123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- /*
- * The MIT License (MIT)
- *
- * Copyright (c) 2015 Derick Rethans
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
- /*
- | Algorithms are taken from a public domain source by Paul |
- | Schlyter, who wrote this in December 1992 |
- */
- #include <stdio.h>
- #include <math.h>
- #include "timelib.h"
- #define days_since_2000_Jan_0(y,m,d) \
- (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
- #ifndef PI
- #define PI 3.1415926535897932384
- #endif
- #define RADEG ( 180.0 / PI )
- #define DEGRAD ( PI / 180.0 )
- /* The trigonometric functions in degrees */
- #define sind(x) sin((x)*DEGRAD)
- #define cosd(x) cos((x)*DEGRAD)
- #define tand(x) tan((x)*DEGRAD)
- #define atand(x) (RADEG*atan(x))
- #define asind(x) (RADEG*asin(x))
- #define acosd(x) (RADEG*acos(x))
- #define atan2d(y,x) (RADEG*atan2(y,x))
- /* Following are some macros around the "workhorse" function __daylen__ */
- /* They mainly fill in the desired values for the reference altitude */
- /* below the horizon, and also selects whether this altitude should */
- /* refer to the Sun's center or its upper limb. */
- #include "astro.h"
- /******************************************************************/
- /* This function reduces any angle to within the first revolution */
- /* by subtracting or adding even multiples of 360.0 until the */
- /* result is >= 0.0 and < 360.0 */
- /******************************************************************/
- #define INV360 (1.0 / 360.0)
- /*****************************************/
- /* Reduce angle to within 0..360 degrees */
- /*****************************************/
- static double astro_revolution(double x)
- {
- return (x - 360.0 * floor(x * INV360));
- }
- /*********************************************/
- /* Reduce angle to within +180..+180 degrees */
- /*********************************************/
- static double astro_rev180( double x )
- {
- return (x - 360.0 * floor(x * INV360 + 0.5));
- }
- /*******************************************************************/
- /* This function computes GMST0, the Greenwich Mean Sidereal Time */
- /* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
- /* 0h UT). GMST is then the sidereal time at Greenwich at any */
- /* time of the day. I've generalized GMST0 as well, and define it */
- /* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
- /* other times than 0h UT as well. While this sounds somewhat */
- /* contradictory, it is very practical: instead of computing */
- /* GMST like: */
- /* */
- /* GMST = (GMST0) + UT * (366.2422/365.2422) */
- /* */
- /* where (GMST0) is the GMST last time UT was 0 hours, one simply */
- /* computes: */
- /* */
- /* GMST = GMST0 + UT */
- /* */
- /* where GMST0 is the GMST "at 0h UT" but at the current moment! */
- /* Defined in this way, GMST0 will increase with about 4 min a */
- /* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
- /* is equal to the Sun's mean longitude plus/minus 180 degrees! */
- /* (if we neglect aberration, which amounts to 20 seconds of arc */
- /* or 1.33 seconds of time) */
- /* */
- /*******************************************************************/
- static double astro_GMST0(double d)
- {
- double sidtim0;
- /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
- /* L = M + w, as defined in sunpos(). Since I'm too lazy to */
- /* add these numbers, I'll let the C compiler do it for me. */
- /* Any decent C compiler will add the constants at compile */
- /* time, imposing no runtime or code overhead. */
- sidtim0 = astro_revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);
- return sidtim0;
- }
- /* This function computes the Sun's position at any instant */
- /******************************************************/
- /* Computes the Sun's ecliptic longitude and distance */
- /* at an instant given in d, number of days since */
- /* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
- /* computed, since it's always very near 0. */
- /******************************************************/
- static void astro_sunpos(double d, double *lon, double *r)
- {
- double M, /* Mean anomaly of the Sun */
- w, /* Mean longitude of perihelion */
- /* Note: Sun's mean longitude = M + w */
- e, /* Eccentricity of Earth's orbit */
- E, /* Eccentric anomaly */
- x, y, /* x, y coordinates in orbit */
- v; /* True anomaly */
- /* Compute mean elements */
- M = astro_revolution(356.0470 + 0.9856002585 * d);
- w = 282.9404 + 4.70935E-5 * d;
- e = 0.016709 - 1.151E-9 * d;
- /* Compute true longitude and radius vector */
- E = M + e * RADEG * sind(M) * (1.0 + e * cosd(M));
- x = cosd(E) - e;
- y = sqrt(1.0 - e*e) * sind(E);
- *r = sqrt(x*x + y*y); /* Solar distance */
- v = atan2d(y, x); /* True anomaly */
- *lon = v + w; /* True solar longitude */
- if (*lon >= 360.0) {
- *lon -= 360.0; /* Make it 0..360 degrees */
- }
- }
- static void astro_sun_RA_dec(double d, double *RA, double *dec, double *r)
- {
- double lon, obl_ecl, x, y, z;
- /* Compute Sun's ecliptical coordinates */
- astro_sunpos(d, &lon, r);
- /* Compute ecliptic rectangular coordinates (z=0) */
- x = *r * cosd(lon);
- y = *r * sind(lon);
- /* Compute obliquity of ecliptic (inclination of Earth's axis) */
- obl_ecl = 23.4393 - 3.563E-7 * d;
- /* Convert to equatorial rectangular coordinates - x is unchanged */
- z = y * sind(obl_ecl);
- y = y * cosd(obl_ecl);
- /* Convert to spherical coordinates */
- *RA = atan2d(y, x);
- *dec = atan2d(z, sqrt(x*x + y*y));
- }
- /**
- * Note: timestamp = unixtimestamp (NEEDS to be 00:00:00 UT)
- * Eastern longitude positive, Western longitude negative
- * Northern latitude positive, Southern latitude negative
- * The longitude value IS critical in this function!
- * altit = the altitude which the Sun should cross
- * Set to -35/60 degrees for rise/set, -6 degrees
- * for civil, -12 degrees for nautical and -18
- * degrees for astronomical twilight.
- * upper_limb: non-zero -> upper limb, zero -> center
- * Set to non-zero (e.g. 1) when computing rise/set
- * times, and to zero when computing start/end of
- * twilight.
- * *rise = where to store the rise time
- * *set = where to store the set time
- * Both times are relative to the specified altitude,
- * and thus this function can be used to compute
- * various twilight times, as well as rise/set times
- * Return value: 0 = sun rises/sets this day, times stored at
- * *trise and *tset.
- * +1 = sun above the specified "horizon" 24 hours.
- * *trise set to time when the sun is at south,
- * minus 12 hours while *tset is set to the south
- * time plus 12 hours. "Day" length = 24 hours
- * -1 = sun is below the specified "horizon" 24 hours
- * "Day" length = 0 hours, *trise and *tset are
- * both set to the time when the sun is at south.
- *
- */
- int timelib_astro_rise_set_altitude(timelib_time *t_loc, double lon, double lat, double altit, int upper_limb, double *h_rise, double *h_set, timelib_sll *ts_rise, timelib_sll *ts_set, timelib_sll *ts_transit)
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- sr, /* Solar distance, astronomical units */
- sRA, /* Sun's Right Ascension */
- sdec, /* Sun's declination */
- sradius, /* Sun's apparent radius */
- t, /* Diurnal arc */
- tsouth, /* Time when Sun is at south */
- sidtime; /* Local sidereal time */
- timelib_time *t_utc;
- timelib_sll timestamp, old_sse;
- int rc = 0; /* Return cde from function - usually 0 */
- /* Normalize time */
- old_sse = t_loc->sse;
- t_loc->h = 12;
- t_loc->i = t_loc->s = 0;
- timelib_update_ts(t_loc, NULL);
- /* Calculate TS belonging to UTC 00:00 of the current day */
- t_utc = timelib_time_ctor();
- t_utc->y = t_loc->y;
- t_utc->m = t_loc->m;
- t_utc->d = t_loc->d;
- t_utc->h = t_utc->i = t_utc->s = 0;
- timelib_update_ts(t_utc, NULL);
- /* Compute d of 12h local mean solar time */
- timestamp = t_loc->sse;
- d = timelib_ts_to_juliandate(timestamp) - lon/360.0;
- /* Compute local sidereal time of this moment */
- sidtime = astro_revolution(astro_GMST0(d) + 180.0 + lon);
- /* Compute Sun's RA + Decl at this moment */
- astro_sun_RA_dec( d, &sRA, &sdec, &sr );
- /* Compute time when Sun is at south - in hours UT */
- tsouth = 12.0 - astro_rev180(sidtime - sRA) / 15.0;
- /* Compute the Sun's apparent radius, degrees */
- sradius = 0.2666 / sr;
- /* Do correction to upper limb, if necessary */
- if (upper_limb) {
- altit -= sradius;
- }
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitude altit: */
- {
- double cost;
- cost = (sind(altit) - sind(lat) * sind(sdec)) / (cosd(lat) * cosd(sdec));
- *ts_transit = t_utc->sse + (tsouth * 3600);
- if (cost >= 1.0) {
- rc = -1;
- t = 0.0; /* Sun always below altit */
- *ts_rise = *ts_set = t_utc->sse + (tsouth * 3600);
- } else if (cost <= -1.0) {
- rc = +1;
- t = 12.0; /* Sun always above altit */
- *ts_rise = t_loc->sse - (12 * 3600);
- *ts_set = t_loc->sse + (12 * 3600);
- } else {
- t = acosd(cost) / 15.0; /* The diurnal arc, hours */
- /* Store rise and set times - as Unix Timestamp */
- *ts_rise = ((tsouth - t) * 3600) + t_utc->sse;
- *ts_set = ((tsouth + t) * 3600) + t_utc->sse;
- *h_rise = (tsouth - t);
- *h_set = (tsouth + t);
- }
- }
- /* Kill temporary time and restore original sse */
- timelib_time_dtor(t_utc);
- t_loc->sse = old_sse;
- return rc;
- }
- double timelib_ts_to_juliandate(timelib_sll ts)
- {
- double tmp;
- tmp = ts;
- tmp /= 86400;
- tmp += 2440587.5;
- tmp -= 2451543;
- return tmp;
- }
|