1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- #include <tommath.h>
- #ifdef BN_MP_PRIME_FERMAT_C
- /* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
- /* performs one Fermat test.
- *
- * If "a" were prime then b**a == b (mod a) since the order of
- * the multiplicative sub-group would be phi(a) = a-1. That means
- * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
- *
- * Sets result to 1 if the congruence holds, or zero otherwise.
- */
- int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
- {
- mp_int t;
- int err;
- /* default to composite */
- *result = MP_NO;
- /* ensure b > 1 */
- if (mp_cmp_d(b, 1) != MP_GT) {
- return MP_VAL;
- }
- /* init t */
- if ((err = mp_init (&t)) != MP_OKAY) {
- return err;
- }
- /* compute t = b**a mod a */
- if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
- goto LBL_T;
- }
- /* is it equal to b? */
- if (mp_cmp (&t, b) == MP_EQ) {
- *result = MP_YES;
- }
- err = MP_OKAY;
- LBL_T:mp_clear (&t);
- return err;
- }
- #endif
- /* $Source: /cvs/libtom/libtommath/bn_mp_prime_fermat.c,v $ */
- /* $Revision: 1.3 $ */
- /* $Date: 2006/03/31 14:18:44 $ */
|