123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- #include <tommath.h>
- #ifdef BN_MP_EXPTMOD_C
- /* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is a library that provides multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library was designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
- */
- /* this is a shell function that calls either the normal or Montgomery
- * exptmod functions. Originally the call to the montgomery code was
- * embedded in the normal function but that wasted alot of stack space
- * for nothing (since 99% of the time the Montgomery code would be called)
- */
- int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
- {
- int dr;
- /* modulus P must be positive */
- if (P->sign == MP_NEG) {
- return MP_VAL;
- }
- /* if exponent X is negative we have to recurse */
- if (X->sign == MP_NEG) {
- #ifdef BN_MP_INVMOD_C
- mp_int tmpG, tmpX;
- int err;
- /* first compute 1/G mod P */
- if ((err = mp_init(&tmpG)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- /* now get |X| */
- if ((err = mp_init(&tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
- mp_clear_multi(&tmpG, &tmpX, NULL);
- return err;
- }
- /* and now compute (1/G)**|X| instead of G**X [X < 0] */
- err = mp_exptmod(&tmpG, &tmpX, P, Y);
- mp_clear_multi(&tmpG, &tmpX, NULL);
- return err;
- #else
- /* no invmod */
- return MP_VAL;
- #endif
- }
- /* modified diminished radix reduction */
- #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
- if (mp_reduce_is_2k_l(P) == MP_YES) {
- return s_mp_exptmod(G, X, P, Y, 1);
- }
- #endif
- #ifdef BN_MP_DR_IS_MODULUS_C
- /* is it a DR modulus? */
- dr = mp_dr_is_modulus(P);
- #else
- /* default to no */
- dr = 0;
- #endif
- #ifdef BN_MP_REDUCE_IS_2K_C
- /* if not, is it a unrestricted DR modulus? */
- if (dr == 0) {
- dr = mp_reduce_is_2k(P) << 1;
- }
- #endif
-
- /* if the modulus is odd or dr != 0 use the montgomery method */
- #ifdef BN_MP_EXPTMOD_FAST_C
- if (mp_isodd (P) == 1 || dr != 0) {
- return mp_exptmod_fast (G, X, P, Y, dr);
- } else {
- #endif
- #ifdef BN_S_MP_EXPTMOD_C
- /* otherwise use the generic Barrett reduction technique */
- return s_mp_exptmod (G, X, P, Y, 0);
- #else
- /* no exptmod for evens */
- return MP_VAL;
- #endif
- #ifdef BN_MP_EXPTMOD_FAST_C
- }
- #endif
- }
- #endif
- /* $Source: /cvs/libtom/libtommath/bn_mp_exptmod.c,v $ */
- /* $Revision: 1.4 $ */
- /* $Date: 2006/03/31 14:18:44 $ */
|