/*
 * Module_Upgrade.c
 *
 *  Created on: 2020-01-21
 *      Author: Jerry Wang
 *     Version: D0.03
 */
#include "Module_Upgrade.h"

//==================================
// PRINT OUT LOG FORMAT
//==================================
#define DEBUG_INFO(format, args...) storeLogMsg("[%s:%d][%s][Info] "format, __FILE__, __LINE__, __FUNCTION__, ##args)
#define DEBUG_WARN(format, args...) storeLogMsg("[%s:%d][%s][Warn] "format, __FILE__, __LINE__, __FUNCTION__, ##args)
#define DEBUG_ERROR(format, args...) storeLogMsg("[%s:%d][%s][Error] "format, __FILE__, __LINE__, __FUNCTION__, ##args)

#define SystemLogMessage
//#define ConsloePrintLog
#define ARRAY_SIZE(A)       (sizeof(A) / sizeof(A[0]))
#define PASS                1
#define FAIL                -1
#define	YES					1
#define	NO					0
#define	ON					1
#define	OFF					0
#define HEADER_LENGTH		48


struct SysConfigAndInfo         *ShmSysConfigAndInfo;
struct StatusCodeData           *ShmStatusCodeData;
struct FanModuleData            *ShmFanModuleData;

int storeLogMsg(const char *fmt, ...)
{
    char Buf[4096+256];
    char buffer[4096];
    time_t CurrentTime;
    struct tm *tm;
    struct timeval tv;
    va_list args;

    va_start(args, fmt);
    int rc = vsnprintf(buffer, sizeof(buffer), fmt, args);
    va_end(args);

    memset(Buf,0,sizeof(Buf));
    CurrentTime = time(NULL);
    tm=localtime(&CurrentTime);
    gettimeofday(&tv, NULL); // get microseconds, 10^-6

    sprintf(Buf,"echo -n \"[%04d.%02d.%02d %02d:%02d:%02d.%06ld]%s\" >> /Storage/SystemLog/[%04d.%02d]Module_UpgradeLog",
            tm->tm_year+1900,tm->tm_mon+1,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec,tv.tv_usec,
            buffer,
            tm->tm_year+1900,tm->tm_mon+1);

#ifdef SystemLogMessage
    system(Buf);
#endif

#ifdef ConsloePrintLog
    printf("[%04d.%02d.%02d %02d:%02d:%02d.%06ld]%s", tm->tm_year+1900,tm->tm_mon+1,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec,tv.tv_usec, buffer);
#endif

    return rc;
}

int DiffTimebByUpgrade(struct timeb ST, struct timeb ET)
{
    //return milli-second
    unsigned int StartTime,StopTime;

    StartTime=(unsigned int)ST.time;
    StopTime=(unsigned int)ET.time;
    return (StopTime-StartTime)*1000+ET.millitm-ST.millitm;
}

unsigned char *memcat(unsigned char *dest, unsigned int dest_len, unsigned char *src, unsigned int src_len)
{
    memcpy(dest+dest_len, src, src_len);
    return dest;
}

uint32_t crc32(uint8_t *data, unsigned int length)
{
    uint8_t i;
    uint32_t cnt = 0;
    uint32_t crc = 0xffffffff;  // Initial value
    while(length--)
    {
        if(cnt>33 && cnt<48) {
            data++;
        }else {
            crc ^= *data++;         // crc ^= *data; data++;
            for (i = 0; i < 8; ++i)
            {
                if (crc & 1)
                    crc = (crc >> 1) ^ 0xEDB88320;// 0xEDB88320= reverse 0x04C11DB7
                else
                    crc = (crc >> 1);
            }
        }
        cnt++;
    }
    return ~crc;
}

int runShellCmd(const char*cmd)
{
	int result = FAIL;
	char buf[256];
	FILE *fp;

	fp = popen(cmd, "r");
	if(fp != NULL)
	{
		while(fgets(buf, sizeof(buf), fp) != NULL)
		{
			DEBUG_INFO("%s\n", buf);
		}

		result = PASS;
	}
	pclose(fp);

	return result;
}

int config_upgrade_flag(unsigned int upgradeFlag, unsigned char isSetFlag)
{
	int result = FAIL;
	int fd;
	unsigned char envFlash[512*1024];
	system("rm -f /tmp/envFlash");
	DEBUG_INFO("Read /dev/mtd2.\n");
	runShellCmd("nanddump -s 0x0 -l 0x80000 -f /tmp/envFlash /dev/mtd2");

    fd = open("/tmp/envFlash", O_RDWR);
    if(fd < 0)
    {
        DEBUG_ERROR("Open envFlash NG.\n");
    }
    else
    {
		read(fd,envFlash,ARRAY_SIZE(envFlash));
		close(fd);
		system("rm -f /tmp/envFlash");

		envFlash[upgradeFlag] = (isSetFlag?0x00:0xff);

		fd = open("/tmp/envFlash", O_RDWR | O_CREAT | O_EXCL);
		if(fd < 0)
		{
			DEBUG_ERROR("Open envFlash NG.\n");
		}
		else
		{
			write(fd,envFlash,ARRAY_SIZE(envFlash));
			close(fd);

			DEBUG_INFO("Erase /dev/mtd2.\n");
			runShellCmd("flash_erase /dev/mtd2 0 0");

			DEBUG_INFO("Write /dev/mtd2.\n");
			runShellCmd("nandwrite -p /dev/mtd2 /tmp/envFlash");

			system("rm -f /tmp/envFlash");
			result = PASS;
		}
    }

	return result;
}

int Upgrade_Flash(unsigned int Type,char *SourcePath,char *ModelName)
{
    int result = FAIL;

    char cmdBuf[128];
    long int MaxLen=48*1024*1024, ImageLen=0;
    unsigned int ImageCRC=0, DataLength=0;
    int wrd,fd;

    // space max size set
    switch(Type)
    {
		case CSU_MLO:
			MaxLen = 0.5*1024*1024;
			DEBUG_INFO("Image type: MLO\n");
			break;
        case CSU_BOOTLOADER:
            MaxLen = 1*1024*1024;
            DEBUG_INFO("Image type: U-Boot\n");
            break;
        case CSU_KERNEL_CONFIGURATION:
            MaxLen = 0.5*1024*1024;
            DEBUG_INFO("Image type: DTB\n");
            break;
        case CSU_KERNEL_IMAGE:
            MaxLen = 10*1024*1024;
            DEBUG_INFO("Image type: Kernel\n");
            break;
        case CSU_ROOT_FILE_SYSTEM:
            MaxLen = 48*1024*1024;
            DEBUG_INFO("Image type: Root fs\n");
            break;
        case CSU_USER_CONFIGURATION:
            MaxLen = 6*1024*1024;
            DEBUG_INFO("Image type: Config\n");
            break;
        default:
            break;
    }

    fd = open(SourcePath, O_RDONLY);
    if(fd < 0)
    {
        DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath);
        return result;
    }

    unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH);
    memset(ptr,0xFF,MaxLen+HEADER_LENGTH);

    //get the image length
    ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH);
    close(fd);

    // Delete source file, in order to down size ram disk usage
    sprintf(cmdBuf, "rm -f %s", SourcePath);
    system(cmdBuf);
    DEBUG_INFO("Delete source file.\n");

    //read out the header
    int isModelNameOK = PASS;

	if((ModelName[0] != ptr[0]) ||
	   (ModelName[1] != ptr[1]) ||
	   (ModelName[7] != ptr[7]) ||
	   (ModelName[8] != ptr[8]) ||
	   (ModelName[9] != ptr[9]) ||
	   (ModelName[11] != ptr[11]) ||
	   (ModelName[12] != ptr[12]) ||
	   (ModelName[13] != ptr[13]))
	{
		isModelNameOK = FAIL;
	}


    if(isModelNameOK == FAIL)
    {
        DEBUG_ERROR("Model name mismatch.\n");
    }
    else
    {
        // check if the firmware type is correct
        if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19])))
        {
            if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23])))
            {
                DataLength = ImageLen-HEADER_LENGTH;

                // get CRC in the header
                ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]);

                // calculate the image CRC
                DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC);
                DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen));
                if(crc32(ptr,ImageLen) == ImageCRC)
                {
                    // Write image to target flash block
                    switch(Type)
                    {
                        case CSU_MLO:
                        	fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if (fd < 0)
                            {
                                DEBUG_ERROR("Can not create MLO image buffer file.\n");
                                result = FAIL;
                            }
                            else
                            {
                                // Write image to flash
                            	DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer Written length: 0x%x\n", wrd);
                                if(wrd != DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	DEBUG_INFO("Erase /dev/mtd0.\n");
                                	runShellCmd("flash_erase /dev/mtd0 0 0");

                                	DEBUG_INFO("Write /dev/mtd0.\n");
                                	runShellCmd("nandwrite -p /dev/mtd0 /mnt/imgBuffer");

									system("rm -f /mnt/imgBuffer");
									result = PASS;
                                }
                            }
                            break;
                        case CSU_BOOTLOADER:
                        	fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if (fd < 0)
                            {
                                DEBUG_ERROR("Can not create uboot image buffer file.\n");
                                result = FAIL;
                            }
                            else
                            {
                                // Write image to flash
                            	DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd);
                                if(wrd != DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	DEBUG_INFO("Erase /dev/mtd1.\n");
                                	runShellCmd("flash_erase /dev/mtd1 0 0");

									DEBUG_INFO("Write /dev/mtd1.\n");
									runShellCmd("nandwrite -p /dev/mtd1 /mnt/imgBuffer");

									DEBUG_INFO("Erase /dev/mtd3.\n");
									runShellCmd("flash_erase /dev/mtd3 0 0");

									DEBUG_INFO("Write /dev/mtd3.\n");
									runShellCmd("nandwrite -p /dev/mtd3 /mnt/imgBuffer");

									system("rm -f /mnt/imgBuffer");
									result = PASS;
                                }
                            }
                            break;
                        case CSU_KERNEL_CONFIGURATION:
                        	fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if (fd < 0)
                            {
                                DEBUG_ERROR("Can not create DTB image buffer file.\n");
                                result = FAIL;
                            }
                            else
                            {
                                // Write image to flash
                            	DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd);
                                if(wrd != DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	config_upgrade_flag(UPGRADE_FLAG_DTS, ON);
                                    DEBUG_INFO("Erase /dev/mtd4.\n");
                                    runShellCmd("flash_erase /dev/mtd4 0 0");
									DEBUG_INFO("Write /dev/mtd4.\n");
									runShellCmd("nandwrite -p /dev/mtd4 /mnt/imgBuffer");
									config_upgrade_flag(UPGRADE_FLAG_DTS, OFF);

									DEBUG_INFO("Erase /dev/mtd5.\n");
									runShellCmd("flash_erase /dev/mtd5 0 0");
									DEBUG_INFO("Write /dev/mtd5.\n");
									runShellCmd("nandwrite -p /dev/mtd5 /mnt/imgBuffer");

									system("rm -f /mnt/imgBuffer");
									result = PASS;
                                }
                            }
                            break;
                        case CSU_KERNEL_IMAGE:
                        	fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if (fd < 0)
                            {
                                DEBUG_ERROR("Can not create kernel image buffer file.\n");
                                result = FAIL;
                            }
                            else
                            {
                                // Write image to flash
                            	DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd);
                                if(wrd != DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	config_upgrade_flag(UPGRADE_FLAG_KERNEL, ON);
                                	DEBUG_INFO("Erase /dev/mtd6.\n");
                                	runShellCmd("flash_erase /dev/mtd6 0 0");
									DEBUG_INFO("Write /dev/mtd6.\n");
									runShellCmd("nandwrite -p /dev/mtd6 /mnt/imgBuffer");
									config_upgrade_flag(UPGRADE_FLAG_KERNEL, OFF);

									DEBUG_INFO("Erase /dev/mtd7.\n");
									runShellCmd("flash_erase /dev/mtd7 0 0");
									DEBUG_INFO("Write /dev/mtd7.\n");
									runShellCmd("nandwrite -p /dev/mtd7 /mnt/imgBuffer");

									system("rm -f /mnt/imgBuffer");
									result = PASS;
                                }
                            }
                            break;
                        case CSU_ROOT_FILE_SYSTEM:
                        	fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if(fd < 0)
                            {
                                DEBUG_ERROR("UpdateRootfs NG - can not create rootfs image buffer file\n");
                                result = FAIL;
                            }
                            else
                            {
                                DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd);
                                if(wrd!=DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	config_upgrade_flag(UPGRADE_FLAG_ROOTFS, ON);
                                	DEBUG_INFO("Erase /dev/mtd8.\n");
                                	runShellCmd("flash_erase /dev/mtd8 0 0");
                                	DEBUG_INFO("Write /dev/mtd8.\n");
                                	runShellCmd("nandwrite -p /dev/mtd8 /mnt/imgBuffer");
                                	config_upgrade_flag(UPGRADE_FLAG_ROOTFS, OFF);

                                	DEBUG_INFO("Erase /dev/mtd9.\n");
                                	runShellCmd("flash_erase /dev/mtd9 0 0");
                                	DEBUG_INFO("Write /dev/mtd9.\n");
                                	runShellCmd("nandwrite -p /dev/mtd9 /mnt/imgBuffer");

                                	system("rm -f /mnt/imgBuffer");
                                    result = PASS;
                                }
                            }
                            break;
                        case CSU_USER_CONFIGURATION:
                            fd = open("/mnt/imgBuffer", O_RDWR | O_CREAT | O_EXCL);
                            if (fd < 0)
                            {
                                DEBUG_ERROR("Can not create configuration image buffer file\n");
                                result = FAIL;
                            }
                            else
                            {
                                // Write image to flash
                                DEBUG_INFO("Writing image to image buffer file...\n");
                                wrd=write(fd, ptr+HEADER_LENGTH, DataLength);
                                close(fd);
                                DEBUG_INFO(">> imgBuffer written length: 0x%x\n", wrd);
                                if(wrd != DataLength)
                                {
                                    result = FAIL;
                                }
                                else
                                {
                                	DEBUG_INFO("Erase /dev/mtd10.\n");
                                	runShellCmd("flash_erase /dev/mtd10 0 0");
									DEBUG_INFO("Write /dev/mtd10.\n");
									runShellCmd("nandwrite -p /dev/mtd10 /mnt/imgBuffer");

									DEBUG_INFO("Erase /dev/mtd11.\n");
									runShellCmd("flash_erase /dev/mtd11 0 0");
									DEBUG_INFO("Write /dev/mtd11.\n");
									runShellCmd("nandwrite -p /dev/mtd11 /mnt/imgBuffer");

									system("rm -f /mnt/imgBuffer");
									result = PASS;
                                }
                            }
                            break;
                        default:
                            break;
                    }
                }
                else
                    DEBUG_ERROR("Firmware image CRC32 mismatch.\n");
            }
            else
                DEBUG_ERROR("Firmware image length mismatch.\n");
        }
        else
            DEBUG_ERROR("Firmware image type mismatch.\n");
    }
    free(ptr);

    if(result == PASS)
        DEBUG_INFO("Update image success\n");
    else
        DEBUG_ERROR("Update image fail\n");

    return result;
}

//================================================
// UART update function
//================================================
void displayMessage(uint8_t *data, uint16_t len, uint8_t isRX)
{
	uint8_t output[8192];

	memset(output, 0x00, ARRAY_SIZE(output));
	sprintf((char*)output, "%s", (isRX?"RX: ":"TX: "));
	for(uint16_t idx = 0;idx<len;idx++)
	{
		sprintf((char*)output, "%s%02x ", output, data[idx]);
	}

	DEBUG_INFO("%s\n", output);
}

int uart_tranceive(int fd, unsigned char* cmd, unsigned char* rx, int len, unsigned char needErase)
{
	uint16_t rxLen = 0;

    tcflush(fd,TCIOFLUSH);
    //displayMessage(cmd, 6, NO);
    if(write(fd, cmd, len) >= len)
    {
    	rxLen = read(fd, rx, 8);

    	/*
    	if(rxLen > 0)
			displayMessage(rx, rxLen, YES);
		else
			DEBUG_INFO("RX: NULL\n");*/
    }
    else
    {
        DEBUG_ERROR("Serial command %s response fail.\n", cmd);
    }

    return rxLen;
}

unsigned char uart_update_start(int fd, unsigned char targetAddr, unsigned int crc32)
{
    unsigned char result = FAIL;
    unsigned char tx[11] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_START, 0x04, 0x00, (crc32>>0)&0xff, (crc32>>8)&0xff, (crc32>>16)&0xff, (crc32>>24)&0xff, 0x00};
    unsigned char rx[8] = {0};
    unsigned char chksum = 0x00;

    for(int idx=0;idx<(tx[4] | tx[5]<<8);idx++)
        chksum ^= tx[6+idx];
    tx[10] = chksum;

    if(uart_tranceive(fd, tx, rx, 11, 0x01) >= 8)
    {
        chksum = 0x00;
        for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++)
        {
            chksum ^= rx[6+idx];
        }

        if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) &&
           (rx[2] == tx[1]) &&
           (rx[1] == tx[2]) &&
           (rx[3] == tx[3]) &&
           (rx[6] == 0x01))
        {
            result = PASS;
            DEBUG_INFO("UART target is ready for upgrade.\n");
        }
        else
        {
            DEBUG_INFO("UART target is not ready...\n");
        }
    }
    else
    {
        DEBUG_ERROR("UART receiving update start ack failed...\n");
    }

    return result;
}

unsigned char uart_update_abord(int fd, unsigned char targetAddr)
{
    unsigned char result = FAIL;
    unsigned char tx[7] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_ABORD, 0x00, 0x00, 0x00};
    unsigned char rx[8] = {0};
    unsigned char chksum = 0x00;


    if(uart_tranceive(fd, tx, rx, 7, 0x00) >= 8)
    {
        for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++)
        {
            chksum ^= rx[6+idx];
        }

        if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) &&
           (rx[2] == tx[1]) &&
           (rx[1] == tx[2]) &&
           (rx[3] == tx[3]) &&
           (rx[6] == 0x01))
        {
            result = PASS;
            DEBUG_INFO("UART target abord update OK.\n");
        }
        else
        {
            DEBUG_ERROR("UART target abord update failed.\n");
        }
    }
    else
    {
        DEBUG_ERROR("UART receiving update abord ack failed...\n");
    }

    return result;
}

unsigned char uart_update_transfer(int fd, unsigned char targetAddr, unsigned int startAddr, unsigned char *data, unsigned short int length)
{
    unsigned char result = FAIL;
    unsigned char tx[11 + length];
    unsigned char rx[8] = {0};
    unsigned char chksum = 0x00;

    tx[0] = 0xaa;
    tx[1] = 0x00;
    tx[2] = targetAddr;
    tx[3] = UART_CMD_UPDATE_TRANSFER;
    tx[4] = (4 + length) & 0xff;
    tx[5] = ((4 + length)>>8) & 0xff;
    tx[6] = (startAddr>>0) & 0xff;
    tx[7] = (startAddr>>8) & 0xff;
    tx[8] = (startAddr>>16) & 0xff;
    tx[9] = (startAddr>>24) & 0xff;
    memcpy(tx+10, data, length);

    for(int idx=0;idx<(tx[4] | tx[5]<<8);idx++)
        chksum ^= tx[6+idx];
    tx[sizeof(tx)-1] = chksum;

    if(uart_tranceive(fd, tx, rx, (11 + length), 0x00) >= 8)
    {
        chksum = 0;
        for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++)
        {
            chksum ^= rx[6+idx];
        }

        if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) &&
           (rx[2] == tx[1]) &&
           (rx[1] == tx[2]) &&
           (rx[3] == tx[3]) &&
           (rx[6] == 0x01))
        {
            result = PASS;
        }
    }
    else
    {
        DEBUG_ERROR("UART receiving update transfer ack failed...\n");
    }

    return result;
}

unsigned char uart_update_finish(int fd, unsigned char targetAddr)
{
    unsigned char result = FAIL;
    unsigned char tx[7] = {0xaa, 0x00, targetAddr, UART_CMD_UPDATE_FINISH, 0x00, 0x00, 0x00};
    unsigned char rx[8] = {0};
    unsigned char chksum = 0x00;


    if(uart_tranceive(fd, tx, rx, 7, 0x00) >= 8)
    {
        for(int idx=0;idx<((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8));idx++)
        {
            chksum ^= rx[6+idx];
        }

        if((chksum == rx[6+((rx[4] | rx[5]<<8)>1?1:(rx[4] | rx[5]<<8))]) &&
           (rx[2] == tx[1]) &&
           (rx[1] == tx[2]) &&
           (rx[3] == tx[3]) &&
           (rx[6] == 0x01))
        {
            result = PASS;
            DEBUG_INFO("UART update finish check OK...\n");
        }
        else
        {
            DEBUG_ERROR("UART update finish check failed...\n");
        }
    }
    else
    {
        DEBUG_ERROR("UART receiving update finish ack failed...\n");
    }

    return result;
}

unsigned char uart_config_timeout(int uartfd)
{
	struct termios tios;

	ioctl (uartfd, TCGETS, &tios);
	tios.c_cc[VTIME]=(unsigned char)50;		// timeout 5 secod
	tcflush(uartfd, TCIFLUSH);
	ioctl (uartfd, TCSETS, &tios);

	return uartfd;
}

int Upgrade_UART(int uartfdOrd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName)
{
    int result = FAIL;
    long int MaxLen=48*1024*1024, ImageLen=0;
    unsigned int ImageCRC=0, DataLength=0;
    int fd;
    int uartfd = uart_config_timeout(uartfdOrd);

    fd = open(SourcePath, O_RDONLY);
    if(fd < 0)
    {
        DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath);
        return result;
    }

    unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH);
    memset(ptr,0xFF,MaxLen+HEADER_LENGTH);

    //get the image length
    ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH);
    close(fd);
    //read out the header
    int isModelNameOK = PASS;

    if((ModelName[0] != ptr[0]) ||
	   (ModelName[1] != ptr[1]) ||
	   (ModelName[7] != ptr[7]) ||
	   (ModelName[8] != ptr[8]) ||
	   (ModelName[9] != ptr[9]) ||
	   (ModelName[11] != ptr[11]) ||
	   (ModelName[12] != ptr[12]) ||
	   (ModelName[13] != ptr[13]))
	{
		isModelNameOK = FAIL;
	}


    if(isModelNameOK == FAIL)
    {
        DEBUG_ERROR("Model name mismatch...\n");
    }
    else
    {
        // check if the firmware type is correct
        if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19])))
        {
            if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23])))
            {
                DataLength = ImageLen-HEADER_LENGTH;

                // get CRC in the header
                ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]);

                // calculate the image CRC
                DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC);
                DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen));
                if(crc32(ptr,ImageLen) == ImageCRC)
                {
                    if(YES)
                    {
                        int CNT_Fail = 0;
                        int CNT_Trans = 0;

                        do
                        {
                        	if(uart_update_start(uartfd, TargetAddr, crc32(ptr+HEADER_LENGTH,DataLength))==PASS)
                        		break;
							else
								DEBUG_WARN("Upgrade start fail, retry %d \n", ++CNT_Fail);
                        }while(CNT_Fail<10);

                        if(CNT_Fail>=10)
						{
							uart_update_abord(uartfd, TargetAddr);
							DEBUG_ERROR("UART upgrade start retry > limits, aboard upgrade.\n");
						}
						else
						{
							CNT_Fail = 0;
							do
							{
								if(uart_update_transfer(uartfd, TargetAddr, CNT_Trans*1024, ptr+HEADER_LENGTH+(CNT_Trans*1024), 1024)==PASS)
								{
									CNT_Fail = 0;
									CNT_Trans++;
									DEBUG_INFO("Upgrade progress:%.2f%%\n", ((float)(CNT_Trans*1024))/(DataLength)*100);
								}
								else
								{
									DEBUG_WARN("Data transfer fail, retry %d \n", ++CNT_Fail);
									sleep(1);
								}
							}while(DataLength-(CNT_Trans*1024)>0 && CNT_Fail<10);

							if(CNT_Fail>=10)
							{
								uart_update_abord(uartfd, TargetAddr);
								DEBUG_ERROR("UART upgrade transfer retry > limits, aboard upgrade.\n");
							}
							else
							{
								CNT_Fail = 0;
								do
								{
									if(uart_update_finish(uartfd, TargetAddr)==PASS)
										break;
									else
										DEBUG_WARN("Upgrade finish fail, retry %d \n", ++CNT_Fail);
								}while(CNT_Fail<10);

								if(CNT_Fail>=10)
								{
									uart_update_abord(uartfd, TargetAddr);
									DEBUG_ERROR("UART upgrade finish retry > limits, aboard upgrade.\n");
								}
								else
								{
									result = PASS;
									printf("UART upgrade success.\n");
								}
							}
						}
                    }
                    else
                        DEBUG_ERROR("UART upgrade request failed.\n");
                }
                else
                    DEBUG_ERROR("Firmware image CRC32 mismatch.\n");
            }
            else
                DEBUG_ERROR("Firmware image length mismatch.\n");
        }
        else
            DEBUG_ERROR("Firmware image type mismatch.\n");
    }
    free(ptr);

    return result;
}

//================================================
// CANBUS update function
//================================================
unsigned long getTimeoutValue(struct timeval _sour_time)
{
    struct timeval _end_time;
    gettimeofday(&_end_time, NULL);

    return 1000000 * (_end_time.tv_sec - _sour_time.tv_sec) + _end_time.tv_usec - _sour_time.tv_usec;
}

int CAN_Download_REQ(int canfd,unsigned int Slave_Addr, unsigned int imageSize)
{
    struct can_frame frame;
    frame.can_id = (0x00000E00 + Slave_Addr) | 0x80000000;      //extended frame
    frame.can_dlc = 0x07;

    frame.data[0] = 0x04;  //0x01:Configuration file, 0x02:Bootloader of primary side MCU, 0x03:Firmware (main code) of primary side MCU, 0x04:Bootloader of secondary side MCU, 0x05:Firmware (main code) of secondary side MCU
    frame.data[1] = (imageSize>>0)&0xff;  //Total 384 KBytes
    frame.data[2] = (imageSize>>8)&0xff;  //Total 384 KBytes
    frame.data[3] = (imageSize>>16)&0xff;  //Total 384 KBytes
    frame.data[4] = (imageSize>>24)&0xff;  //Total 384 KBytes
    frame.data[5] = 0x10;  //16 blocks
    frame.data[6] = 0x18;  //24 KBytes

    DEBUG_INFO( "File size = %x, %d \n", imageSize, imageSize);
    write(canfd, &frame, sizeof(struct can_frame));
    if (canfd > 0)
    {
        struct timeval timer;
        gettimeofday(&timer, NULL);
        while (getTimeoutValue(timer) < 5000000)
        {
            struct can_frame frame;
            int len;
            len = read(canfd, &frame, sizeof(struct can_frame));
            if (len >= 0)
            {
                DEBUG_INFO( "*****************************CAN_Download_REQ Get***************************** \n");
                DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK);
                if (((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) ==  0x08000E00) && frame.data[0] == 1)
                {
                    DEBUG_INFO("PASS \n");
                    return PASS;
                }
            }
        }
    }
    return FAIL;
}

int CAN_Start_BLK_Trans(int canfd,unsigned int Slave_Addr,unsigned int Block_No,unsigned int Block_Checksum)
{
    struct can_frame frame;
    frame.can_id = (0x00000F00 + Slave_Addr) | 0x80000000;      //extended frame
    frame.can_dlc = 0x02;

    frame.data[0] = Block_No;
    frame.data[1] = Block_Checksum;

    DEBUG_INFO("Block_No = %x, Block_Checksum = %x \n", Block_No, Block_Checksum);
    write(canfd, &frame, sizeof(struct can_frame));
    usleep(100000);

    if (canfd > 0)
    {
        struct timeval timer;
        gettimeofday(&timer, NULL);
        while (getTimeoutValue(timer) < 1000000)
        {
            struct can_frame frame;
            int len;
            len = read(canfd, &frame, sizeof(struct can_frame));
            if(len >= 0)
            {
                DEBUG_INFO("*****************************CAN_Start_BLK_Trans Get***************************** \n");
                DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK); // extended frame  CAN_EFF_MASK
                if(((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) ==  0x08000F00) &&frame.data[0] == 1)
                {
                    DEBUG_INFO("CAN_Start_BLK_Trans PASS \n");
                    return PASS;
                }
            }
        }

    }
    return FAIL;
}

void CAN_Data_Trans(int canfd,unsigned int Slave_Addr,long Data_num,unsigned char Data[])
{
    struct can_frame frame;
    frame.can_id = (0x00001000 + Slave_Addr) | 0x80000000;      //extended frame
    frame.can_dlc = 0x08;

    frame.data[0] = Data[Data_num+0];
    frame.data[1] = Data[Data_num+1];
    frame.data[2] = Data[Data_num+2];
    frame.data[3] = Data[Data_num+3];
    frame.data[4] = Data[Data_num+4];
    frame.data[5] = Data[Data_num+5];
    frame.data[6] = Data[Data_num+6];
    frame.data[7] = Data[Data_num+7];

//  DEBUG_INFO("%02x %02x %02x %02x %02x %02x %02x %02x \n", frame.data[0], frame.data[1], frame.data[2], frame.data[3],
//          frame.data[4], frame.data[5], frame.data[6], frame.data[7]);
    write(canfd, &frame, sizeof(struct can_frame));
    usleep(2000);
}

int CAN_Download_FIN(int canfd,unsigned int Slave_Addr)
{
    struct can_frame frame;
    frame.can_id = (0x00001100 + Slave_Addr) | 0x80000000;      //extended frame
    frame.can_dlc = 0x00;

    write(canfd, &frame, sizeof(struct can_frame));
    usleep(10000);
    if (canfd > 0)
    {
        struct timeval timer;
        gettimeofday(&timer, NULL);
        while (getTimeoutValue(timer) < 1000000)
        {
            struct can_frame frame;
            int len;
            len = read(canfd, &frame, sizeof(struct can_frame));
            if(len >= 0)
            {
                DEBUG_INFO("data = %x \n", frame.can_id & CAN_EFF_MASK); // extended frame
                if(((int)(frame.can_id & CAN_EFF_MASK & 0xFFFFFF00) ==  0x08001100) && frame.data[0] == 1)
                {
                    DEBUG_INFO("CAN_Download_FIN PASS \n");
                    return PASS;
                }
            }
        }
    }
    return FAIL;
}

int Checksum_Cal(unsigned int StartAdress,unsigned int length, unsigned char Data[])
{
    unsigned char checksum = 0x00;

    for(unsigned int i = 0; i < length; i++)
    {
        //DEBUG_INFO("value = %x \n", Data[StartAdress + i]);
        checksum ^= Data[StartAdress + i];
        //DEBUG_INFO("checksum = %x \n", checksum);
    }

    return checksum;
}

int Upgrade_CAN(int canfd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName)
{
    int result = FAIL;
    long int MaxLen=48*1024*1024, ImageLen=0;
    unsigned int ImageCRC=0, DataLength=0;
    int fd;

    fd = open(SourcePath, O_RDONLY);
    if(fd < 0)
    {
        DEBUG_ERROR("UpdateRootfs NG - can not open image file %s\n", SourcePath);
        return result;
    }

    unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH);
    memset(ptr,0xFF,MaxLen+HEADER_LENGTH);

    //get the image length
    ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH);
    close(fd);
    //read out the header
    int isModelNameOK = PASS;

    if((ModelName[0] != ptr[0]) ||
	   (ModelName[1] != ptr[1]) ||
	   (ModelName[7] != ptr[7]) ||
	   (ModelName[8] != ptr[8]) ||
	   (ModelName[9] != ptr[9]) ||
	   (ModelName[11] != ptr[11]) ||
	   (ModelName[12] != ptr[12]) ||
	   (ModelName[13] != ptr[13]))
	{
		isModelNameOK = FAIL;
	}


    if(isModelNameOK == FAIL)
    {
        DEBUG_ERROR("Model name mismatch...\n");
        return result;
    }
    else
    {
        // check if the firmware type is correct
        if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19])))
        {
            if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23])))
            {
                DataLength = ImageLen-HEADER_LENGTH;

                // get CRC in the header
                ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]);

                // calculate the image CRC
                DEBUG_INFO("CRC32 in image: 0x%08X\n",ImageCRC);
                DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen));
                if(crc32(ptr,ImageLen) == ImageCRC)
                {
                    unsigned int Checksum[16];

                    for(int i=0;i<16;i++)
                    {
                        Checksum[i] = Checksum_Cal(i * 24576, 24576, ptr + HEADER_LENGTH);
                    }

                    if(CAN_Download_REQ(canfd, TargetAddr, DataLength) == PASS)
                    {
                        for(int block = 1; block <= 16; block++)
                        {
                            if(CAN_Start_BLK_Trans(canfd, TargetAddr, block, Checksum[block - 1]) == PASS)
                            {
                                for(int times = 0; times < 3072; times++)
                                {
                                    CAN_Data_Trans(canfd, TargetAddr, ((block - 1) * 24576 + times * 8), ptr + HEADER_LENGTH);
                                }
                                DEBUG_INFO(" \n\n");
                            }
                            else
                            {
                                free(ptr);
                                return result;
                            }
                        }

                        if (CAN_Download_FIN(canfd, TargetAddr) == PASS)
                            result = PASS;
                    }
                    else
                        DEBUG_ERROR("CANBUS upgrade request failed.\n");
                }
                else
                    DEBUG_ERROR("Firmware image CRC32 mismatch.\n");
            }
            else
                DEBUG_ERROR("Firmware image length mismatch.\n");
        }
        else
            DEBUG_ERROR("Firmware image type mismatch.\n");

    }
    free(ptr);

    return result;
}

//================================================
// CCS update function
//================================================
int Check_CCS_image_header(unsigned int Type,char *SourcePath,char *ModelName)
{
	int result = FAIL;
    long int MaxLen=48*1024*1024, ImageLen=0;
    unsigned int ImageCRC=0;
    int fd;
    // space max size set

    fd = open(SourcePath, O_RDONLY);
    if(fd < 0)
    {
        DEBUG_ERROR("Update CCS NG - can not open upgrade image %s\n", SourcePath);
        return FAIL;
    }

    switch(Type)
    {
		case CCS_BOARD_MLO:
			MaxLen = 0.5*1024*1024;
			DEBUG_INFO("Prepare to upgrade CCS MLO\n");
			break;
        case CCS_BOARD_BOOTLOADER:
            MaxLen = 1*1024*1024;
            DEBUG_INFO("Prepare to upgrade CCS BOOTLOADER\n");
            break;
        case CCS_BOARD_KERNEL_CONFIGURATION:
            MaxLen = 0.5*1024*1024;
            DEBUG_INFO("Prepare to upgrade CCS KERNEL CONFIGURATION\n");
            break;
        case CCS_BOARD_KERNEL_IMAGE:
            MaxLen = 10*1024*1024;
            DEBUG_INFO("Prepare to upgrade CCS KERNEL\n");
            break;
        case CCS_BOARD_FILE_SYSTEM:
            MaxLen = 48*1024*1024;
            DEBUG_INFO("Prepare to upgrade CCS FILE SYSTEM\n");
            break;
        default:
            DEBUG_ERROR("Wrong image type for CCS upgrade\n");
            return FAIL;
            break;
    }

    unsigned char *ptr = malloc(MaxLen+HEADER_LENGTH);
    memset(ptr,0xFF,MaxLen+HEADER_LENGTH);

    //get the image length
    ImageLen = read(fd,ptr,MaxLen+HEADER_LENGTH);
    close(fd);
    //read out the header
    int isModelNameOK = PASS;

    if((ModelName[0] != ptr[0]) ||
	   (ModelName[1] != ptr[1]) ||
	   (ModelName[7] != ptr[7]) ||
	   (ModelName[8] != ptr[8]) ||
	   (ModelName[9] != ptr[9]) ||
	   (ModelName[11] != ptr[11]) ||
	   (ModelName[12] != ptr[12]) ||
	   (ModelName[13] != ptr[13]))
	{
		isModelNameOK = FAIL;
	}

	if(isModelNameOK == FAIL)
	{
		DEBUG_ERROR("Model name mismatch.\n");
	}
	else
	{
	    // check if the firmware type is correct
	    if(Type == (((unsigned int)ptr[16])<<24 | ((unsigned int)ptr[17])<<16 | ((unsigned int)ptr[18])<<8 | ((unsigned int)ptr[19])))
	    {
	        if((ImageLen-HEADER_LENGTH) == (((unsigned int)ptr[20])<<24 | ((unsigned int)ptr[21])<<16 | ((unsigned int)ptr[22])<<8 | ((unsigned int)ptr[23])))
	        {
	            // get CRC in the header
	            ImageCRC = ((unsigned int)ptr[34])<<24 | ((unsigned int)ptr[35])<<16 | ((unsigned int)ptr[36])<<8 | ((unsigned int)ptr[37]);

	            // calculate the image CRC
	            DEBUG_INFO("CRC32 in CCS image: 0x%08X\n",ImageCRC);
	            DEBUG_INFO("CRC32 by calculation: 0x%08X\n",crc32(ptr,ImageLen));
	            if(crc32(ptr,ImageLen) == ImageCRC)
	            {
	                result = PASS;
	            }
	            else
	            {
	                DEBUG_ERROR("Firmware image CRC32 mismatch.\n");
	            }
	        }
	        else
	        {
	            DEBUG_ERROR("Firmware image length mismatch.\n");
	        }
	    }
	    else
	    {
	        DEBUG_ERROR("Firmware image type mismatch.\n");
	    }
	}
    free(ptr);

    return result;
}

int Put_CCS_image(char *SourcePath, unsigned char TargetAddr)
{
    unsigned char   ftpcmdbuf[256];
    unsigned char   CCSIpAddress[16];

    //If ID of target EV board is 1, the IP address will be 192.168.0.21,
    //if ID of target EV board is 2, the IP address will be 192.168.0.22.
    sprintf((char*)CCSIpAddress,"192.168.0.2%d", TargetAddr);

    //Using ftpput command to transfer CCS upgrade image,
    //User name     : root
    //User password : y42j/4cj84
    //Destination   : /root/ccs.image
    sprintf((char*)ftpcmdbuf,"ftpput -u root -p y42j/4cj84 %s /root/ccs.image %s",
    CCSIpAddress, SourcePath);

    if(system((char*)ftpcmdbuf) != 0)
    {
        DEBUG_ERROR("Update CCS NG - FTP put CCS upgrade image to CCS board %d fail\n", TargetAddr);
        return FAIL;
    }
    else
    {
        DEBUG_INFO("FTP put %s to CCS board %d finish\n", SourcePath, TargetAddr);
        return PASS;
    }
}

int Send_CCS_download_finish(int canfd,unsigned int Slave_Addr)
{
    if (canfd > 0)
    {
        struct can_frame frame;
        frame.can_id = (CANBUS_MESSAGE_ID_UPGRADE_FINISH + Slave_Addr) | 0x80000000;    //extended frame
        frame.can_dlc = 0x00;

        write(canfd, &frame, sizeof(struct can_frame));
        usleep(10000);

        struct timeval timer;
        gettimeofday(&timer, NULL);
        unsigned long ack_timeout = 5 * 60 * 1000 * 1000;  //5 minutes

        while (getTimeoutValue(timer) < ack_timeout)
        {
            struct can_frame frame;
            int len;

            len = read(canfd, &frame, sizeof(struct can_frame));

            if(len >= 0)
            {
                if(((int)(frame.can_id & CAN_EFF_MASK) == (CANBUS_MESSAGE_ID_UPGRADE_FINISH | Slave_Addr | 0x08000000)) && frame.data[0] == 1)
                {
                    return PASS;
                }
            }
        }
        DEBUG_ERROR("Wait for download finish ack from CCS %d timeout\n", Slave_Addr);
        return FAIL;
    }
    else
    {
        DEBUG_ERROR("Send CCS download finish command fail, CAN fd is null\n");
        return FAIL;
    }
}

int Upgrade_CCS(int canfd,unsigned int Type,unsigned char TargetAddr,char *SourcePath,char *ModelName)
{
    if(Check_CCS_image_header(Type, SourcePath, ModelName) == FAIL)
    {
        return FAIL;
    }

    if(Put_CCS_image(SourcePath, TargetAddr) == FAIL)
    {
        return FAIL;
    }

    if(Send_CCS_download_finish(canfd, TargetAddr) == FAIL)
    {
        return FAIL;
    }

    DEBUG_INFO("Upgrade CCS board %d complete.\n", TargetAddr);

    return PASS;
}