/* Copyright 2005-2013 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __TBB_concurrent_priority_queue_H #define __TBB_concurrent_priority_queue_H #include "atomic.h" #include "cache_aligned_allocator.h" #include "tbb_exception.h" #include "tbb_stddef.h" #include "tbb_profiling.h" #include "internal/_aggregator_impl.h" #include #include #include namespace tbb { namespace interface5 { using namespace tbb::internal; //! Concurrent priority queue template , typename A=cache_aligned_allocator > class concurrent_priority_queue { public: //! Element type in the queue. typedef T value_type; //! Reference type typedef T& reference; //! Const reference type typedef const T& const_reference; //! Integral type for representing size of the queue. typedef size_t size_type; //! Difference type for iterator typedef ptrdiff_t difference_type; //! Allocator type typedef A allocator_type; //! Constructs a new concurrent_priority_queue with default capacity explicit concurrent_priority_queue(const allocator_type& a = allocator_type()) : mark(0), my_size(0), data(a) { my_aggregator.initialize_handler(my_functor_t(this)); } //! Constructs a new concurrent_priority_queue with init_sz capacity explicit concurrent_priority_queue(size_type init_capacity, const allocator_type& a = allocator_type()) : mark(0), my_size(0), data(a) { data.reserve(init_capacity); my_aggregator.initialize_handler(my_functor_t(this)); } //! [begin,end) constructor template concurrent_priority_queue(InputIterator begin, InputIterator end, const allocator_type& a = allocator_type()) : data(begin, end, a) { mark = 0; my_aggregator.initialize_handler(my_functor_t(this)); heapify(); my_size = data.size(); } //! Copy constructor /** This operation is unsafe if there are pending concurrent operations on the src queue. */ explicit concurrent_priority_queue(const concurrent_priority_queue& src) : mark(src.mark), my_size(src.my_size), data(src.data.begin(), src.data.end(), src.data.get_allocator()) { my_aggregator.initialize_handler(my_functor_t(this)); heapify(); } //! Copy constructor with specific allocator /** This operation is unsafe if there are pending concurrent operations on the src queue. */ concurrent_priority_queue(const concurrent_priority_queue& src, const allocator_type& a) : mark(src.mark), my_size(src.my_size), data(src.data.begin(), src.data.end(), a) { my_aggregator.initialize_handler(my_functor_t(this)); heapify(); } //! Assignment operator /** This operation is unsafe if there are pending concurrent operations on the src queue. */ concurrent_priority_queue& operator=(const concurrent_priority_queue& src) { if (this != &src) { std::vector(src.data.begin(), src.data.end(), src.data.get_allocator()).swap(data); mark = src.mark; my_size = src.my_size; } return *this; } //! Returns true if empty, false otherwise /** Returned value may not reflect results of pending operations. This operation reads shared data and will trigger a race condition. */ bool empty() const { return size()==0; } //! Returns the current number of elements contained in the queue /** Returned value may not reflect results of pending operations. This operation reads shared data and will trigger a race condition. */ size_type size() const { return __TBB_load_with_acquire(my_size); } //! Pushes elem onto the queue, increasing capacity of queue if necessary /** This operation can be safely used concurrently with other push, try_pop or reserve operations. */ void push(const_reference elem) { cpq_operation op_data(elem, PUSH_OP); my_aggregator.execute(&op_data); if (op_data.status == FAILED) // exception thrown throw_exception(eid_bad_alloc); } //! Gets a reference to and removes highest priority element /** If a highest priority element was found, sets elem and returns true, otherwise returns false. This operation can be safely used concurrently with other push, try_pop or reserve operations. */ bool try_pop(reference elem) { cpq_operation op_data(POP_OP); op_data.elem = &elem; my_aggregator.execute(&op_data); return op_data.status==SUCCEEDED; } //! Clear the queue; not thread-safe /** This operation is unsafe if there are pending concurrent operations on the queue. Resets size, effectively emptying queue; does not free space. May not clear elements added in pending operations. */ void clear() { data.clear(); mark = 0; my_size = 0; } //! Swap this queue with another; not thread-safe /** This operation is unsafe if there are pending concurrent operations on the queue. */ void swap(concurrent_priority_queue& q) { data.swap(q.data); std::swap(mark, q.mark); std::swap(my_size, q.my_size); } //! Return allocator object allocator_type get_allocator() const { return data.get_allocator(); } private: enum operation_type {INVALID_OP, PUSH_OP, POP_OP}; enum operation_status { WAIT=0, SUCCEEDED, FAILED }; class cpq_operation : public aggregated_operation { public: operation_type type; union { value_type *elem; size_type sz; }; cpq_operation(const_reference e, operation_type t) : type(t), elem(const_cast(&e)) {} cpq_operation(operation_type t) : type(t) {} }; class my_functor_t { concurrent_priority_queue *cpq; public: my_functor_t() {} my_functor_t(concurrent_priority_queue *cpq_) : cpq(cpq_) {} void operator()(cpq_operation* op_list) { cpq->handle_operations(op_list); } }; aggregator< my_functor_t, cpq_operation> my_aggregator; //! Padding added to avoid false sharing char padding1[NFS_MaxLineSize - sizeof(aggregator< my_functor_t, cpq_operation >)]; //! The point at which unsorted elements begin size_type mark; __TBB_atomic size_type my_size; Compare compare; //! Padding added to avoid false sharing char padding2[NFS_MaxLineSize - (2*sizeof(size_type)) - sizeof(Compare)]; //! Storage for the heap of elements in queue, plus unheapified elements /** data has the following structure: binary unheapified heap elements ____|_______|____ | | | v v v [_|...|_|_|...|_| |...| ] 0 ^ ^ ^ | | |__capacity | |__my_size |__mark Thus, data stores the binary heap starting at position 0 through mark-1 (it may be empty). Then there are 0 or more elements that have not yet been inserted into the heap, in positions mark through my_size-1. */ std::vector data; void handle_operations(cpq_operation *op_list) { cpq_operation *tmp, *pop_list=NULL; __TBB_ASSERT(mark == data.size(), NULL); // First pass processes all constant (amortized; reallocation may happen) time pushes and pops. while (op_list) { // ITT note: &(op_list->status) tag is used to cover accesses to op_list // node. This thread is going to handle the operation, and so will acquire it // and perform the associated operation w/o triggering a race condition; the // thread that created the operation is waiting on the status field, so when // this thread is done with the operation, it will perform a // store_with_release to give control back to the waiting thread in // aggregator::insert_operation. call_itt_notify(acquired, &(op_list->status)); __TBB_ASSERT(op_list->type != INVALID_OP, NULL); tmp = op_list; op_list = itt_hide_load_word(op_list->next); if (tmp->type == PUSH_OP) { __TBB_TRY { data.push_back(*(tmp->elem)); __TBB_store_with_release(my_size, my_size+1); itt_store_word_with_release(tmp->status, uintptr_t(SUCCEEDED)); } __TBB_CATCH(...) { itt_store_word_with_release(tmp->status, uintptr_t(FAILED)); } } else { // tmp->type == POP_OP __TBB_ASSERT(tmp->type == POP_OP, NULL); if (mark < data.size() && compare(data[0], data[data.size()-1])) { // there are newly pushed elems and the last one // is higher than top *(tmp->elem) = data[data.size()-1]; // copy the data __TBB_store_with_release(my_size, my_size-1); itt_store_word_with_release(tmp->status, uintptr_t(SUCCEEDED)); data.pop_back(); __TBB_ASSERT(mark<=data.size(), NULL); } else { // no convenient item to pop; postpone itt_hide_store_word(tmp->next, pop_list); pop_list = tmp; } } } // second pass processes pop operations while (pop_list) { tmp = pop_list; pop_list = itt_hide_load_word(pop_list->next); __TBB_ASSERT(tmp->type == POP_OP, NULL); if (data.empty()) { itt_store_word_with_release(tmp->status, uintptr_t(FAILED)); } else { __TBB_ASSERT(mark<=data.size(), NULL); if (mark < data.size() && compare(data[0], data[data.size()-1])) { // there are newly pushed elems and the last one is // higher than top *(tmp->elem) = data[data.size()-1]; // copy the data __TBB_store_with_release(my_size, my_size-1); itt_store_word_with_release(tmp->status, uintptr_t(SUCCEEDED)); data.pop_back(); } else { // extract top and push last element down heap *(tmp->elem) = data[0]; // copy the data __TBB_store_with_release(my_size, my_size-1); itt_store_word_with_release(tmp->status, uintptr_t(SUCCEEDED)); reheap(); } } } // heapify any leftover pushed elements before doing the next // batch of operations if (mark0) mark = 1; for (; mark>1; if (!compare(data[parent], to_place)) break; data[cur_pos] = data[parent]; cur_pos = parent; } while( cur_pos ); data[cur_pos] = to_place; } } //! Re-heapify after an extraction /** Re-heapify by pushing last element down the heap from the root. */ void reheap() { size_type cur_pos=0, child=1; while (child < mark) { size_type target = child; if (child+1 < mark && compare(data[child], data[child+1])) ++target; // target now has the higher priority child if (compare(data[target], data[data.size()-1])) break; data[cur_pos] = data[target]; cur_pos = target; child = (cur_pos<<1)+1; } data[cur_pos] = data[data.size()-1]; data.pop_back(); if (mark > data.size()) mark = data.size(); } }; } // namespace interface5 using interface5::concurrent_priority_queue; } // namespace tbb #endif /* __TBB_concurrent_priority_queue_H */