/* * Module_Upgrade.c * * Created on: 2020-01-21 * Author: Jerry Wang * Version: D0.03 */ #include "Module_Upgrade.h" //================================== // PRINT OUT LOG FORMAT //================================== #define DEBUG_INFO(format, args...) storeLogMsg("[%s:%d][%s][Info] "format, __FILE__, __LINE__, __FUNCTION__, ##args) #define DEBUG_WARN(format, args...) storeLogMsg("[%s:%d][%s][Warn] "format, __FILE__, __LINE__, __FUNCTION__, ##args) #define DEBUG_ERROR(format, args...) storeLogMsg("[%s:%d][%s][Error] "format, __FILE__, __LINE__, __FUNCTION__, ##args) #define SystemLogMessage //#define ConsloePrintLog #define ARRAY_SIZE(A) (sizeof(A) / sizeof(A[0])) #define PASS 1 #define FAIL -1 #define YES 1 #define NO 0 #define ON 1 #define OFF 0 #define HEADER_LENGTH 48 struct SysConfigAndInfo *ShmSysConfigAndInfo; struct StatusCodeData *ShmStatusCodeData; struct FanModuleData *ShmFanModuleData; int storeLogMsg(const char *fmt, ...) { char Buf[4096+256]; char buffer[4096]; time_t CurrentTime; struct tm *tm; struct timeval tv; va_list args; va_start(args, fmt); int rc = vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); memset(Buf,0,sizeof(Buf)); CurrentTime = time(NULL); tm=localtime(&CurrentTime); gettimeofday(&tv, NULL); // get microseconds, 10^-6 sprintf(Buf,"echo -n \"[%04d.%02d.%02d %02d:%02d:%02d.%06ld]%s\" >> /Storage/SystemLog/[%04d.%02d]Module_UpgradeLog", tm->tm_year+1900,tm->tm_mon+1,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec,tv.tv_usec, buffer, tm->tm_year+1900,tm->tm_mon+1); #ifdef SystemLogMessage system(Buf); #endif #ifdef ConsloePrintLog printf("[%04d.%02d.%02d %02d:%02d:%02d.%06ld]%s", tm->tm_year+1900,tm->tm_mon+1,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec,tv.tv_usec, buffer); #endif return rc; } int DiffTimebByUpgrade(struct timeb ST, struct timeb ET) { //return milli-second unsigned int StartTime,StopTime; StartTime=(unsigned int)ST.time; StopTime=(unsigned int)ET.time; return (StopTime-StartTime)*1000+ET.millitm-ST.millitm; } unsigned char *memcat(unsigned char *dest, unsigned int dest_len, unsigned char *src, unsigned int src_len) { memcpy(dest+dest_len, src, src_len); return dest; } uint32_t crc32(uint8_t *data, unsigned int length) { uint8_t i; uint32_t cnt = 0; uint32_t crc = 0xffffffff; // Initial value while(length--) { if(cnt>33 && cnt<48) { data++; }else { crc ^= *data++; // crc ^= *data; data++; for (i = 0; i < 8; ++i) { if (crc & 1) crc = (crc >> 1) ^ 0xEDB88320;// 0xEDB88320= reverse 0x04C11DB7 else crc = (crc >> 1); } } cnt++; } return ~crc; } int runShellCmd(const char*cmd) { int result = FAIL; char buf[256]; FILE *fp; fp = popen(cmd, "r"); if(fp != NULL) { while(fgets(buf, sizeof(buf), fp) != NULL) { DEBUG_INFO("%s\n", buf); } result = PASS; } pclose(fp); return result; } int config_upgrade_flag(unsigned int upgradeFlag, unsigned char isSetFlag) { int result = FAIL; int fd; unsigned char envFlash[512*1024]; system("rm -f /tmp/envFlash"); DEBUG_INFO("Read /dev/mtd2.\n"); runShellCmd("nanddump -s 0x0 -l 0x80000 -f /tmp/envFlash /dev/mtd2"); fd = open("/tmp/envFlash", O_RDWR); if(fd < 0) { DEBUG_ERROR("Open envFlash NG.\n"); } else { read(fd,envFlash,ARRAY_SIZE(envFlash)); close(fd); system("rm -f /tmp/envFlash"); envFlash[upgradeFlag] = (isSetFlag?0x00:0xff); fd = open("/tmp/envFlash", O_RDWR | O_CREAT | O_EXCL); if(fd < 0) { DEBUG_ERROR("Open envFlash NG.\n"); } else { write(fd,envFlash,ARRAY_SIZE(envFlash)); close(fd); DEBUG_INFO("Erase /dev/mtd2.\n"); runShellCmd("flash_erase /dev/mtd2 0 0"); DEBUG_INFO("Write /dev/mtd2.\n"); runShellCmd("nandwrite -p /dev/mtd2 /tmp/envFlash"); system("rm -f /tmp/envFlash"); result = PASS; } } return result; } int Upgrade_Flash(unsigned int Type,char *SourcePath,char *ModelName) { int result = FAIL; char cmdBuf[128]; long int MaxLen=48*1024*1024, ImageLen=0; unsigned int ImageCRC=0, DataLength=0; int wrd,fd; // space max size set switch(Type) { case CSU_MLO: MaxLen = 0.5*1024*1024; DEBUG_INFO("Image type: MLO\n"); break; case CSU_BOOTLOADER: MaxLen = 1*1024*1024; DEBUG_INFO("Image type: U-Boot\n"); break; case CSU_KERNEL_CONFIGURATION: MaxLen = 0.5*1024*1024; DEBUG_INFO("Image type: DTB\n"); break; case CSU_KERNEL_IMAGE: MaxLen = 10*1024*1024; DEBUG_INFO("Image type: Kernel\n"); break; case CSU_ROOT_FILE_SYSTEM: MaxLen = 48*1024*1024; DEBUG_INFO("Image type: Root fs\n"); break; case CSU_USER_CONFIGURATION: MaxLen = 6*1024*1024; DEBUG_INFO("Image type: Config\n"); break; default: break; } fd = open(SourcePath, O_RDONLY); if(fd < 0) { DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath); return result; } unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH); memset(ptr,0xFF,MaxLen+HEADER_LENGTH); //get the image length ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH); close(fd); // Delete source file, in order to down size ram disk usage sprintf(cmdBuf, "rm -f %s", SourcePath); system(cmdBuf); DEBUG_INFO("Delete source file.\n"); //read out the header int isModelNameOK = PASS; if((ModelName[0] != ptr[0]) || (ModelName[1] != ptr[1]) || (ModelName[7] != ptr[7]) || (ModelName[8] != ptr[8]) || (ModelName[9] != ptr[9]) || (ModelName[11] != ptr[11]) || (ModelName[12] != ptr[12]) || (ModelName[13] != ptr[13])) { isModelNameOK = FAIL; } if(isModelNameOK == FAIL) { DEBUG_ERROR("Model name mismatch.\n"); } else { // check if the firmware type is correct if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19]))) { if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23]))) { DataLength = ImageLen-HEADER_LENGTH; // get CRC in the header ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]); // calculate the image CRC DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC); DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen)); if(crc32(ptr,ImageLen) == ImageCRC) { // Write image to target flash block switch(Type) { case CSU_MLO: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if (fd < 0) { DEBUG_ERROR("Can not create MLO image buffer file.\n"); result = FAIL; } else { // Write image to flash DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer Written length: 0x%x\n", wrd); if(wrd != DataLength) { result = FAIL; } else { DEBUG_INFO("Erase /dev/mtd0.\n"); runShellCmd("flash_erase /dev/mtd0 0 0"); DEBUG_INFO("Write /dev/mtd0.\n"); runShellCmd("nandwrite -p /dev/mtd0 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; case CSU_BOOTLOADER: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if (fd < 0) { DEBUG_ERROR("Can not create uboot image buffer file.\n"); result = FAIL; } else { // Write image to flash DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd); if(wrd != DataLength) { result = FAIL; } else { DEBUG_INFO("Erase /dev/mtd1.\n"); runShellCmd("flash_erase /dev/mtd1 0 0"); DEBUG_INFO("Write /dev/mtd1.\n"); runShellCmd("nandwrite -p /dev/mtd1 /mnt/imgBuffer"); DEBUG_INFO("Erase /dev/mtd3.\n"); runShellCmd("flash_erase /dev/mtd3 0 0"); DEBUG_INFO("Write /dev/mtd3.\n"); runShellCmd("nandwrite -p /dev/mtd3 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; case CSU_KERNEL_CONFIGURATION: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if (fd < 0) { DEBUG_ERROR("Can not create DTB image buffer file.\n"); result = FAIL; } else { // Write image to flash DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd); if(wrd != DataLength) { result = FAIL; } else { config_upgrade_flag(UPGRADE_FLAG_DTS, ON); DEBUG_INFO("Erase /dev/mtd4.\n"); runShellCmd("flash_erase /dev/mtd4 0 0"); DEBUG_INFO("Write /dev/mtd4.\n"); runShellCmd("nandwrite -p /dev/mtd4 /mnt/imgBuffer"); config_upgrade_flag(UPGRADE_FLAG_DTS, OFF); DEBUG_INFO("Erase /dev/mtd5.\n"); runShellCmd("flash_erase /dev/mtd5 0 0"); DEBUG_INFO("Write /dev/mtd5.\n"); runShellCmd("nandwrite -p /dev/mtd5 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; case CSU_KERNEL_IMAGE: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if (fd < 0) { DEBUG_ERROR("Can not create kernel image buffer file.\n"); result = FAIL; } else { // Write image to flash DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd); if(wrd != DataLength) { result = FAIL; } else { config_upgrade_flag(UPGRADE_FLAG_KERNEL, ON); DEBUG_INFO("Erase /dev/mtd6.\n"); runShellCmd("flash_erase /dev/mtd6 0 0"); DEBUG_INFO("Write /dev/mtd6.\n"); runShellCmd("nandwrite -p /dev/mtd6 /mnt/imgBuffer"); config_upgrade_flag(UPGRADE_FLAG_KERNEL, OFF); DEBUG_INFO("Erase /dev/mtd7.\n"); runShellCmd("flash_erase /dev/mtd7 0 0"); DEBUG_INFO("Write /dev/mtd7.\n"); runShellCmd("nandwrite -p /dev/mtd7 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; case CSU_ROOT_FILE_SYSTEM: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if(fd < 0) { DEBUG_ERROR("UpdateRootfs NG - can not create rootfs image buffer file\n"); result = FAIL; } else { DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd); if(wrd!=DataLength) { result = FAIL; } else { config_upgrade_flag(UPGRADE_FLAG_ROOTFS, ON); DEBUG_INFO("Erase /dev/mtd8.\n"); runShellCmd("flash_erase /dev/mtd8 0 0"); DEBUG_INFO("Write /dev/mtd8.\n"); runShellCmd("nandwrite -p /dev/mtd8 /mnt/imgBuffer"); config_upgrade_flag(UPGRADE_FLAG_ROOTFS, OFF); DEBUG_INFO("Erase /dev/mtd9.\n"); runShellCmd("flash_erase /dev/mtd9 0 0"); DEBUG_INFO("Write /dev/mtd9.\n"); runShellCmd("nandwrite -p /dev/mtd9 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; case CSU_USER_CONFIGURATION: fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL); if (fd < 0) { DEBUG_ERROR("Can not create configuration image buffer file\n"); result = FAIL; } else { // Write image to flash DEBUG_INFO("Writing image to image buffer file...\n"); wrd=write(fd, ptr+HEADER_LENGTH, DataLength); close(fd); DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd); if(wrd != DataLength) { result = FAIL; } else { DEBUG_INFO("Erase /dev/mtd10.\n"); runShellCmd("flash_erase /dev/mtd10 0 0"); DEBUG_INFO("Write /dev/mtd10.\n"); runShellCmd("nandwrite -p /dev/mtd10 /mnt/imgBuffer"); DEBUG_INFO("Erase /dev/mtd11.\n"); runShellCmd("flash_erase /dev/mtd11 0 0"); DEBUG_INFO("Write /dev/mtd11.\n"); runShellCmd("nandwrite -p /dev/mtd11 /mnt/imgBuffer"); system("rm -f /mnt/imgBuffer"); result = PASS; } } break; default: break; } } else DEBUG_ERROR("Firmware image CRC32 mismatch.\n"); } else DEBUG_ERROR("Firmware image length mismatch.\n"); } else DEBUG_ERROR("Firmware image type mismatch.\n"); } free(ptr); if(result == PASS) DEBUG_INFO("Update image success\n"); else DEBUG_ERROR("Update image fail\n"); return result; } //================================================ // UART update function //================================================ void displayMessage(uint8_t *data, uint16_t len, uint8_t isRX) { uint8_t output[8192]; memset(output, 0x00, ARRAY_SIZE(output)); sprintf((char*)output, "%s", (isRX?"RX: ":"TX: ")); for(uint16_t idx = 0;idx= len) { rxLen = read(fd, rx, 8); /* if(rxLen > 0) displayMessage(rx, rxLen, YES); else DEBUG_INFO("RX: NULL\n");*/ } else { DEBUG_ERROR("Serial command %s response fail.\n", cmd); } return rxLen; } unsigned char uart_update_start(int fd, unsigned char targetAddr, unsigned int crc32) { unsigned char result = FAIL; unsigned char tx[11] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_START, 0x04, 0x00, (crc32>>0)&0xff, (crc32>>8)&0xff, (crc32>>16)&0xff, (crc32>>24)&0xff, 0x00}; unsigned char rx[8] = {0}; unsigned char chksum = 0x00; for(int idx=0;idx<(tx[4] | tx[5]<<8);idx++) chksum ^= tx[6+idx]; tx[10] = chksum; if(uart_tranceive(fd, tx, rx, 11, 0x01) >= 8) { chksum = 0x00; for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++) { chksum ^= rx[6+idx]; } if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x01)) { result = PASS; DEBUG_INFO("UART target is ready for upgrade.\n"); } else { DEBUG_INFO("UART target is not ready...\n"); } } else { DEBUG_ERROR("UART receiving update start ack failed...\n"); } return result; } unsigned char uart_update_abord(int fd, unsigned char targetAddr) { unsigned char result = FAIL; unsigned char tx[7] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_ABORD, 0x00, 0x00, 0x00}; unsigned char rx[8] = {0}; unsigned char chksum = 0x00; if(uart_tranceive(fd, tx, rx, 7, 0x00) >= 8) { for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++) { chksum ^= rx[6+idx]; } if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x01)) { result = PASS; DEBUG_INFO("UART target abord update OK.\n"); } else { DEBUG_ERROR("UART target abord update failed.\n"); } } else { DEBUG_ERROR("UART receiving update abord ack failed...\n"); } return result; } unsigned char uart_update_transfer(int fd, unsigned char targetAddr, unsigned int startAddr, unsigned char *data, unsigned short int length) { unsigned char result = FAIL; unsigned char tx[11 + length]; unsigned char rx[8] = {0}; unsigned char chksum = 0x00; tx[0] = 0xaa; tx[1] = 0x00; tx[2] = targetAddr; tx[3] = UART_CMD_UPDATE_TRANSFER; tx[4] = (4 + length) & 0xff; tx[5] = ((4 + length)>>8) & 0xff; tx[6] = (startAddr>>0) & 0xff; tx[7] = (startAddr>>8) & 0xff; tx[8] = (startAddr>>16) & 0xff; tx[9] = (startAddr>>24) & 0xff; memcpy(tx+10, data, length); for(int idx=0;idx<(tx[4] | tx[5]<<8);idx++) chksum ^= tx[6+idx]; tx[sizeof(tx)-1] = chksum; if(uart_tranceive(fd, tx, rx, (11 + length), 0x00) >= 8) { chksum = 0; for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++) { chksum ^= rx[6+idx]; } if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x01)) { result = PASS; } } else { DEBUG_ERROR("UART receiving update transfer ack failed...\n"); } return result; } unsigned char uart_update_finish(int fd, unsigned char targetAddr) { unsigned char result = FAIL; unsigned char tx[7] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_FINISH, 0x00, 0x00, 0x00}; unsigned char rx[8] = {0}; unsigned char chksum = 0x00; if(uart_tranceive(fd, tx, rx, 7, 0x00) >= 8) { for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++) { chksum ^= rx[6+idx]; } if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x01)) { result = PASS; DEBUG_INFO("UART update finish check OK...\n"); } else { DEBUG_ERROR("UART update finish check failed...\n"); } } else { DEBUG_ERROR("UART receiving update finish ack failed...\n"); } return result; } unsigned char uart_config_timeout(int uartfd) { struct termios tios; ioctl (uartfd, TCGETS, &tios); tios.c_cc[VTIME]=(unsigned char)50; // timeout 5 secod tcflush(uartfd, TCIFLUSH); ioctl (uartfd, TCSETS, &tios); return uartfd; } int Upgrade_UART(int uartfdOrd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName) { int result = FAIL; long int MaxLen=48*1024*1024, ImageLen=0; unsigned int ImageCRC=0, DataLength=0; int fd; int uartfd = uart_config_timeout(uartfdOrd); fd = open(SourcePath, O_RDONLY); if(fd < 0) { DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath); return result; } unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH); memset(ptr,0xFF,MaxLen+HEADER_LENGTH); //get the image length ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH); close(fd); //read out the header int isModelNameOK = PASS; if((ModelName[0] != ptr[0]) || (ModelName[1] != ptr[1]) || (ModelName[7] != ptr[7]) || (ModelName[8] != ptr[8]) || (ModelName[9] != ptr[9]) || (ModelName[11] != ptr[11]) || (ModelName[12] != ptr[12]) || (ModelName[13] != ptr[13])) { isModelNameOK = FAIL; } if(isModelNameOK == FAIL) { DEBUG_ERROR("Model name mismatch...\n"); } else { // check if the firmware type is correct if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19]))) { if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23]))) { DataLength = ImageLen-HEADER_LENGTH; // get CRC in the header ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]); // calculate the image CRC DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC); DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen)); if(crc32(ptr,ImageLen) == ImageCRC) { if(YES) { int CNT_Fail = 0; int CNT_Trans = 0; do { if(uart_update_start(uartfd, TargetAddr, crc32(ptr+HEADER_LENGTH,DataLength))==PASS) break; else DEBUG_WARN("Upgrade start fail, retry %d \n", ++CNT_Fail); }while(CNT_Fail<10); if(CNT_Fail>=10) { uart_update_abord(uartfd, TargetAddr); DEBUG_ERROR("UART upgrade start retry > limits, aboard upgrade.\n"); } else { CNT_Fail = 0; do { if(uart_update_transfer(uartfd, TargetAddr, CNT_Trans*1024, ptr+HEADER_LENGTH+(CNT_Trans*1024), 1024)==PASS) { CNT_Fail = 0; CNT_Trans++; DEBUG_INFO("Upgrade progress:%.2f%%\n", ((float)(CNT_Trans*1024))/(DataLength)*100); } else { DEBUG_WARN("Data transfer fail, retry %d \n", ++CNT_Fail); sleep(1); } }while(DataLength-(CNT_Trans*1024)>0 && CNT_Fail<10); if(CNT_Fail>=10) { uart_update_abord(uartfd, TargetAddr); DEBUG_ERROR("UART upgrade transfer retry > limits, aboard upgrade.\n"); } else { CNT_Fail = 0; do { if(uart_update_finish(uartfd, TargetAddr)==PASS) break; else DEBUG_WARN("Upgrade finish fail, retry %d \n", ++CNT_Fail); }while(CNT_Fail<10); if(CNT_Fail>=10) { uart_update_abord(uartfd, TargetAddr); DEBUG_ERROR("UART upgrade finish retry > limits, aboard upgrade.\n"); } else { result = PASS; printf("UART upgrade success.\n"); } } } } else DEBUG_ERROR("UART upgrade request failed.\n"); } else DEBUG_ERROR("Firmware image CRC32 mismatch.\n"); } else DEBUG_ERROR("Firmware image length mismatch.\n"); } else DEBUG_ERROR("Firmware image type mismatch.\n"); } free(ptr); return result; } //================================================ // CANBUS update function //================================================ unsigned long getTimeoutValue(struct timeval _sour_time) { struct timeval _end_time; gettimeofday(&_end_time, NULL); return 1000000 * (_end_time.tv_sec - _sour_time.tv_sec) + _end_time.tv_usec - _sour_time.tv_usec; } int CAN_Download_REQ(int canfd,unsigned int Slave_Addr, unsigned int imageSize) { struct can_frame frame; frame.can_id = (0x00000E00 + Slave_Addr) | 0x80000000; //extended frame frame.can_dlc = 0x07; frame.data[0] = 0x04; //0x01:Configuration file, 0x02:Bootloader of primary side MCU, 0x03:Firmware (main code) of primary side MCU, 0x04:Bootloader of secondary side MCU, 0x05:Firmware (main code) of secondary side MCU frame.data[1] = (imageSize>>0)&0xff; //Total 384 KBytes frame.data[2] = (imageSize>>8)&0xff; //Total 384 KBytes frame.data[3] = (imageSize>>16)&0xff; //Total 384 KBytes frame.data[4] = (imageSize>>24)&0xff; //Total 384 KBytes frame.data[5] = 0x10; //16 blocks frame.data[6] = 0x18; //24 KBytes DEBUG_INFO( "File size = %x, %d \n", imageSize, imageSize); write(canfd, &frame, sizeof(struct can_frame)); if (canfd > 0) { struct timeval timer; gettimeofday(&timer, NULL); while (getTimeoutValue(timer) < 5000000) { struct can_frame frame; int len; len = read(canfd, &frame, sizeof(struct can_frame)); if (len >= 0) { DEBUG_INFO( "*****************************CAN_Download_REQ Get***************************** \n"); DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK); if (((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) == 0x08000E00) && frame.data[0] == 1) { DEBUG_INFO("PASS \n"); return PASS; } } } } return FAIL; } int CAN_Start_BLK_Trans(int canfd,unsigned int Slave_Addr,unsigned int Block_No,unsigned int Block_Checksum) { struct can_frame frame; frame.can_id = (0x00000F00 + Slave_Addr) | 0x80000000; //extended frame frame.can_dlc = 0x02; frame.data[0] = Block_No; frame.data[1] = Block_Checksum; DEBUG_INFO("Block_No = %x, Block_Checksum = %x \n", Block_No, Block_Checksum); write(canfd, &frame, sizeof(struct can_frame)); usleep(100000); if (canfd > 0) { struct timeval timer; gettimeofday(&timer, NULL); while (getTimeoutValue(timer) < 1000000) { struct can_frame frame; int len; len = read(canfd, &frame, sizeof(struct can_frame)); if(len >= 0) { DEBUG_INFO("*****************************CAN_Start_BLK_Trans Get***************************** \n"); DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK); // extended frame CAN_EFF_MASK if(((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) == 0x08000F00) &&frame.data[0] == 1) { DEBUG_INFO("CAN_Start_BLK_Trans PASS \n"); return PASS; } } } } return FAIL; } void CAN_Data_Trans(int canfd,unsigned int Slave_Addr,long Data_num,unsigned char Data[]) { struct can_frame frame; frame.can_id = (0x00001000 + Slave_Addr) | 0x80000000; //extended frame frame.can_dlc = 0x08; frame.data[0] = Data[Data_num+0]; frame.data[1] = Data[Data_num+1]; frame.data[2] = Data[Data_num+2]; frame.data[3] = Data[Data_num+3]; frame.data[4] = Data[Data_num+4]; frame.data[5] = Data[Data_num+5]; frame.data[6] = Data[Data_num+6]; frame.data[7] = Data[Data_num+7]; // DEBUG_INFO("%02x %02x %02x %02x %02x %02x %02x %02x \n", frame.data[0], frame.data[1], frame.data[2], frame.data[3], // frame.data[4], frame.data[5], frame.data[6], frame.data[7]); write(canfd, &frame, sizeof(struct can_frame)); usleep(2000); } int CAN_Download_FIN(int canfd,unsigned int Slave_Addr) { struct can_frame frame; frame.can_id = (0x00001100 + Slave_Addr) | 0x80000000; //extended frame frame.can_dlc = 0x00; write(canfd, &frame, sizeof(struct can_frame)); usleep(10000); if (canfd > 0) { struct timeval timer; gettimeofday(&timer, NULL); while (getTimeoutValue(timer) < 1000000) { struct can_frame frame; int len; len = read(canfd, &frame, sizeof(struct can_frame)); if(len >= 0) { DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK); // extended frame if(((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) == 0x08001100) && frame.data[0] == 1) { DEBUG_INFO("CAN_Download_FIN PASS \n"); return PASS; } } } } return FAIL; } int Checksum_Cal(unsigned int StartAdress,unsigned int length, unsigned char Data[]) { unsigned char checksum = 0x00; for(unsigned int i = 0; i < length; i++) { //DEBUG_INFO("value = %x \n", Data[StartAdress + i]); checksum ^= Data[StartAdress + i]; //DEBUG_INFO("checksum = %x \n", checksum); } return checksum; } int Upgrade_CAN(int canfd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName) { int result = FAIL; long int MaxLen=48*1024*1024, ImageLen=0; unsigned int ImageCRC=0, DataLength=0; int fd; fd = open(SourcePath, O_RDONLY); if(fd < 0) { DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath); return result; } unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH); memset(ptr,0xFF,MaxLen+HEADER_LENGTH); //get the image length ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH); close(fd); //read out the header int isModelNameOK = PASS; if((ModelName[0] != ptr[0]) || (ModelName[1] != ptr[1]) || (ModelName[7] != ptr[7]) || (ModelName[8] != ptr[8]) || (ModelName[9] != ptr[9]) || (ModelName[11] != ptr[11]) || (ModelName[12] != ptr[12]) || (ModelName[13] != ptr[13])) { isModelNameOK = FAIL; } if(isModelNameOK == FAIL) { DEBUG_ERROR("Model name mismatch...\n"); return result; } else { // check if the firmware type is correct if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19]))) { if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23]))) { DataLength = ImageLen-HEADER_LENGTH; // get CRC in the header ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]); // calculate the image CRC DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC); DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen)); if(crc32(ptr,ImageLen) == ImageCRC) { unsigned int Checksum[16]; for(int i=0;i<16;i++) { Checksum[i] = Checksum_Cal(i * 24576, 24576, ptr + HEADER_LENGTH); } if(CAN_Download_REQ(canfd, TargetAddr, DataLength) == PASS) { for(int block = 1; block <= 16; block++) { if(CAN_Start_BLK_Trans(canfd, TargetAddr, block, Checksum[block - 1]) == PASS) { for(int times = 0; times < 3072; times++) { CAN_Data_Trans(canfd, TargetAddr, ((block - 1) * 24576 + times * 8), ptr + HEADER_LENGTH); } DEBUG_INFO(" \n\n"); } else { free(ptr); return result; } } if (CAN_Download_FIN(canfd, TargetAddr) == PASS) result = PASS; } else DEBUG_ERROR("CANBUS upgrade request failed.\n"); } else DEBUG_ERROR("Firmware image CRC32 mismatch.\n"); } else DEBUG_ERROR("Firmware image length mismatch.\n"); } else DEBUG_ERROR("Firmware image type mismatch.\n"); } free(ptr); return result; } //================================================ // CCS update function //================================================ int Check_CCS_image_header(unsigned int Type,char *SourcePath,char *ModelName) { int result = FAIL; long int MaxLen=48*1024*1024, ImageLen=0; unsigned int ImageCRC=0; int fd; // space max size set fd = open(SourcePath, O_RDONLY); if(fd < 0) { DEBUG_ERROR("Update CCS NG - can not open upgrade image %s\n", SourcePath); return FAIL; } switch(Type) { case CCS_BOARD_MLO: MaxLen = 0.5*1024*1024; DEBUG_INFO("Prepare to upgrade CCS MLO\n"); break; case CCS_BOARD_BOOTLOADER: MaxLen = 1*1024*1024; DEBUG_INFO("Prepare to upgrade CCS BOOTLOADER\n"); break; case CCS_BOARD_KERNEL_CONFIGURATION: MaxLen = 0.5*1024*1024; DEBUG_INFO("Prepare to upgrade CCS KERNEL CONFIGURATION\n"); break; case CCS_BOARD_KERNEL_IMAGE: MaxLen = 10*1024*1024; DEBUG_INFO("Prepare to upgrade CCS KERNEL\n"); break; case CCS_BOARD_FILE_SYSTEM: MaxLen = 48*1024*1024; DEBUG_INFO("Prepare to upgrade CCS FILE SYSTEM\n"); break; default: DEBUG_ERROR("Wrong image type for CCS upgrade\n"); return FAIL; break; } unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH); memset(ptr,0xFF,MaxLen+HEADER_LENGTH); //get the image length ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH); close(fd); //read out the header int isModelNameOK = PASS; if((ModelName[0] != ptr[0]) || (ModelName[1] != ptr[1]) || (ModelName[7] != ptr[7]) || (ModelName[8] != ptr[8]) || (ModelName[9] != ptr[9]) || (ModelName[11] != ptr[11]) || (ModelName[12] != ptr[12]) || (ModelName[13] != ptr[13])) { isModelNameOK = FAIL; } if(isModelNameOK == FAIL) { DEBUG_ERROR("Model name mismatch.\n"); } else { // check if the firmware type is correct if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19]))) { if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23]))) { // get CRC in the header ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]); // calculate the image CRC DEBUG_INFO("CRC32 in CCS image: 0x%08X\n",ImageCRC); DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen)); if(crc32(ptr,ImageLen) == ImageCRC) { result = PASS; } else { DEBUG_ERROR("Firmware image CRC32 mismatch.\n"); } } else { DEBUG_ERROR("Firmware image length mismatch.\n"); } } else { DEBUG_ERROR("Firmware image type mismatch.\n"); } } free(ptr); return result; } int Put_CCS_image(char *SourcePath, unsigned char TargetAddr) { unsigned char ftpcmdbuf[256]; unsigned char CCSIpAddress[16]; //If ID of target EV board is 1, the IP address will be 192.168.0.21, //if ID of target EV board is 2, the IP address will be 192.168.0.22. sprintf((char*)CCSIpAddress,"192.168.0.2%d", TargetAddr); //Using ftpput command to transfer CCS upgrade image, //User name : root //User password : y42j/4cj84 //Destination : /root/ccs.image sprintf((char*)ftpcmdbuf,"ftpput -u root -p y42j/4cj84 %s /root/ccs.image %s", CCSIpAddress, SourcePath); if(system((char*)ftpcmdbuf) != 0) { DEBUG_ERROR("Update CCS NG - FTP put CCS upgrade image to CCS board %d fail\n", TargetAddr); return FAIL; } else { DEBUG_INFO("FTP put %s to CCS board %d finish\n", SourcePath, TargetAddr); return PASS; } } int Send_CCS_download_finish(int canfd,unsigned int Slave_Addr) { if (canfd > 0) { struct can_frame frame; frame.can_id = (CANBUS_MESSAGE_ID_UPGRADE_FINISH + Slave_Addr) | 0x80000000; //extended frame frame.can_dlc = 0x00; write(canfd, &frame, sizeof(struct can_frame)); usleep(10000); struct timeval timer; gettimeofday(&timer, NULL); unsigned long ack_timeout = 5 * 60 * 1000 * 1000; //5 minutes while (getTimeoutValue(timer) < ack_timeout) { struct can_frame frame; int len; len = read(canfd, &frame, sizeof(struct can_frame)); if(len >= 0) { if(((int)(frame.can_id & CAN_EFF_MASK) == (CANBUS_MESSAGE_ID_UPGRADE_FINISH | Slave_Addr | 0x08000000)) && frame.data[0] == 1) { return PASS; } } } DEBUG_ERROR("Wait for download finish ack from CCS %d timeout\n", Slave_Addr); return FAIL; } else { DEBUG_ERROR("Send CCS download finish command fail, CAN fd is null\n"); return FAIL; } } int Upgrade_CCS(int canfd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName) { if(Check_CCS_image_header(Type, SourcePath, ModelName) == FAIL) { return FAIL; } if(Put_CCS_image(SourcePath, TargetAddr) == FAIL) { return FAIL; } if(Send_CCS_download_finish(canfd, TargetAddr) == FAIL) { return FAIL; } DEBUG_INFO("Upgrade CCS board %d complete.\n", TargetAddr); return PASS; }