4] * dst[1] - src[5] * dst[3];
  69. return GD_TRUE;
  70. }
  71. /**
  72. * Function: gdAffineFlip
  73. * Flip an affine transformation horizontally or vertically.
  74. *
  75. * Flips the affine transform, giving GD_FALSE for <flip_horz> and
  76. * <flip_vert> will clone the affine matrix. GD_TRUE for both will
  77. * copy a 180° rotation.
  78. *
  79. * Parameters:
  80. * dst - Where to store the resulting affine transform
  81. * src_affine - Original affine matrix
  82. * flip_h - Whether or not to flip horizontally
  83. * flip_v - Whether or not to flip vertically
  84. *
  85. * Returns:
  86. * GD_SUCCESS on success or GD_FAILURE
  87. */
  88. int gdAffineFlip (double dst[6], const double src[6], const int flip_h, const int flip_v)
  89. {
  90. dst[0] = flip_h ? - src[0] : src[0];
  91. dst[1] = flip_h ? - src[1] : src[1];
  92. dst[2] = flip_v ? - src[2] : src[2];
  93. dst[3] = flip_v ? - src[3] : src[3];
  94. dst[4] = flip_h ? - src[4] : src[4];
  95. dst[5] = flip_v ? - src[5] : src[5];
  96. return GD_TRUE;
  97. }
  98. /**
  99. * Function: gdAffineConcat
  100. * Concat (Multiply) two affine transformation matrices.
  101. *
  102. * Concats two affine transforms together, i.e. the result
  103. * will be the equivalent of doing first the transformation m1 and then
  104. * m2. All parameters can be the same matrix (safe to call using
  105. * the same array for all three arguments).
  106. *
  107. * Parameters:
  108. * dst - Where to store the resulting affine transform
  109. * m1 - First affine matrix
  110. * m2 - Second affine matrix
  111. *
  112. * Returns:
  113. * GD_SUCCESS on success or GD_FAILURE
  114. */
  115. int gdAffineConcat (double dst[6], const double m1[6], const double m2[6])
  116. {
  117. double dst0, dst1, dst2, dst3, dst4, dst5;
  118. dst0 = m1[0] * m2[0] + m1[1] * m2[2];
  119. dst1 = m1[0] * m2[1] + m1[1] * m2[3];
  120. dst2 = m1[2] * m2[0] + m1[3] * m2[2];
  121. dst3 = m1[2] * m2[1] + m1[3] * m2[3];
  122. dst4 = m1[4] * m2[0] + m1[5] * m2[2] + m2[4];
  123. dst5 = m1[4] * m2[1] + m1[5] * m2[3] + m2[5];
  124. dst[0] = dst0;
  125. dst[1] = dst1;
  126. dst[2] = dst2;
  127. dst[3] = dst3;
  128. dst[4] = dst4;
  129. dst[5] = dst5;
  130. return GD_TRUE;
  131. }
  132. /**
  133. * Function: gdAffineIdentity
  134. * Set up the identity matrix.
  135. *
  136. * Parameters:
  137. * dst - Where to store the resulting affine transform
  138. *
  139. * Returns:
  140. * GD_SUCCESS on success or GD_FAILURE
  141. */
  142. int gdAffineIdentity (double dst[6])
  143. {
  144. dst[0] = 1;
  145. dst[1] = 0;
  146. dst[2] = 0;
  147. dst[3] = 1;
  148. dst[4] = 0;
  149. dst[5] = 0;
  150. return GD_TRUE;
  151. }
  152. /**
  153. * Function: gdAffineScale
  154. * Set up a scaling matrix.
  155. *
  156. * Parameters:
  157. * scale_x - X scale factor
  158. * scale_y - Y scale factor
  159. *
  160. * Returns:
  161. * GD_SUCCESS on success or GD_FAILURE
  162. */
  163. int gdAffineScale (double dst[6], const double scale_x, const double scale_y)
  164. {
  165. dst[0] = scale_x;
  166. dst[1] = 0;
  167. dst[2] = 0;
  168. dst[3] = scale_y;
  169. dst[4] = 0;
  170. dst[5] = 0;
  171. return GD_TRUE;
  172. }
  173. /**
  174. * Function: gdAffineRotate
  175. * Set up a rotation affine transform.
  176. *
  177. * Like the other angle in libGD, in which increasing y moves
  178. * downward, this is a counterclockwise rotation.
  179. *
  180. * Parameters:
  181. * dst - Where to store the resulting affine transform
  182. * angle - Rotation angle in degrees
  183. *
  184. * Returns:
  185. * GD_SUCCESS on success or GD_FAILURE
  186. */
  187. int gdAffineRotate (double dst[6], const double angle)
  188. {
  189. const double sin_t = sin (angle * M_PI / 180.0);
  190. const double cos_t = cos (angle * M_PI / 180.0);
  191. dst[0] = cos_t;
  192. dst[1] = sin_t;
  193. dst[2] = -sin_t;
  194. dst[3] = cos_t;
  195. dst[4] = 0;
  196. dst[5] = 0;
  197. return GD_TRUE;
  198. }
  199. /**
  200. * Function: gdAffineShearHorizontal
  201. * Set up a horizontal shearing matrix || becomes \\.
  202. *
  203. * Parameters:
  204. * dst - Where to store the resulting affine transform
  205. * angle - Shear angle in degrees
  206. *
  207. * Returns:
  208. * GD_SUCCESS on success or GD_FAILURE
  209. */
  210. int gdAffineShearHorizontal(double dst[6], const double angle)
  211. {
  212. dst[0] = 1;
  213. dst[1] = 0;
  214. dst[2] = tan(angle * M_PI / 180.0);
  215. dst[3] = 1;
  216. dst[4] = 0;
  217. dst[5] = 0;
  218. return GD_TRUE;
  219. }
  220. /**
  221. * Function: gdAffineShearVertical
  222. * Set up a vertical shearing matrix, columns are untouched.
  223. *
  224. * Parameters:
  225. * dst - Where to store the resulting affine transform
  226. * angle - Shear angle in degrees
  227. *
  228. * Returns:
  229. * GD_SUCCESS on success or GD_FAILURE
  230. */
  231. int gdAffineShearVertical(double dst[6], const double angle)
  232. {
  233. dst[0] = 1;
  234. dst[1] = tan(angle * M_PI / 180.0);;
  235. dst[2] = 0;
  236. dst[3] = 1;
  237. dst[4] = 0;
  238. dst[5] = 0;
  239. return GD_TRUE;
  240. }
  241. /**
  242. * Function: gdAffineTranslate
  243. * Set up a translation matrix.
  244. *
  245. * Parameters:
  246. * dst - Where to store the resulting affine transform
  247. * offset_x - Horizontal translation amount
  248. * offset_y - Vertical translation amount
  249. *
  250. * Returns:
  251. * GD_SUCCESS on success or GD_FAILURE
  252. */
  253. int gdAffineTranslate (double dst[6], const double offset_x, const double offset_y)
  254. {
  255. dst[0] = 1;
  256. dst[1] = 0;
  257. dst[2] = 0;
  258. dst[3] = 1;
  259. dst[4] = offset_x;
  260. dst[5] = offset_y;
  261. return GD_TRUE;
  262. }
  263. /**
  264. * gdAffineexpansion: Find the affine's expansion factor.
  265. * @src: The affine transformation.
  266. *
  267. * Finds the expansion factor, i.e. the square root of the factor
  268. * by which the affine transform affects area. In an affine transform
  269. * composed of scaling, rotation, shearing, and translation, returns
  270. * the amount of scaling.
  271. *
  272. * GD_SUCCESS on success or GD_FAILURE
  273. **/
  274. double gdAffineExpansion (const double src[6])
  275. {
  276. return sqrt (fabs (src[0] * src[3] - src[1] * src[2]));
  277. }
  278. /**
  279. * Function: gdAffineRectilinear
  280. * Determines whether the affine transformation is axis aligned. A
  281. * tolerance has been implemented using GD_EPSILON.
  282. *
  283. * Parameters:
  284. * m - The affine transformation
  285. *
  286. * Returns:
  287. * GD_TRUE if the affine is rectilinear or GD_FALSE
  288. */
  289. int gdAffineRectilinear (const double m[6])
  290. {
  291. return ((fabs (m[1]) < GD_EPSILON && fabs (m[2]) < GD_EPSILON) ||
  292. (fabs (m[0]) < GD_EPSILON && fabs (m[3]) < GD_EPSILON));
  293. }
  294. /**
  295. * Function: gdAffineEqual
  296. * Determines whether two affine transformations are equal. A tolerance
  297. * has been implemented using GD_EPSILON.
  298. *
  299. * Parameters:
  300. * m1 - The first affine transformation
  301. * m2 - The first affine transformation
  302. *
  303. * Returns:
  304. * GD_SUCCESS on success or GD_FAILURE
  305. */
  306. int gdAffineEqual (const double m1[6], const double m2[6])
  307. {
  308. return (fabs (m1[0] - m2[0]) < GD_EPSILON &&
  309. fabs (m1[1] - m2[1]) < GD_EPSILON &&
  310. fabs (m1[2] - m2[2]) < GD_EPSILON &&
  311. fabs (m1[3] - m2[3]) < GD_EPSILON &&
  312. fabs (m1[4] - m2[4]) < GD_EPSILON &&
  313. fabs (m1[5] - m2[5]) < GD_EPSILON);
  314. }